//{CodeReview:Triangulation} EarClipper::EarClipper(const Polygon2D_t& polygon, const std::vector<const Polygon2D_t*>& innerPolygons) { if (polygon.IsWellDefined()) { FVector3 checkNormal = Vec3D::ZAxis(); polygonWinding = polygon.GetWinding(checkNormal); for (std::size_t pointIndex = 0, numPoints = polygon.NumPoints(); pointIndex < numPoints; ++pointIndex) { vertices.push_back( Vertex(&polygon[pointIndex]) ); } MakeSimple(innerPolygons, checkNormal); } }
// Main function. // Process a set of blocks with specified entries, returns a shape // The Make* functions receive a NextEntries. If they fill it with data, those are the entries for the // ->Next block on them, and the blocks are what remains in Blocks (which Make* modify). In this way // we avoid recursing on Next (imagine a long chain of Simples, if we recursed we could blow the stack). Shape *Process(BlockSet &Blocks, BlockSet& InitialEntries, Shape *Prev) { PrintDebug("Process() called\n"); BlockSet *Entries = &InitialEntries; BlockSet TempEntries[2]; int CurrTempIndex = 0; BlockSet *NextEntries; Shape *Ret = NULL; #define Make(call) \ Shape *Temp = call; \ if (Prev) Prev->Next = Temp; \ if (!Ret) Ret = Temp; \ if (!NextEntries->size()) { PrintDebug("Process() returning\n"); return Ret; } \ Prev = Temp; \ Entries = NextEntries; \ continue; while (1) { PrintDebug("Process() running\n"); DebugDump(Blocks, " blocks : "); DebugDump(*Entries, " entries: "); CurrTempIndex = 1-CurrTempIndex; NextEntries = &TempEntries[CurrTempIndex]; NextEntries->clear(); if (Entries->size() == 0) return Ret; if (Entries->size() == 1) { Block *Curr = *(Entries->begin()); if (Curr->BranchesIn.size() == 0) { // One entry, no looping ==> Simple Make(MakeSimple(Blocks, Curr, *NextEntries)); } // One entry, looping ==> Loop Make(MakeLoop(Blocks, *Entries, *NextEntries)); } // More than one entry, try to eliminate through a Multiple groups of // independent blocks from an entry/ies. It is important to remove through // multiples as opposed to looping since the former is more performant. BlockBlockSetMap IndependentGroups; FindIndependentGroups(Blocks, *Entries, IndependentGroups); PrintDebug("Independent groups: %d\n", IndependentGroups.size()); if (IndependentGroups.size() > 0) { // We can handle a group in a multiple if its entry cannot be reached by another group. // Note that it might be reachable by itself - a loop. But that is fine, we will create // a loop inside the multiple block (which is the performant order to do it). for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end();) { Block *Entry = iter->first; BlockSet &Group = iter->second; BlockBlockSetMap::iterator curr = iter++; // iterate carefully, we may delete for (BlockBranchMap::iterator iterBranch = Entry->BranchesIn.begin(); iterBranch != Entry->BranchesIn.end(); iterBranch++) { Block *Origin = iterBranch->first; if (Group.find(Origin) == Group.end()) { // Reached from outside the group, so we cannot handle this PrintDebug("Cannot handle group with entry %d because of incoming branch from %d\n", Entry->Id, Origin->Id); IndependentGroups.erase(curr); break; } } } // As an optimization, if we have 2 independent groups, and one is a small dead end, we can handle only that dead end. // The other then becomes a Next - without nesting in the code and recursion in the analysis. // TODO: if the larger is the only dead end, handle that too // TODO: handle >2 groups // TODO: handle not just dead ends, but also that do not branch to the NextEntries. However, must be careful // there since we create a Next, and that Next can prevent eliminating a break (since we no longer // naturally reach the same place), which may necessitate a one-time loop, which makes the unnesting // pointless. if (IndependentGroups.size() == 2) { // Find the smaller one BlockBlockSetMap::iterator iter = IndependentGroups.begin(); Block *SmallEntry = iter->first; int SmallSize = iter->second.size(); iter++; Block *LargeEntry = iter->first; int LargeSize = iter->second.size(); if (SmallSize != LargeSize) { // ignore the case where they are identical - keep things symmetrical there if (SmallSize > LargeSize) { Block *Temp = SmallEntry; SmallEntry = LargeEntry; LargeEntry = Temp; // Note: we did not flip the Sizes too, they are now invalid. TODO: use the smaller size as a limit? } // Check if dead end bool DeadEnd = true; BlockSet &SmallGroup = IndependentGroups[SmallEntry]; for (BlockSet::iterator iter = SmallGroup.begin(); iter != SmallGroup.end(); iter++) { Block *Curr = *iter; for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) { Block *Target = iter->first; if (SmallGroup.find(Target) == SmallGroup.end()) { DeadEnd = false; break; } } if (!DeadEnd) break; } if (DeadEnd) { PrintDebug("Removing nesting by not handling large group because small group is dead end\n"); IndependentGroups.erase(LargeEntry); } } } PrintDebug("Handleable independent groups: %d\n", IndependentGroups.size()); if (IndependentGroups.size() > 0) { // Some groups removable ==> Multiple Make(MakeMultiple(Blocks, *Entries, IndependentGroups, Prev, *NextEntries)); } } // No independent groups, must be loopable ==> Loop Make(MakeLoop(Blocks, *Entries, *NextEntries)); } }