Example #1
0
bool Polygon::Contains(const float3 &worldSpacePoint, float polygonThickness) const
{
    if (PlaneCCW().Distance(worldSpacePoint) > polygonThickness)
        return false;
    return Contains2D(MapTo2D(worldSpacePoint));
}
Example #2
0
/** The implementation of this function is based on the paper
	"Kong, Everett, Toussant. The Graham Scan Triangulates Simple Polygons."
	See also p. 772-775 of Geometric Tools for Computer Graphics.
	The running time of this function is O(n^2). */
TriangleArray Polygon::Triangulate() const
{
	assume1(IsPlanar(), this->SerializeToString());

	TriangleArray t;
	// Handle degenerate cases.
	if (NumVertices() < 3)
		return t;
	if (NumVertices() == 3)
	{
		t.push_back(Triangle(Vertex(0), Vertex(1), Vertex(2)));
		return t;
	}
	std::vector<float2> p2d;
	std::vector<int> polyIndices;
	for(int v = 0; v < NumVertices(); ++v)
	{
		p2d.push_back(MapTo2D(v));
		polyIndices.push_back(v);
	}

	// Clip ears of the polygon until it has been reduced to a triangle.
	int i = 0;
	int j = 1;
	int k = 2;
	size_t numTries = 0; // Avoid creating an infinite loop.
	while(p2d.size() > 3 && numTries < p2d.size())
	{
		if (float2::OrientedCCW(p2d[i], p2d[j], p2d[k]) && IsAnEar(p2d, i, k))
		{
			// The vertex j is an ear. Clip it off.
			t.push_back(Triangle(p[polyIndices[i]], p[polyIndices[j]], p[polyIndices[k]]));
			p2d.erase(p2d.begin() + j);
			polyIndices.erase(polyIndices.begin() + j);

			// The previous index might now have become an ear. Move back one index to see if so.
			if (i > 0)
			{
				i = (i + (int)p2d.size() - 1) % p2d.size();
				j = (j + (int)p2d.size() - 1) % p2d.size();
				k = (k + (int)p2d.size() - 1) % p2d.size();
			}
			numTries = 0;
		}
		else
		{
			// The vertex at j is not an ear. Move to test next vertex.
			i = j;
			j = k;
			k = (k+1) % p2d.size();
			++numTries;
		}
	}

	assume3(p2d.size() == 3, (int)p2d.size(), (int)polyIndices.size(), (int)NumVertices());
	if (p2d.size() > 3) // If this occurs, then the polygon is NOT counter-clockwise oriented.
		return t;
/*
	{
		// For conveniency, create a copy that has the winding order fixed, and triangulate that instead.
		// (Causes a large performance hit!)
		Polygon p2 = *this;
		for(size_t i = 0; i < p2.p.size()/2; ++i)
			std::swap(p2.p[i], p2.p[p2.p.size()-1-i]);
		return p2.Triangulate();
	}
*/
	// Add the last poly.
	t.push_back(Triangle(p[polyIndices[0]], p[polyIndices[1]], p[polyIndices[2]]));

	return t;
}