/**
 * \brief Tridiagonalizes a 3x3 matrix using a single
 * Householder transformation and returns the result.
 *
 * Based on "Geometric Tools" by David Eberly.
 */
static inline void tred3(Matrix3x3 &m, Float *diag, Float *subd) {
	Float m00 = m(0, 0), m01 = m(0, 1), m02 = m(0, 2),
	      m11 = m(1, 1), m12 = m(1, 2), m22 = m(2, 2);

	diag[0] = m00;
	subd[2] = 0;
	if (std::abs(m02) > std::numeric_limits<Float>::epsilon()) {
		Float length = std::sqrt(m01*m01 + m02*m02),
			  invLength = 1 / length;
		m01 *= invLength;
		m02 *= invLength;
		Float q = 2*m01*m12 + m02*(m22 - m11);
		diag[1] = m11 + m02*q;
		diag[2] = m22 - m02*q;
		subd[0] = length;
		subd[1] = m12 - m01*q;
		m = Matrix3x3(
			1, 0, 0,
			0, m01, m02,
			0, m02, -m01);
	} else {
		/* The matrix is already tridiagonal,
		   return an identity transformation matrix */
		diag[1] = m11;
		diag[2] = m22;
		subd[0] = m01;
		subd[1] = m12;
		m = Matrix3x3(
			1, 0, 0,
			0, 1, 0,
			0, 0, 1);
	}
}
Example #2
0
Matrix3x3 Matrix3x3::rotation(const Vector3& axis, float angleRadians) {
  float angle = -angleRadians;
  return Matrix3x3(
    (axis.x * axis.x) * (1 - cos(angle)) + cos(angle)         , axis.x * axis.y * (1 - cos(angle)) + axis.z * sin(angle), (axis.x * axis.z) * (1 - cos(angle)) - axis.y * sin(angle),
    (axis.x * axis.y) * (1 - cos(angle)) - axis.z * sin(angle), axis.y * axis.y * (1 - cos(angle)) + cos(angle)         , (axis.y * axis.z) * (1 - cos(angle)) + axis.x * sin(angle),
    (axis.x * axis.z) * (1 - cos(angle)) + axis.y * sin(angle), axis.y * axis.z * (1 - cos(angle)) - axis.x * sin(angle), (axis.z * axis.z) * (1 - cos(angle)) + cos(angle));
}
Example #3
0
Matrix3x3 Quaternion::rotationMatrix3x3() const
{
    Vector3 col1 = Vector3(1.0f - 2.0f * (y * y + z * z), 2.0f * (x * y + w * z), 2.0f * (x * z - w * y));
    Vector3 col2 = Vector3(2.0f * (x * y -  w * z), 1.0f - 2.0f * (x * x + z * z), 2.0f * (y * z + w * x));
    Vector3 col3 = Vector3(2.0f * (x * z + w * y), 2.0f * (y * z - w * x), 1.0f - 2.0f * (x * x + y * y));
    return Matrix3x3(col1, col2, col3);
}
Example #4
0
Matrix3x3 Matrix3x3::CompMax(const Matrix3x3& m1,
                             const Matrix3x3& m2)
{
	return Matrix3x3(Vector3::CompMax(m1[0], m2[0]),
	                 Vector3::CompMax(m1[1], m2[1]),
	                 Vector3::CompMax(m1[2], m2[2]));
}
Example #5
0
// Return the transpose matrix
inline Matrix3x3 Matrix3x3::getTranspose() const {

    // Return the transpose matrix
    return Matrix3x3(mRows[0][0], mRows[1][0], mRows[2][0],
                     mRows[0][1], mRows[1][1], mRows[2][1],
                     mRows[0][2], mRows[1][2], mRows[2][2]);
}
Example #6
0
Matrix3x3 Matrix3x3::CompPow(const Matrix3x3& base,
                             const Matrix3x3& exponent)
{
	return Matrix3x3(Vector3::CompPow(base[0], exponent[0]),
	                 Vector3::CompPow(base[1], exponent[1]),
	                 Vector3::CompPow(base[2], exponent[2]));
}
Example #7
0
Matrix3x3 Matrix3x3::operator*(const Matrix3x3& m) const
{
	return Matrix3x3(  (*this)[0][0]*m[0][0]
	                 + (*this)[1][0]*m[0][1]
	                 + (*this)[2][0]*m[0][2],
	                   (*this)[0][0]*m[1][0]
	                 + (*this)[1][0]*m[1][1]
	                 + (*this)[2][0]*m[1][2],
	                   (*this)[0][0]*m[2][0]
	                 + (*this)[1][0]*m[2][1]
	                 + (*this)[2][0]*m[2][2],
	                   (*this)[0][1]*m[0][0]
	                 + (*this)[1][1]*m[0][1]
	                 + (*this)[2][1]*m[0][2],
	                   (*this)[0][1]*m[1][0]
	                 + (*this)[1][1]*m[1][1]
	                 + (*this)[2][1]*m[1][2],
	                   (*this)[0][1]*m[2][0]
	                 + (*this)[1][1]*m[2][1]
	                 + (*this)[2][1]*m[2][2],
	                   (*this)[0][2]*m[0][0]
	                 + (*this)[1][2]*m[0][1]
	                 + (*this)[2][2]*m[0][2],
	                   (*this)[0][2]*m[1][0]
	                 + (*this)[1][2]*m[1][1]
	                 + (*this)[2][2]*m[1][2],
	                   (*this)[0][2]*m[2][0]
	                 + (*this)[1][2]*m[2][1]
	                 + (*this)[2][2]*m[2][2] );
}
Example #8
0
Matrix3x3 get_unistate_mat3(const char *name)
{
	int sidx = get_unistate_index(name);
	if(sidx == -1) {
		return Matrix3x3();
	}
	return get_unistate_mat3(sidx);
}
Example #9
0
Matrix3x3 Matrix3x3::operator+( const Matrix3x3& rhs ) const
{
	return Matrix3x3(
		_00+rhs._00, _01+rhs._01, _02+rhs._02,
		_10+rhs._10, _11+rhs._11, _12+rhs._12,
		_20+rhs._20, _21+rhs._21, _22+rhs._22 
	);
}
Example #10
0
Matrix3x3
matScale(double x,
         double y)
{
    return Matrix3x3(x,  0., 0.,
                     0., y,  0.,
                     0., 0., 1.);
}
Example #11
0
Matrix3x3 Matrix3x3::Diagonal(const float& m00,
                              const float& m11,
                              const float& m22)
{
	return Matrix3x3(m00,  0 , 0 ,
	                  0 , m11, 0 ,
	                  0 ,  0 , m22);
}
Example #12
0
Matrix3x3 Matrix3x3::CompClamp(const Matrix3x3& m,
                               const Matrix3x3& min,
                               const Matrix3x3& max)
{
	return Matrix3x3(Vector3::CompClamp(m[0], min[0], max[0]),
	                 Vector3::CompClamp(m[1], min[1], max[1]),
	                 Vector3::CompClamp(m[2], min[2], max[2]));
}
Example #13
0
// Overloaded operator for substraction
inline Matrix3x3 operator-(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
    return Matrix3x3(matrix1.mRows[0][0] - matrix2.mRows[0][0], matrix1.mRows[0][1] -
                     matrix2.mRows[0][1], matrix1.mRows[0][2] - matrix2.mRows[0][2],
                     matrix1.mRows[1][0] - matrix2.mRows[1][0], matrix1.mRows[1][1] -
                     matrix2.mRows[1][1], matrix1.mRows[1][2] - matrix2.mRows[1][2],
                     matrix1.mRows[2][0] - matrix2.mRows[2][0], matrix1.mRows[2][1] -
                     matrix2.mRows[2][1], matrix1.mRows[2][2] - matrix2.mRows[2][2]);
}
Example #14
0
Matrix3x3 Matrix3x3::operator-( const Matrix3x3& rhs ) const
{
	return Matrix3x3(
		_00-rhs._00, _01-rhs._01, _02-rhs._02,
		_10-rhs._10, _11-rhs._11, _12-rhs._12,
		_20-rhs._20, _21-rhs._21, _22-rhs._22
	);
}
Example #15
0
Matrix3x3
matTranslation(double x,
               double y)
{
    return Matrix3x3(1., 0., x,
                     0., 1., y,
                     0., 0., 1.);
}
Example #16
0
Matrix3x3
matRotation(double rads)
{
    double c = std::cos(rads);
    double s = std::sin(rads);

    return Matrix3x3(c, s, 0, -s, c, 0, 0, 0, 1);
}
Example #17
0
Matrix3x3 Matrix3x3::RotationAboutY(const float& radians)
{
	// do some precomputations
	float c = std::cos(radians);
	float s = std::sin(radians);
	return Matrix3x3( c, 0, s,
	                  0, 1, 0,
	                 -s, 0, c);
}
Example #18
0
Matrix3x3
matSkewXY(double skewX,
          double skewY,
          bool skewOrderYX)
{
    return Matrix3x3(skewOrderYX ? 1. : (1. + skewX * skewY), skewX, 0.,
                     skewY, skewOrderYX ? (1. + skewX * skewY) : 1, 0.,
                     0., 0., 1.);
}
Example #19
0
void TargetCamera::set_camera(long time)
{
	set_view_matrix(get_matrix());
	set_unistate("st_view_matrix3",Matrix3x3(get_matrix()));

    //DEBUG
    Matrix4x4 view = get_matrix();
    glMatrixMode(GL_MODELVIEW);
    glLoadTransposeMatrixf(view[0]);
}
Example #20
0
Matrix3x3 Matrix3x3::Transpose() const
{
    float data[9];
    int cnt = 0;

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++) {
            data[cnt++] = data_[j][i];
        }
    }

    return Matrix3x3(data);
}
Example #21
0
Matrix3x3
matMul(const Matrix3x3 & m1,
       const Matrix3x3 & m2)
{
    return Matrix3x3(m1.a * m2.a + m1.b * m2.d + m1.c * m2.g,
                     m1.a * m2.b + m1.b * m2.e + m1.c * m2.h,
                     m1.a * m2.c + m1.b * m2.f + m1.c * m2.i,
                     m1.d * m2.a + m1.e * m2.d + m1.f * m2.g,
                     m1.d * m2.b + m1.e * m2.e + m1.f * m2.h,
                     m1.d * m2.c + m1.e * m2.f + m1.f * m2.i,
                     m1.g * m2.a + m1.h * m2.d + m1.i * m2.g,
                     m1.g * m2.b + m1.h * m2.e + m1.i * m2.h,
                     m1.g * m2.c + m1.h * m2.f + m1.i * m2.i);
}
Example #22
0
Matrix3x3 Matrix3x3::getTranspose()
{

    std::vector<float> tmp(9);

    for (int i = 0; i < 3; i++)
    {
        tmp[3 * i] = elements[i];
        tmp[3 * i + 1] = elements[i + 3];
        tmp[3 * i + 2] = elements[i + 6];
    }

    return Matrix3x3(tmp);
}
Example #23
0
Matrix3x3 Matrix3x3::VectorRotation(const Vector3& unitFrom,
                                    const Vector3& unitTo)
{
	// compute the unit rotation axis
	Vector3 v   = Vector3::CrossProduct(unitFrom, unitTo);
	float e     = Vector3::DotProduct(unitFrom, unitTo);
	float h     = 1.0f / (1.0f + e); 
	Vector3 hv  = h*v;

	// return the matrix
	return Matrix3x3(e + hv[0]*v[0], hv[0]*v[1] - v[2], hv[0]*v[2] + v[1],
	                 hv[0]*v[1] + v[2], e + hv[1]*v[1], hv[1]*v[2] - v[0],
	                 hv[0]*v[2] - v[1], hv[1]*v[2] + v[0], e + hv[2]*v[2]);
}
Example #24
0
a2de::Matrix3x3 Matrix3x3::operator*(const Matrix3x3& rhs) {

    a2de::Vector3D r1(this->GetRowOne());
    a2de::Vector3D r2(this->GetRowTwo());
    a2de::Vector3D r3(this->GetRowThree());

    a2de::Vector3D c1(rhs.GetColumnOne());
    a2de::Vector3D c2(rhs.GetColumnTwo());
    a2de::Vector3D c3(rhs.GetColumnThree());

    return Matrix3x3(a2de::Vector3D::DotProduct(r1, c1), a2de::Vector3D::DotProduct(r1, c2), a2de::Vector3D::DotProduct(r1, c3),
                     a2de::Vector3D::DotProduct(r2, c1), a2de::Vector3D::DotProduct(r2, c2), a2de::Vector3D::DotProduct(r2, c3),
                     a2de::Vector3D::DotProduct(r3, c1), a2de::Vector3D::DotProduct(r3, c2), a2de::Vector3D::DotProduct(r3, c3));
}
Example #25
0
	void configure() {
		PhaseFunction::configure();
		m_type = EAnisotropic | ENonSymmetric;

		Properties props("independent");
		m_sampler = static_cast<Sampler*>(PluginManager::getInstance()->createObject(MTS_CLASS(Sampler), props));
		m_sampler->configure();

		if (m_stddev != -1.f) {
			Float sigma1 = m_fiberDistr.sigmaT(0.f) * 2.f;
			Float sigma2 = sigma1;
			Float sigma3 = m_fiberDistr.sigmaT(1.f) * 2.f;
			D = Matrix3x3(Vector(sigma1 * sigma1, 0, 0), Vector(0, sigma2 * sigma2, 0), Vector(0, 0, sigma3 * sigma3));
		}
	}
Example #26
0
static bool
triangle_intersection(const Ray *ray,
		const Point3D &p0,
		const Point3D &p1,
		const Point3D &p2,
		double &beta,
		double &gamma)
{
	Vector3D v1 = p1 - p0;
	Vector3D v2 = p2 - p0;
	Vector3D r = ray->get_pos() - p0;

	double d = Matrix3x3(v1,v2,ray->get_dir()).det();
	double d1 = Matrix3x3(r,v2,ray->get_dir()).det();
	beta = d1/d;
	if (beta < 0)
		return false;
	double d2 = Matrix3x3(v1, r, ray->get_dir()).det();
	gamma = d2/d;
	if (gamma < 0 || (beta+gamma) >= 1)
		return false;

	return true;
}
	Matrix3x3 Matrix3x3::Multiply(const Matrix3x3& rhs) const
	{
		float newMatrix[] = 
		{
			(_elements[0] * rhs._elements[0] + _elements[3] * rhs._elements[1] + _elements[6] * rhs._elements[2]),
			(_elements[1] * rhs._elements[0] + _elements[4] * rhs._elements[1] + _elements[7] * rhs._elements[2]),
			(_elements[2] * rhs._elements[0] + _elements[5] * rhs._elements[1] + _elements[8] * rhs._elements[2]),
			(_elements[0] * rhs._elements[3] + _elements[3] * rhs._elements[4] + _elements[6] * rhs._elements[5]),
			(_elements[1] * rhs._elements[3] + _elements[4] * rhs._elements[4] + _elements[7] * rhs._elements[5]),
			(_elements[2] * rhs._elements[3] + _elements[5] * rhs._elements[4] + _elements[8] * rhs._elements[5]),
			(_elements[0] * rhs._elements[6] + _elements[3] * rhs._elements[7] + _elements[6] * rhs._elements[8]),
			(_elements[1] * rhs._elements[6] + _elements[4] * rhs._elements[7] + _elements[7] * rhs._elements[8]),
			(_elements[2] * rhs._elements[6] + _elements[5] * rhs._elements[7] + _elements[8] * rhs._elements[8])
		};
		return Matrix3x3(newMatrix);
	}
Example #28
0
Matrix3x3 Matrix3x3::LookAtRotation(const Vector3& eyePos,
                                    const Vector3& targetPos,
                                    const Vector3& unitUpVector)
{
#ifndef NDEBUG
	assert(eyePos != targetPos && unitUpVector != Vector3::ZERO);
#endif
	// using OpenGL2.1 SDK (gluLookAt)
	Vector3 f((targetPos - eyePos).Normalize());
	Vector3 s(Vector3::CrossProduct(f, unitUpVector));
	Vector3 u(Vector3::CrossProduct(s, f));

	return Matrix3x3(s[0], u[0], -f[0],
	                 s[1], u[1], -f[1],
	                 s[2], u[2], -f[2] );
}
Example #29
0
void set_view_matrix(const Matrix4x4 &mat)
{
	static int sidx = -1, sidx_transp, sidx_mat3, sidx_inv;

	if(sidx == -1) {
		sidx = add_unistate("st_view_matrix", ST_MATRIX4);
		sidx_mat3 = add_unistate("st_view_matrix3", ST_MATRIX3);
		sidx_transp = add_unistate("st_view_matrix_transpose", ST_MATRIX4);
		sidx_inv = add_unistate("st_view_matrix_inverse", ST_MATRIX4);
	}

	set_unistate(sidx, mat);
	set_unistate(sidx_mat3, Matrix3x3(mat));
	set_unistate(sidx_transp, mat[0]);	// by using the float* variant, we unset the transpose flag
	set_unistate(sidx_inv, mat.inverse());
}
Example #30
0
Matrix3x3 Matrix3x3::operator*( const Matrix3x3& rhs ) const
{
	return Matrix3x3(
		_00*rhs._00 + _01*rhs._10 + _02*rhs._20,
		_00*rhs._01 + _01*rhs._11 + _02*rhs._21,
		_00*rhs._02 + _01*rhs._12 + _02*rhs._22,

		_10*rhs._00 + _11*rhs._10 + _12*rhs._20,
		_10*rhs._01 + _11*rhs._11 + _12*rhs._21,
		_10*rhs._02 + _11*rhs._12 + _12*rhs._22,

		_20*rhs._00 + _21*rhs._10 + _22*rhs._20,
		_20*rhs._01 + _21*rhs._11 + _22*rhs._21,
		_20*rhs._02 + _21*rhs._12 + _22*rhs._22
	);
}