Example #1
0
static void monitor_off (Minimizer me) {
	Melder_monitor (1.1, NULL);
	if (my gmonitor) {
		Graphics_clearWs (my gmonitor); // DON'T forget (my gmonitor)
		my gmonitor = NULL;
	}
}
Example #2
0
void Minimizer_minimize (Minimizer me, long maxNumOfIterations, double tolerance, int monitor) {
	try {

		my tolerance = tolerance;
		if (maxNumOfIterations <= 0) {
			return;
		}

		if (my iteration + maxNumOfIterations > my maxNumOfIterations) {
			my maxNumOfIterations += maxNumOfIterations;
			if (my history) { // clumsy because vector must have been allocated  before one can append
				NUMvector_append<double> (& my history, 1, & my maxNumOfIterations);
			} else {
				my history = NUMvector<double> (1, my maxNumOfIterations);
			}
		}
		if (monitor) {
			my gmonitor = (Graphics) Melder_monitor (0.0, U"Starting...");
		}
		my start = 1; /* for my after() */
		my v_minimize ();
		if (monitor) {
			monitor_off (me);
		}
		if (my success) Melder_casual (U"Minimizer_minimize:", U" minimum ", my minimum, U" reached \nafter ", my iteration,
			U" iterations and ", my funcCalls, U" function calls.");
	} catch (MelderError) {
		if (monitor) {
			monitor_off (me);    // temporarily until better monitor facilities
		}
		Melder_clearError(); // memory error in history mechanism is not fatal
	}
}
Example #3
0
static void classMinimizer_afterHook (Minimizer me, Thing /* boss */) {

	if (my success || ! my gmonitor) {
		return;
	}

	if (my start == 1) {
		Minimizer_drawHistory (me, my gmonitor, 0, my maxNumOfIterations, 0.0, 1.1 * my history[1], 1);
		Graphics_textTop (my gmonitor, false, Melder_cat (U"Dimension of search space: ", my nParameters));
	}
	Graphics_setInner (my gmonitor);
	Graphics_line (my gmonitor, my iteration, my history[my iteration], my iteration, my history[my iteration]);
	Graphics_unsetInner (my gmonitor);
	Melder_monitor ((double) (my iteration) / my maxNumOfIterations, U"Iterations: ", my iteration, 
		U", Function calls: ", my funcCalls, U", Cost: ", my minimum);
}
Example #4
0
static void classMinimizer_after (I, Any aclosure) {
	iam (Minimizer);
	(void) aclosure;

	if (my success || ! my gmonitor) {
		return;
	}

	if (my start == 1) {
		wchar_t s[35];
		Minimizer_drawHistory (me, my gmonitor, 0, my maxNumOfIterations, 0, 1.1 * my history[1], 1);
		swprintf (s, 35, L"Dimension of search space: %6ld", my nParameters);
		Graphics_textTop (my gmonitor, 0, s);
	}
	Graphics_setInner (my gmonitor);
	Graphics_line (my gmonitor, my iteration, my history[my iteration],
	               my iteration, my history[my iteration]);
	Graphics_unsetInner (my gmonitor);
	Melder_monitor ( (double) (my iteration) / my maxNumOfIterations,
	                  L"Iterations: ", Melder_integer (my iteration),
	                  L", Function calls: ", Melder_integer (my funcCalls),
	                  L", Cost: ", Melder_double (my minimum));
}
Example #5
0
void Minimizer_minimize (Minimizer me, long maxNumOfIterations, double tolerance, int monitor) {
	try {

		my tolerance = tolerance;
		if (maxNumOfIterations <= 0) {
			return;
		}

		if (my iteration + maxNumOfIterations > my maxNumOfIterations) {
			double *history;
			my maxNumOfIterations += maxNumOfIterations;
			if (my history) {
				my history++;    /* arrays start at 1 !! */
			}
			history = (double *) Melder_realloc (my history, my maxNumOfIterations *
			                                     sizeof (double));
			my history = --history; /* arrays start at 1 !! */
		}
		if (monitor) {
			my gmonitor = (Graphics) Melder_monitor (0.0, L"Starting...");
		}
		my start = 1; /* for my after() */
		my v_minimize ();
		if (monitor) {
			monitor_off (me);
		}
		if (my success) Melder_casual ("Minimizer_minimize: minimum %f reached \n"
			                               "after %ld iterations and %ld function calls.", my minimum,
			                               my iteration, my funcCalls);
	} catch (MelderError) {
		if (monitor) {
			monitor_off (me);    // temporarily until better monitor facilities
		}
		Melder_clearError(); // memory error in history mechanism is not fatal
	}
}
Sound Artword_Speaker_to_Sound (Artword artword, Speaker speaker,
	double fsamp, int oversampling,
	Sound *out_w1, int iw1, Sound *out_w2, int iw2, Sound *out_w3, int iw3,
	Sound *out_p1, int ip1, Sound *out_p2, int ip2, Sound *out_p3, int ip3,
	Sound *out_v1, int iv1, Sound *out_v2, int iv2, Sound *out_v3, int iv3)
{
	try {
		autoSound result = Sound_createSimple (1, artword -> totalTime, fsamp);
		long numberOfSamples = result -> nx;
		double minTract [1+78], maxTract [1+78];   /* For drawing. */
		double Dt = 1 / fsamp / oversampling,
			rho0 = 1.14,
			c = 353,
			onebyc2 = 1.0 / (c * c),
			rho0c2 = rho0 * c * c,
			halfDt = 0.5 * Dt,
			twoDt = 2 * Dt,
			halfc2Dt = 0.5 * c * c * Dt,
			twoc2Dt = 2 * c * c * Dt,
			onebytworho0 = 1.0 / (2.0 * rho0),
			Dtbytworho0 = Dt / (2.0 * rho0);
		double tension, rrad, onebygrad, totalVolume;
		autoArt art = Art_create ();
		long sample;
		int n, m, M;
		autoDelta delta = Speaker_to_Delta (speaker);
		autoMelderMonitor monitor (U"Articulatory synthesis");
		Artword_intoArt (artword, art.peek(), 0.0);
		Art_Speaker_intoDelta (art.peek(), speaker, delta.peek());
		M = delta -> numberOfTubes;
		autoSound w1, w2, w3, p1, p2, p3, v1, v2, v3;
		if (iw1 > 0 && iw1 <= M) w1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw1 = 0;
		if (iw2 > 0 && iw2 <= M) w2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw2 = 0;
		if (iw3 > 0 && iw3 <= M) w3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw3 = 0;
		if (ip1 > 0 && ip1 <= M) p1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip1 = 0;
		if (ip2 > 0 && ip2 <= M) p2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip2 = 0;
		if (ip3 > 0 && ip3 <= M) p3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip3 = 0;
		if (iv1 > 0 && iv1 <= M) v1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv1 = 0;
		if (iv2 > 0 && iv2 <= M) v2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv2 = 0;
		if (iv3 > 0 && iv3 <= M) v3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv3 = 0;
		/* Initialize drawing. */
		{ int i; for (i = 1; i <= 78; i ++) { minTract [i] = 100; maxTract [i] = -100; } }
		totalVolume = 0.0;
		for (m = 1; m <= M; m ++) {
			Delta_Tube t = delta->tube + m;
			if (! t -> left1 && ! t -> right1) continue;
			t->Dx = t->Dxeq; t->dDxdt = 0;   /* 5.113 */
			t->Dy = t->Dyeq; t->dDydt = 0;   /* 5.113 */
			t->Dz = t->Dzeq;   /* 5.113 */
			t->A = t->Dz * ( t->Dy >= t->dy ? t->Dy + Dymin :
				t->Dy <= - t->dy ? Dymin :
				(t->dy + t->Dy) * (t->dy + t->Dy) / (4 * t->dy) + Dymin );   /* 4.4, 4.5 */
			#if EQUAL_TUBE_WIDTHS
				t->A = 0.0001;
			#endif
			t->Jleft = t->Jright = 0;   /* 5.113 */
			t->Qleft = t->Qright = rho0c2;   /* 5.113 */
			t->pleft = t->pright = 0;   /* 5.114 */
			t->Kleft = t->Kright = 0;   /* 5.114 */
			t->V = t->A * t->Dx;   /* 5.114 */
			totalVolume += t->V;
		}
		//Melder_casual (U"Starting volume: ", totalVolume * 1000, U" litres.");
		for (sample = 1; sample <= numberOfSamples; sample ++) {
			double time = (sample - 1) / fsamp;
			Artword_intoArt (artword, art.peek(), time);
			Art_Speaker_intoDelta (art.peek(), speaker, delta.peek());
			if (sample % MONITOR_SAMPLES == 0 && monitor.graphics()) {   // because we can be in batch
				Graphics graphics = monitor.graphics();
				double area [1+78];
				Graphics_Viewport vp;
				for (int i = 1; i <= 78; i ++) {
					area [i] = delta -> tube [i]. A;
					if (area [i] < minTract [i]) minTract [i] = area [i];
					if (area [i] > maxTract [i]) maxTract [i] = area [i];
				}
				Graphics_clearWs (graphics);

				vp = Graphics_insetViewport (monitor.graphics(), 0, 0.5, 0.5, 1);
				Graphics_setWindow (graphics, 0, 1, 0, 0.05);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 1, 35, 0, 0.9);
				Graphics_function (graphics, maxTract, 1, 35, 0, 0.9);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 1, 35, 0, 0.9);
				Graphics_setLineType (graphics, Graphics_DOTTED);
				Graphics_line (graphics, 0, 0, 1, 0);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);

				vp = Graphics_insetViewport (graphics, 0, 0.5, 0, 0.5);
				Graphics_setWindow (graphics, 0, 1, -0.000003, 0.00001);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 36, 37, 0.2, 0.8);
				Graphics_function (graphics, maxTract, 36, 37, 0.2, 0.8);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 36, 37, 0.2, 0.8);
				Graphics_setLineType (graphics, Graphics_DOTTED);
				Graphics_line (graphics, 0, 0, 1, 0);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);

				vp = Graphics_insetViewport (graphics, 0.5, 1, 0.5, 1);
				Graphics_setWindow (graphics, 0, 1, 0, 0.001);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 38, 64, 0, 1);
				Graphics_function (graphics, maxTract, 38, 64, 0, 1);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 38, 64, 0, 1);
				Graphics_setLineType (graphics, Graphics_DOTTED);
				Graphics_line (graphics, 0, 0, 1, 0);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);

				vp = Graphics_insetViewport (graphics, 0.5, 1, 0, 0.5);
				Graphics_setWindow (graphics, 0, 1, 0.001, 0);
				Graphics_setColour (graphics, Graphics_RED);
				Graphics_function (graphics, minTract, 65, 78, 0.5, 1);
				Graphics_function (graphics, maxTract, 65, 78, 0.5, 1);
				Graphics_setColour (graphics, Graphics_BLACK);
				Graphics_function (graphics, area, 65, 78, 0.5, 1);
				Graphics_setLineType (graphics, Graphics_DRAWN);
				Graphics_resetViewport (graphics, vp);
				Melder_monitor ((double) sample / numberOfSamples, U"Articulatory synthesis: ", Melder_half (time), U" seconds");
			}
			for (n = 1; n <= oversampling; n ++) {
				for (m = 1; m <= M; m ++) {
					Delta_Tube t = delta -> tube + m;
					if (! t -> left1 && ! t -> right1) continue;

					/* New geometry. */

					#if CONSTANT_TUBE_LENGTHS
						t->Dxnew = t->Dx;
					#else
						t->dDxdtnew = (t->dDxdt + Dt * 10000 * (t->Dxeq - t->Dx)) /
							(1 + 200 * Dt);   /* Critical damping, 10 ms. */
						t->Dxnew = t->Dx + t->dDxdtnew * Dt;
					#endif
					/* 3-way: equal lengths. */
					/* This requires left tubes to be processed before right tubes. */
					if (t->left1 && t->left1->right2) t->Dxnew = t->left1->Dxnew;
					t->Dz = t->Dzeq;   /* immediate... */
					t->eleft = (t->Qleft - t->Kleft) * t->V;   /* 5.115 */
					t->eright = (t->Qright - t->Kright) * t->V;   /* 5.115 */
					t->e = 0.5 * (t->eleft + t->eright);   /* 5.116 */
					t->p = 0.5 * (t->pleft + t->pright);   /* 5.116 */
					t->DeltaP = t->e / t->V - rho0c2;   /* 5.117 */
					t->v = t->p / (rho0 + onebyc2 * t->DeltaP);   /* 5.118 */
					{
						double dDy = t->Dyeq - t->Dy;
						double cubic = t->k3 * dDy * dDy;
						Delta_Tube l1 = t->left1, l2 = t->left2, r1 = t->right1, r2 = t->right2;
						tension = dDy * (t->k1 + cubic);
						t->B = 2 * t->Brel * sqrt (t->mass * (t->k1 + 3 * cubic));
						if (t->k1left1 != 0.0 && l1)
							tension += t->k1left1 * t->k1 * (dDy - (l1->Dyeq - l1->Dy));
						if (t->k1left2 != 0.0 && l2)
							tension += t->k1left2 * t->k1 * (dDy - (l2->Dyeq - l2->Dy));
						if (t->k1right1 != 0.0 && r1)
							tension += t->k1right1 * t->k1 * (dDy - (r1->Dyeq - r1->Dy));
						if (t->k1right2 != 0.0 && r2)
							tension += t->k1right2 * t->k1 * (dDy - (r2->Dyeq - r2->Dy));
					}
					if (t->Dy < t->dy) {
						if (t->Dy >= - t->dy) {
							double dDy = t->dy - t->Dy, dDy2 = dDy * dDy;
							tension += dDy2 / (4 * t->dy) * (t->s1 + 0.5 * t->s3 * dDy2);
							t->B += 2 * dDy / (2 * t->dy) *
								sqrt (t->mass * (t->s1 + t->s3 * dDy2));
						} else {
							tension -= t->Dy * (t->s1 + t->s3 * (t->Dy * t->Dy + t->dy * t->dy));
							t->B += 2 * sqrt (t->mass * (t->s1 + t->s3 * (3 * t->Dy * t->Dy + t->dy * t->dy)));
						}
					}
					t->dDydtnew = (t->dDydt + Dt / t->mass * (tension + 2 * t->DeltaP * t->Dz * t->Dx)) /
						(1 + t->B * Dt / t->mass);   /* 5.119 */
					t->Dynew = t->Dy + t->dDydtnew * Dt;   /* 5.119 */
					#if NO_MOVING_WALLS
						t->Dynew = t->Dy;
					#endif
					t->Anew = t->Dz * ( t->Dynew >= t->dy ? t->Dynew + Dymin :
						t->Dynew <= - t->dy ? Dymin :
						(t->dy + t->Dynew) * (t->dy + t->Dynew) / (4 * t->dy) + Dymin );   /* 4.4, 4.5 */
					#if EQUAL_TUBE_WIDTHS
						t->Anew = 0.0001;
					#endif
					t->Ahalf = 0.5 * (t->A + t->Anew);   /* 5.120 */
					t->Dxhalf = 0.5 * (t->Dxnew + t->Dx);   /* 5.121 */
					t->Vnew = t->Anew * t->Dxnew;   /* 5.128 */
					{ double oneByDyav = t->Dz / t->A;
					/*t->R = 12 * 1.86e-5 * t->parallel * t->parallel * oneByDyav * oneByDyav;*/
					if (t->Dy < 0)
						t->R = 12 * 1.86e-5 / (Dymin * Dymin + t->dy * t->dy);
					else
						t->R = 12 * 1.86e-5 * t->parallel * t->parallel /
							((t->Dy + Dymin) * (t->Dy + Dymin) + t->dy * t->dy);
					t->R += 0.3 * t->parallel * oneByDyav;   /* 5.23 */ }
					t->r = (1 + t->R * Dt / rho0) * t->Dxhalf / t->Anew;   /* 5.122 */
					t->ehalf = t->e + halfc2Dt * (t->Jleft - t->Jright);   /* 5.123 */
					t->phalf = (t->p + halfDt * (t->Qleft - t->Qright) / t->Dx) / (1 + Dtbytworho0 * t->R);   /* 5.123 */
					#if MASS_LEAPFROG
						t->ehalf = t->ehalfold + 2 * halfc2Dt * (t->Jleft - t->Jright);
					#endif
					t->Jhalf = t->phalf * t->Ahalf;   /* 5.124 */
					t->Qhalf = t->ehalf / (t->Ahalf * t->Dxhalf) + onebytworho0 * t->phalf * t->phalf;   /* 5.124 */
					#if NO_BERNOULLI_EFFECT
						t->Qhalf = t->ehalf / (t->Ahalf * t->Dxhalf);
					#endif
				}
				for (m = 1; m <= M; m ++) {   /* Compute Jleftnew and Qleftnew. */
					Delta_Tube l = delta->tube + m, r1 = l -> right1, r2 = l -> right2, r = r1;
					Delta_Tube l1 = l, l2 = r ? r -> left2 : NULL;
					if (l->left1 == NULL) {   /* Closed boundary at the left side (diaphragm)? */
						if (r == NULL) continue;   /* Tube not connected at all. */
						l->Jleftnew = 0;   /* 5.132. */
						l->Qleftnew = (l->eleft - twoc2Dt * l->Jhalf) / l->Vnew;   /* 5.132. */
					}
					else   /* Left boundary open to another tube will be handled... */
						(void) 0;   /* ...together with the right boundary of the tube to the left. */
					if (r == NULL) {   /* Open boundary at the right side (lips, nostrils)? */
						rrad = 1 - c * Dt / 0.02;   /* Radiation resistance, 5.135. */
						onebygrad = 1 / (1 + c * Dt / 0.02);   /* Radiation conductance, 5.135. */
						#if NO_RADIATION_DAMPING
							rrad = 0;
							onebygrad = 0;
						#endif
						l->prightnew = ((l->Dxhalf / Dt + c * onebygrad) * l->pright +
							 2 * ((l->Qhalf - rho0c2) - (l->Qright - rho0c2) * onebygrad)) /
							(l->r * l->Anew / Dt + c * onebygrad);   /* 5.136 */
						l->Jrightnew = l->prightnew * l->Anew;   /* 5.136 */
						l->Qrightnew = (rrad * (l->Qright - rho0c2) +
							c * (l->prightnew - l->pright)) * onebygrad + rho0c2;   /* 5.136 */
					} else if (l2 == NULL && r2 == NULL) {   /* Two-way boundary. */
						if (l->v > criticalVelocity && l->A < r->A) {
							l->Pturbrightnew = -0.5 * rho0 * (l->v - criticalVelocity) *
								(1 - l->A / r->A) * (1 - l->A / r->A) * l->v;
							if (l->Pturbrightnew != 0.0)
								l->Pturbrightnew *= 1 + NUMrandomGauss (0, noiseFactor) /* * l->A */;
						}
						if (r->v < - criticalVelocity && r->A < l->A) {
							l->Pturbrightnew = 0.5 * rho0 * (r->v + criticalVelocity) *
								(1 - r->A / l->A) * (1 - r->A / l->A) * r->v;
							if (l->Pturbrightnew != 0.0)
								l->Pturbrightnew *= 1 + NUMrandomGauss (0, noiseFactor) /* * r->A */;
						}
						#if NO_TURBULENCE
							l->Pturbrightnew = 0;
						#endif
						l->Jrightnew = r->Jleftnew =
							(l->Dxhalf * l->pright + r->Dxhalf * r->pleft +
							 twoDt * (l->Qhalf - r->Qhalf + l->Pturbright)) /
							(l->r + r->r);   /* 5.127 */
						#if B91
							l->Jrightnew = r->Jleftnew =
								(l->pright + r->pleft +
								 2 * twoDt * (l->Qhalf - r->Qhalf + l->Pturbright) / (l->Dxhalf + r->Dxhalf)) /
								(l->r / l->Dxhalf + r->r / r->Dxhalf);
						#endif
						l->prightnew = l->Jrightnew / l->Anew;   /* 5.128 */
						r->pleftnew = r->Jleftnew / r->Anew;   /* 5.128 */
						l->Krightnew = onebytworho0 * l->prightnew * l->prightnew;   /* 5.128 */
						r->Kleftnew = onebytworho0 * r->pleftnew * r->pleftnew;   /* 5.128 */
						#if NO_BERNOULLI_EFFECT
							l->Krightnew = r->Kleftnew = 0;
						#endif
						l->Qrightnew =
							(l->eright + r->eleft + twoc2Dt * (l->Jhalf - r->Jhalf)
							 + l->Krightnew * l->Vnew + (r->Kleftnew - l->Pturbrightnew) * r->Vnew) /
							(l->Vnew + r->Vnew);   /* 5.131 */
						r->Qleftnew = l->Qrightnew + l->Pturbrightnew;   /* 5.131 */
					} else if (r2) {   /* Two adjacent tubes at the right side (velic). */
						r1->Jleftnew =
							(r1->Jleft * r1->Dxhalf * (1 / (l->A + r2->A) + 1 / r1->A) +
							 twoDt * ((l->Ahalf * l->Qhalf + r2->Ahalf * r2->Qhalf ) / (l->Ahalf  + r2->Ahalf) - r1->Qhalf)) /
							(1 / (1 / l->r + 1 / r2->r) + r1->r);   /* 5.138 */
						r2->Jleftnew =
							(r2->Jleft * r2->Dxhalf * (1 / (l->A + r1->A) + 1 / r2->A) +
							 twoDt * ((l->Ahalf * l->Qhalf + r1->Ahalf * r1->Qhalf ) / (l->Ahalf  + r1->Ahalf) - r2->Qhalf)) /
							(1 / (1 / l->r + 1 / r1->r) + r2->r);   /* 5.138 */
						l->Jrightnew = r1->Jleftnew + r2->Jleftnew;   /* 5.139 */
						l->prightnew = l->Jrightnew / l->Anew;   /* 5.128 */
						r1->pleftnew = r1->Jleftnew / r1->Anew;   /* 5.128 */
						r2->pleftnew = r2->Jleftnew / r2->Anew;   /* 5.128 */
						l->Krightnew = onebytworho0 * l->prightnew * l->prightnew;   /* 5.128 */
						r1->Kleftnew = onebytworho0 * r1->pleftnew * r1->pleftnew;   /* 5.128 */
						r2->Kleftnew = onebytworho0 * r2->pleftnew * r2->pleftnew;   /* 5.128 */
						#if NO_BERNOULLI_EFFECT
							l->Krightnew = r1->Kleftnew = r2->Kleftnew = 0;
						#endif
						l->Qrightnew = r1->Qleftnew = r2->Qleftnew =
							(l->eright + r1->eleft + r2->eleft + twoc2Dt * (l->Jhalf - r1->Jhalf - r2->Jhalf) +
							 l->Krightnew * l->Vnew + r1->Kleftnew * r1->Vnew + r2->Kleftnew * r2->Vnew) /
							(l->Vnew + r1->Vnew + r2->Vnew);   /* 5.137 */
					} else {
						Melder_assert (l2 != NULL);
						l1->Jrightnew =
							(l1->Jright * l1->Dxhalf * (1 / (r->A + l2->A) + 1 / l1->A) -
							 twoDt * ((r->Ahalf * r->Qhalf + l2->Ahalf * l2->Qhalf ) / (r->Ahalf  + l2->Ahalf) - l1->Qhalf)) /
							(1 / (1 / r->r + 1 / l2->r) + l1->r);   /* 5.138 */
						l2->Jrightnew =
							(l2->Jright * l2->Dxhalf * (1 / (r->A + l1->A) + 1 / l2->A) -
							 twoDt * ((r->Ahalf * r->Qhalf + l1->Ahalf  * l1->Qhalf ) / (r->Ahalf  + l1->Ahalf) - l2->Qhalf)) /
							(1 / (1 / r->r + 1 / l1->r) + l2->r);   /* 5.138 */
						r->Jleftnew = l1->Jrightnew + l2->Jrightnew;   /* 5.139 */
						r->pleftnew = r->Jleftnew / r->Anew;   /* 5.128 */
						l1->prightnew = l1->Jrightnew / l1->Anew;   /* 5.128 */
						l2->prightnew = l2->Jrightnew / l2->Anew;   /* 5.128 */
						r->Kleftnew = onebytworho0 * r->pleftnew * r->pleftnew;   /* 5.128 */
						l1->Krightnew = onebytworho0 * l1->prightnew * l1->prightnew;   /* 5.128 */
						l2->Krightnew = onebytworho0 * l2->prightnew * l2->prightnew;   /* 5.128 */
						#if NO_BERNOULLI_EFFECT
							r->Kleftnew = l1->Krightnew = l2->Krightnew = 0;
						#endif
						r->Qleftnew = l1->Qrightnew = l2->Qrightnew =
							(r->eleft + l1->eright + l2->eright + twoc2Dt * (l1->Jhalf + l2->Jhalf - r->Jhalf) +
							 r->Kleftnew * r->Vnew + l1->Krightnew * l1->Vnew + l2->Krightnew * l2->Vnew) /
							(r->Vnew + l1->Vnew + l2->Vnew);   /* 5.137 */
					}
				}

				/* Save some results. */

				if (n == (oversampling + 1) / 2) {
					double out = 0.0;
					for (m = 1; m <= M; m ++) {
						Delta_Tube t = delta->tube + m;
						out += rho0 * t->Dx * t->Dz * t->dDydt * Dt * 1000;   /* Radiation of wall movement, 5.140. */
						if (t->right1 == NULL)
							out += t->Jrightnew - t->Jright;   /* Radiation of open tube end. */
					}
					result -> z [1] [sample] = out /= 4 * NUMpi * 0.4 * Dt;   /* At 0.4 metres. */
					if (iw1) w1 -> z [1] [sample] = delta->tube[iw1].Dy;
					if (iw2) w2 -> z [1] [sample] = delta->tube[iw2].Dy;
					if (iw3) w3 -> z [1] [sample] = delta->tube[iw3].Dy;
					if (ip1) p1 -> z [1] [sample] = delta->tube[ip1].DeltaP;
					if (ip2) p2 -> z [1] [sample] = delta->tube[ip2].DeltaP;
					if (ip3) p3 -> z [1] [sample] = delta->tube[ip3].DeltaP;
					if (iv1) v1 -> z [1] [sample] = delta->tube[iv1].v;
					if (iv2) v2 -> z [1] [sample] = delta->tube[iv2].v;
					if (iv3) v3 -> z [1] [sample] = delta->tube[iv3].v;
				}
				for (m = 1; m <= M; m ++) {
					Delta_Tube t = delta->tube + m;
					t->Jleft = t->Jleftnew;
					t->Jright = t->Jrightnew;
					t->Qleft = t->Qleftnew;
					t->Qright = t->Qrightnew;
					t->Dy = t->Dynew;
					t->dDydt = t->dDydtnew;
					t->A = t->Anew;
					t->Dx = t->Dxnew;
					t->dDxdt = t->dDxdtnew;
					t->eleft = t->eleftnew;
					t->eright = t->erightnew;
					#if MASS_LEAPFROG
						t->ehalfold = t->ehalf;
					#endif
					t->pleft = t->pleftnew;
					t->pright = t->prightnew;
					t->Kleft = t->Kleftnew;
					t->Kright = t->Krightnew;
					t->V = t->Vnew;
					t->Pturbright = t->Pturbrightnew;
				}
			}
		}
		totalVolume = 0.0;
		for (m = 1; m <= M; m ++)
			totalVolume += delta->tube [m]. V;
		//Melder_casual (U"Ending volume: ", totalVolume * 1000, U" litres.");
		if (out_w1) *out_w1 = w1.transfer();
		if (out_w2) *out_w2 = w2.transfer();
		if (out_w3) *out_w3 = w3.transfer();
		if (out_p1) *out_p1 = p1.transfer();
		if (out_p2) *out_p2 = p2.transfer();
		if (out_p3) *out_p3 = p3.transfer();
		if (out_v1) *out_v1 = v1.transfer();
		if (out_v2) *out_v2 = v2.transfer();
		if (out_v3) *out_v3 = v3.transfer();
		return result.transfer();
	} catch (MelderError) {
		Melder_throw (artword, U" & ", speaker, U": articulatory synthesis not performed.");
	}
}