static void monitor_off (Minimizer me) { Melder_monitor (1.1, NULL); if (my gmonitor) { Graphics_clearWs (my gmonitor); // DON'T forget (my gmonitor) my gmonitor = NULL; } }
void Minimizer_minimize (Minimizer me, long maxNumOfIterations, double tolerance, int monitor) { try { my tolerance = tolerance; if (maxNumOfIterations <= 0) { return; } if (my iteration + maxNumOfIterations > my maxNumOfIterations) { my maxNumOfIterations += maxNumOfIterations; if (my history) { // clumsy because vector must have been allocated before one can append NUMvector_append<double> (& my history, 1, & my maxNumOfIterations); } else { my history = NUMvector<double> (1, my maxNumOfIterations); } } if (monitor) { my gmonitor = (Graphics) Melder_monitor (0.0, U"Starting..."); } my start = 1; /* for my after() */ my v_minimize (); if (monitor) { monitor_off (me); } if (my success) Melder_casual (U"Minimizer_minimize:", U" minimum ", my minimum, U" reached \nafter ", my iteration, U" iterations and ", my funcCalls, U" function calls."); } catch (MelderError) { if (monitor) { monitor_off (me); // temporarily until better monitor facilities } Melder_clearError(); // memory error in history mechanism is not fatal } }
static void classMinimizer_afterHook (Minimizer me, Thing /* boss */) { if (my success || ! my gmonitor) { return; } if (my start == 1) { Minimizer_drawHistory (me, my gmonitor, 0, my maxNumOfIterations, 0.0, 1.1 * my history[1], 1); Graphics_textTop (my gmonitor, false, Melder_cat (U"Dimension of search space: ", my nParameters)); } Graphics_setInner (my gmonitor); Graphics_line (my gmonitor, my iteration, my history[my iteration], my iteration, my history[my iteration]); Graphics_unsetInner (my gmonitor); Melder_monitor ((double) (my iteration) / my maxNumOfIterations, U"Iterations: ", my iteration, U", Function calls: ", my funcCalls, U", Cost: ", my minimum); }
static void classMinimizer_after (I, Any aclosure) { iam (Minimizer); (void) aclosure; if (my success || ! my gmonitor) { return; } if (my start == 1) { wchar_t s[35]; Minimizer_drawHistory (me, my gmonitor, 0, my maxNumOfIterations, 0, 1.1 * my history[1], 1); swprintf (s, 35, L"Dimension of search space: %6ld", my nParameters); Graphics_textTop (my gmonitor, 0, s); } Graphics_setInner (my gmonitor); Graphics_line (my gmonitor, my iteration, my history[my iteration], my iteration, my history[my iteration]); Graphics_unsetInner (my gmonitor); Melder_monitor ( (double) (my iteration) / my maxNumOfIterations, L"Iterations: ", Melder_integer (my iteration), L", Function calls: ", Melder_integer (my funcCalls), L", Cost: ", Melder_double (my minimum)); }
void Minimizer_minimize (Minimizer me, long maxNumOfIterations, double tolerance, int monitor) { try { my tolerance = tolerance; if (maxNumOfIterations <= 0) { return; } if (my iteration + maxNumOfIterations > my maxNumOfIterations) { double *history; my maxNumOfIterations += maxNumOfIterations; if (my history) { my history++; /* arrays start at 1 !! */ } history = (double *) Melder_realloc (my history, my maxNumOfIterations * sizeof (double)); my history = --history; /* arrays start at 1 !! */ } if (monitor) { my gmonitor = (Graphics) Melder_monitor (0.0, L"Starting..."); } my start = 1; /* for my after() */ my v_minimize (); if (monitor) { monitor_off (me); } if (my success) Melder_casual ("Minimizer_minimize: minimum %f reached \n" "after %ld iterations and %ld function calls.", my minimum, my iteration, my funcCalls); } catch (MelderError) { if (monitor) { monitor_off (me); // temporarily until better monitor facilities } Melder_clearError(); // memory error in history mechanism is not fatal } }
Sound Artword_Speaker_to_Sound (Artword artword, Speaker speaker, double fsamp, int oversampling, Sound *out_w1, int iw1, Sound *out_w2, int iw2, Sound *out_w3, int iw3, Sound *out_p1, int ip1, Sound *out_p2, int ip2, Sound *out_p3, int ip3, Sound *out_v1, int iv1, Sound *out_v2, int iv2, Sound *out_v3, int iv3) { try { autoSound result = Sound_createSimple (1, artword -> totalTime, fsamp); long numberOfSamples = result -> nx; double minTract [1+78], maxTract [1+78]; /* For drawing. */ double Dt = 1 / fsamp / oversampling, rho0 = 1.14, c = 353, onebyc2 = 1.0 / (c * c), rho0c2 = rho0 * c * c, halfDt = 0.5 * Dt, twoDt = 2 * Dt, halfc2Dt = 0.5 * c * c * Dt, twoc2Dt = 2 * c * c * Dt, onebytworho0 = 1.0 / (2.0 * rho0), Dtbytworho0 = Dt / (2.0 * rho0); double tension, rrad, onebygrad, totalVolume; autoArt art = Art_create (); long sample; int n, m, M; autoDelta delta = Speaker_to_Delta (speaker); autoMelderMonitor monitor (U"Articulatory synthesis"); Artword_intoArt (artword, art.peek(), 0.0); Art_Speaker_intoDelta (art.peek(), speaker, delta.peek()); M = delta -> numberOfTubes; autoSound w1, w2, w3, p1, p2, p3, v1, v2, v3; if (iw1 > 0 && iw1 <= M) w1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw1 = 0; if (iw2 > 0 && iw2 <= M) w2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw2 = 0; if (iw3 > 0 && iw3 <= M) w3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iw3 = 0; if (ip1 > 0 && ip1 <= M) p1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip1 = 0; if (ip2 > 0 && ip2 <= M) p2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip2 = 0; if (ip3 > 0 && ip3 <= M) p3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else ip3 = 0; if (iv1 > 0 && iv1 <= M) v1.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv1 = 0; if (iv2 > 0 && iv2 <= M) v2.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv2 = 0; if (iv3 > 0 && iv3 <= M) v3.reset (Sound_createSimple (1, artword -> totalTime, fsamp)); else iv3 = 0; /* Initialize drawing. */ { int i; for (i = 1; i <= 78; i ++) { minTract [i] = 100; maxTract [i] = -100; } } totalVolume = 0.0; for (m = 1; m <= M; m ++) { Delta_Tube t = delta->tube + m; if (! t -> left1 && ! t -> right1) continue; t->Dx = t->Dxeq; t->dDxdt = 0; /* 5.113 */ t->Dy = t->Dyeq; t->dDydt = 0; /* 5.113 */ t->Dz = t->Dzeq; /* 5.113 */ t->A = t->Dz * ( t->Dy >= t->dy ? t->Dy + Dymin : t->Dy <= - t->dy ? Dymin : (t->dy + t->Dy) * (t->dy + t->Dy) / (4 * t->dy) + Dymin ); /* 4.4, 4.5 */ #if EQUAL_TUBE_WIDTHS t->A = 0.0001; #endif t->Jleft = t->Jright = 0; /* 5.113 */ t->Qleft = t->Qright = rho0c2; /* 5.113 */ t->pleft = t->pright = 0; /* 5.114 */ t->Kleft = t->Kright = 0; /* 5.114 */ t->V = t->A * t->Dx; /* 5.114 */ totalVolume += t->V; } //Melder_casual (U"Starting volume: ", totalVolume * 1000, U" litres."); for (sample = 1; sample <= numberOfSamples; sample ++) { double time = (sample - 1) / fsamp; Artword_intoArt (artword, art.peek(), time); Art_Speaker_intoDelta (art.peek(), speaker, delta.peek()); if (sample % MONITOR_SAMPLES == 0 && monitor.graphics()) { // because we can be in batch Graphics graphics = monitor.graphics(); double area [1+78]; Graphics_Viewport vp; for (int i = 1; i <= 78; i ++) { area [i] = delta -> tube [i]. A; if (area [i] < minTract [i]) minTract [i] = area [i]; if (area [i] > maxTract [i]) maxTract [i] = area [i]; } Graphics_clearWs (graphics); vp = Graphics_insetViewport (monitor.graphics(), 0, 0.5, 0.5, 1); Graphics_setWindow (graphics, 0, 1, 0, 0.05); Graphics_setColour (graphics, Graphics_RED); Graphics_function (graphics, minTract, 1, 35, 0, 0.9); Graphics_function (graphics, maxTract, 1, 35, 0, 0.9); Graphics_setColour (graphics, Graphics_BLACK); Graphics_function (graphics, area, 1, 35, 0, 0.9); Graphics_setLineType (graphics, Graphics_DOTTED); Graphics_line (graphics, 0, 0, 1, 0); Graphics_setLineType (graphics, Graphics_DRAWN); Graphics_resetViewport (graphics, vp); vp = Graphics_insetViewport (graphics, 0, 0.5, 0, 0.5); Graphics_setWindow (graphics, 0, 1, -0.000003, 0.00001); Graphics_setColour (graphics, Graphics_RED); Graphics_function (graphics, minTract, 36, 37, 0.2, 0.8); Graphics_function (graphics, maxTract, 36, 37, 0.2, 0.8); Graphics_setColour (graphics, Graphics_BLACK); Graphics_function (graphics, area, 36, 37, 0.2, 0.8); Graphics_setLineType (graphics, Graphics_DOTTED); Graphics_line (graphics, 0, 0, 1, 0); Graphics_setLineType (graphics, Graphics_DRAWN); Graphics_resetViewport (graphics, vp); vp = Graphics_insetViewport (graphics, 0.5, 1, 0.5, 1); Graphics_setWindow (graphics, 0, 1, 0, 0.001); Graphics_setColour (graphics, Graphics_RED); Graphics_function (graphics, minTract, 38, 64, 0, 1); Graphics_function (graphics, maxTract, 38, 64, 0, 1); Graphics_setColour (graphics, Graphics_BLACK); Graphics_function (graphics, area, 38, 64, 0, 1); Graphics_setLineType (graphics, Graphics_DOTTED); Graphics_line (graphics, 0, 0, 1, 0); Graphics_setLineType (graphics, Graphics_DRAWN); Graphics_resetViewport (graphics, vp); vp = Graphics_insetViewport (graphics, 0.5, 1, 0, 0.5); Graphics_setWindow (graphics, 0, 1, 0.001, 0); Graphics_setColour (graphics, Graphics_RED); Graphics_function (graphics, minTract, 65, 78, 0.5, 1); Graphics_function (graphics, maxTract, 65, 78, 0.5, 1); Graphics_setColour (graphics, Graphics_BLACK); Graphics_function (graphics, area, 65, 78, 0.5, 1); Graphics_setLineType (graphics, Graphics_DRAWN); Graphics_resetViewport (graphics, vp); Melder_monitor ((double) sample / numberOfSamples, U"Articulatory synthesis: ", Melder_half (time), U" seconds"); } for (n = 1; n <= oversampling; n ++) { for (m = 1; m <= M; m ++) { Delta_Tube t = delta -> tube + m; if (! t -> left1 && ! t -> right1) continue; /* New geometry. */ #if CONSTANT_TUBE_LENGTHS t->Dxnew = t->Dx; #else t->dDxdtnew = (t->dDxdt + Dt * 10000 * (t->Dxeq - t->Dx)) / (1 + 200 * Dt); /* Critical damping, 10 ms. */ t->Dxnew = t->Dx + t->dDxdtnew * Dt; #endif /* 3-way: equal lengths. */ /* This requires left tubes to be processed before right tubes. */ if (t->left1 && t->left1->right2) t->Dxnew = t->left1->Dxnew; t->Dz = t->Dzeq; /* immediate... */ t->eleft = (t->Qleft - t->Kleft) * t->V; /* 5.115 */ t->eright = (t->Qright - t->Kright) * t->V; /* 5.115 */ t->e = 0.5 * (t->eleft + t->eright); /* 5.116 */ t->p = 0.5 * (t->pleft + t->pright); /* 5.116 */ t->DeltaP = t->e / t->V - rho0c2; /* 5.117 */ t->v = t->p / (rho0 + onebyc2 * t->DeltaP); /* 5.118 */ { double dDy = t->Dyeq - t->Dy; double cubic = t->k3 * dDy * dDy; Delta_Tube l1 = t->left1, l2 = t->left2, r1 = t->right1, r2 = t->right2; tension = dDy * (t->k1 + cubic); t->B = 2 * t->Brel * sqrt (t->mass * (t->k1 + 3 * cubic)); if (t->k1left1 != 0.0 && l1) tension += t->k1left1 * t->k1 * (dDy - (l1->Dyeq - l1->Dy)); if (t->k1left2 != 0.0 && l2) tension += t->k1left2 * t->k1 * (dDy - (l2->Dyeq - l2->Dy)); if (t->k1right1 != 0.0 && r1) tension += t->k1right1 * t->k1 * (dDy - (r1->Dyeq - r1->Dy)); if (t->k1right2 != 0.0 && r2) tension += t->k1right2 * t->k1 * (dDy - (r2->Dyeq - r2->Dy)); } if (t->Dy < t->dy) { if (t->Dy >= - t->dy) { double dDy = t->dy - t->Dy, dDy2 = dDy * dDy; tension += dDy2 / (4 * t->dy) * (t->s1 + 0.5 * t->s3 * dDy2); t->B += 2 * dDy / (2 * t->dy) * sqrt (t->mass * (t->s1 + t->s3 * dDy2)); } else { tension -= t->Dy * (t->s1 + t->s3 * (t->Dy * t->Dy + t->dy * t->dy)); t->B += 2 * sqrt (t->mass * (t->s1 + t->s3 * (3 * t->Dy * t->Dy + t->dy * t->dy))); } } t->dDydtnew = (t->dDydt + Dt / t->mass * (tension + 2 * t->DeltaP * t->Dz * t->Dx)) / (1 + t->B * Dt / t->mass); /* 5.119 */ t->Dynew = t->Dy + t->dDydtnew * Dt; /* 5.119 */ #if NO_MOVING_WALLS t->Dynew = t->Dy; #endif t->Anew = t->Dz * ( t->Dynew >= t->dy ? t->Dynew + Dymin : t->Dynew <= - t->dy ? Dymin : (t->dy + t->Dynew) * (t->dy + t->Dynew) / (4 * t->dy) + Dymin ); /* 4.4, 4.5 */ #if EQUAL_TUBE_WIDTHS t->Anew = 0.0001; #endif t->Ahalf = 0.5 * (t->A + t->Anew); /* 5.120 */ t->Dxhalf = 0.5 * (t->Dxnew + t->Dx); /* 5.121 */ t->Vnew = t->Anew * t->Dxnew; /* 5.128 */ { double oneByDyav = t->Dz / t->A; /*t->R = 12 * 1.86e-5 * t->parallel * t->parallel * oneByDyav * oneByDyav;*/ if (t->Dy < 0) t->R = 12 * 1.86e-5 / (Dymin * Dymin + t->dy * t->dy); else t->R = 12 * 1.86e-5 * t->parallel * t->parallel / ((t->Dy + Dymin) * (t->Dy + Dymin) + t->dy * t->dy); t->R += 0.3 * t->parallel * oneByDyav; /* 5.23 */ } t->r = (1 + t->R * Dt / rho0) * t->Dxhalf / t->Anew; /* 5.122 */ t->ehalf = t->e + halfc2Dt * (t->Jleft - t->Jright); /* 5.123 */ t->phalf = (t->p + halfDt * (t->Qleft - t->Qright) / t->Dx) / (1 + Dtbytworho0 * t->R); /* 5.123 */ #if MASS_LEAPFROG t->ehalf = t->ehalfold + 2 * halfc2Dt * (t->Jleft - t->Jright); #endif t->Jhalf = t->phalf * t->Ahalf; /* 5.124 */ t->Qhalf = t->ehalf / (t->Ahalf * t->Dxhalf) + onebytworho0 * t->phalf * t->phalf; /* 5.124 */ #if NO_BERNOULLI_EFFECT t->Qhalf = t->ehalf / (t->Ahalf * t->Dxhalf); #endif } for (m = 1; m <= M; m ++) { /* Compute Jleftnew and Qleftnew. */ Delta_Tube l = delta->tube + m, r1 = l -> right1, r2 = l -> right2, r = r1; Delta_Tube l1 = l, l2 = r ? r -> left2 : NULL; if (l->left1 == NULL) { /* Closed boundary at the left side (diaphragm)? */ if (r == NULL) continue; /* Tube not connected at all. */ l->Jleftnew = 0; /* 5.132. */ l->Qleftnew = (l->eleft - twoc2Dt * l->Jhalf) / l->Vnew; /* 5.132. */ } else /* Left boundary open to another tube will be handled... */ (void) 0; /* ...together with the right boundary of the tube to the left. */ if (r == NULL) { /* Open boundary at the right side (lips, nostrils)? */ rrad = 1 - c * Dt / 0.02; /* Radiation resistance, 5.135. */ onebygrad = 1 / (1 + c * Dt / 0.02); /* Radiation conductance, 5.135. */ #if NO_RADIATION_DAMPING rrad = 0; onebygrad = 0; #endif l->prightnew = ((l->Dxhalf / Dt + c * onebygrad) * l->pright + 2 * ((l->Qhalf - rho0c2) - (l->Qright - rho0c2) * onebygrad)) / (l->r * l->Anew / Dt + c * onebygrad); /* 5.136 */ l->Jrightnew = l->prightnew * l->Anew; /* 5.136 */ l->Qrightnew = (rrad * (l->Qright - rho0c2) + c * (l->prightnew - l->pright)) * onebygrad + rho0c2; /* 5.136 */ } else if (l2 == NULL && r2 == NULL) { /* Two-way boundary. */ if (l->v > criticalVelocity && l->A < r->A) { l->Pturbrightnew = -0.5 * rho0 * (l->v - criticalVelocity) * (1 - l->A / r->A) * (1 - l->A / r->A) * l->v; if (l->Pturbrightnew != 0.0) l->Pturbrightnew *= 1 + NUMrandomGauss (0, noiseFactor) /* * l->A */; } if (r->v < - criticalVelocity && r->A < l->A) { l->Pturbrightnew = 0.5 * rho0 * (r->v + criticalVelocity) * (1 - r->A / l->A) * (1 - r->A / l->A) * r->v; if (l->Pturbrightnew != 0.0) l->Pturbrightnew *= 1 + NUMrandomGauss (0, noiseFactor) /* * r->A */; } #if NO_TURBULENCE l->Pturbrightnew = 0; #endif l->Jrightnew = r->Jleftnew = (l->Dxhalf * l->pright + r->Dxhalf * r->pleft + twoDt * (l->Qhalf - r->Qhalf + l->Pturbright)) / (l->r + r->r); /* 5.127 */ #if B91 l->Jrightnew = r->Jleftnew = (l->pright + r->pleft + 2 * twoDt * (l->Qhalf - r->Qhalf + l->Pturbright) / (l->Dxhalf + r->Dxhalf)) / (l->r / l->Dxhalf + r->r / r->Dxhalf); #endif l->prightnew = l->Jrightnew / l->Anew; /* 5.128 */ r->pleftnew = r->Jleftnew / r->Anew; /* 5.128 */ l->Krightnew = onebytworho0 * l->prightnew * l->prightnew; /* 5.128 */ r->Kleftnew = onebytworho0 * r->pleftnew * r->pleftnew; /* 5.128 */ #if NO_BERNOULLI_EFFECT l->Krightnew = r->Kleftnew = 0; #endif l->Qrightnew = (l->eright + r->eleft + twoc2Dt * (l->Jhalf - r->Jhalf) + l->Krightnew * l->Vnew + (r->Kleftnew - l->Pturbrightnew) * r->Vnew) / (l->Vnew + r->Vnew); /* 5.131 */ r->Qleftnew = l->Qrightnew + l->Pturbrightnew; /* 5.131 */ } else if (r2) { /* Two adjacent tubes at the right side (velic). */ r1->Jleftnew = (r1->Jleft * r1->Dxhalf * (1 / (l->A + r2->A) + 1 / r1->A) + twoDt * ((l->Ahalf * l->Qhalf + r2->Ahalf * r2->Qhalf ) / (l->Ahalf + r2->Ahalf) - r1->Qhalf)) / (1 / (1 / l->r + 1 / r2->r) + r1->r); /* 5.138 */ r2->Jleftnew = (r2->Jleft * r2->Dxhalf * (1 / (l->A + r1->A) + 1 / r2->A) + twoDt * ((l->Ahalf * l->Qhalf + r1->Ahalf * r1->Qhalf ) / (l->Ahalf + r1->Ahalf) - r2->Qhalf)) / (1 / (1 / l->r + 1 / r1->r) + r2->r); /* 5.138 */ l->Jrightnew = r1->Jleftnew + r2->Jleftnew; /* 5.139 */ l->prightnew = l->Jrightnew / l->Anew; /* 5.128 */ r1->pleftnew = r1->Jleftnew / r1->Anew; /* 5.128 */ r2->pleftnew = r2->Jleftnew / r2->Anew; /* 5.128 */ l->Krightnew = onebytworho0 * l->prightnew * l->prightnew; /* 5.128 */ r1->Kleftnew = onebytworho0 * r1->pleftnew * r1->pleftnew; /* 5.128 */ r2->Kleftnew = onebytworho0 * r2->pleftnew * r2->pleftnew; /* 5.128 */ #if NO_BERNOULLI_EFFECT l->Krightnew = r1->Kleftnew = r2->Kleftnew = 0; #endif l->Qrightnew = r1->Qleftnew = r2->Qleftnew = (l->eright + r1->eleft + r2->eleft + twoc2Dt * (l->Jhalf - r1->Jhalf - r2->Jhalf) + l->Krightnew * l->Vnew + r1->Kleftnew * r1->Vnew + r2->Kleftnew * r2->Vnew) / (l->Vnew + r1->Vnew + r2->Vnew); /* 5.137 */ } else { Melder_assert (l2 != NULL); l1->Jrightnew = (l1->Jright * l1->Dxhalf * (1 / (r->A + l2->A) + 1 / l1->A) - twoDt * ((r->Ahalf * r->Qhalf + l2->Ahalf * l2->Qhalf ) / (r->Ahalf + l2->Ahalf) - l1->Qhalf)) / (1 / (1 / r->r + 1 / l2->r) + l1->r); /* 5.138 */ l2->Jrightnew = (l2->Jright * l2->Dxhalf * (1 / (r->A + l1->A) + 1 / l2->A) - twoDt * ((r->Ahalf * r->Qhalf + l1->Ahalf * l1->Qhalf ) / (r->Ahalf + l1->Ahalf) - l2->Qhalf)) / (1 / (1 / r->r + 1 / l1->r) + l2->r); /* 5.138 */ r->Jleftnew = l1->Jrightnew + l2->Jrightnew; /* 5.139 */ r->pleftnew = r->Jleftnew / r->Anew; /* 5.128 */ l1->prightnew = l1->Jrightnew / l1->Anew; /* 5.128 */ l2->prightnew = l2->Jrightnew / l2->Anew; /* 5.128 */ r->Kleftnew = onebytworho0 * r->pleftnew * r->pleftnew; /* 5.128 */ l1->Krightnew = onebytworho0 * l1->prightnew * l1->prightnew; /* 5.128 */ l2->Krightnew = onebytworho0 * l2->prightnew * l2->prightnew; /* 5.128 */ #if NO_BERNOULLI_EFFECT r->Kleftnew = l1->Krightnew = l2->Krightnew = 0; #endif r->Qleftnew = l1->Qrightnew = l2->Qrightnew = (r->eleft + l1->eright + l2->eright + twoc2Dt * (l1->Jhalf + l2->Jhalf - r->Jhalf) + r->Kleftnew * r->Vnew + l1->Krightnew * l1->Vnew + l2->Krightnew * l2->Vnew) / (r->Vnew + l1->Vnew + l2->Vnew); /* 5.137 */ } } /* Save some results. */ if (n == (oversampling + 1) / 2) { double out = 0.0; for (m = 1; m <= M; m ++) { Delta_Tube t = delta->tube + m; out += rho0 * t->Dx * t->Dz * t->dDydt * Dt * 1000; /* Radiation of wall movement, 5.140. */ if (t->right1 == NULL) out += t->Jrightnew - t->Jright; /* Radiation of open tube end. */ } result -> z [1] [sample] = out /= 4 * NUMpi * 0.4 * Dt; /* At 0.4 metres. */ if (iw1) w1 -> z [1] [sample] = delta->tube[iw1].Dy; if (iw2) w2 -> z [1] [sample] = delta->tube[iw2].Dy; if (iw3) w3 -> z [1] [sample] = delta->tube[iw3].Dy; if (ip1) p1 -> z [1] [sample] = delta->tube[ip1].DeltaP; if (ip2) p2 -> z [1] [sample] = delta->tube[ip2].DeltaP; if (ip3) p3 -> z [1] [sample] = delta->tube[ip3].DeltaP; if (iv1) v1 -> z [1] [sample] = delta->tube[iv1].v; if (iv2) v2 -> z [1] [sample] = delta->tube[iv2].v; if (iv3) v3 -> z [1] [sample] = delta->tube[iv3].v; } for (m = 1; m <= M; m ++) { Delta_Tube t = delta->tube + m; t->Jleft = t->Jleftnew; t->Jright = t->Jrightnew; t->Qleft = t->Qleftnew; t->Qright = t->Qrightnew; t->Dy = t->Dynew; t->dDydt = t->dDydtnew; t->A = t->Anew; t->Dx = t->Dxnew; t->dDxdt = t->dDxdtnew; t->eleft = t->eleftnew; t->eright = t->erightnew; #if MASS_LEAPFROG t->ehalfold = t->ehalf; #endif t->pleft = t->pleftnew; t->pright = t->prightnew; t->Kleft = t->Kleftnew; t->Kright = t->Krightnew; t->V = t->Vnew; t->Pturbright = t->Pturbrightnew; } } } totalVolume = 0.0; for (m = 1; m <= M; m ++) totalVolume += delta->tube [m]. V; //Melder_casual (U"Ending volume: ", totalVolume * 1000, U" litres."); if (out_w1) *out_w1 = w1.transfer(); if (out_w2) *out_w2 = w2.transfer(); if (out_w3) *out_w3 = w3.transfer(); if (out_p1) *out_p1 = p1.transfer(); if (out_p2) *out_p2 = p2.transfer(); if (out_p3) *out_p3 = p3.transfer(); if (out_v1) *out_v1 = v1.transfer(); if (out_v2) *out_v2 = v2.transfer(); if (out_v3) *out_v3 = v3.transfer(); return result.transfer(); } catch (MelderError) { Melder_throw (artword, U" & ", speaker, U": articulatory synthesis not performed."); } }