void URotatingMovementComponent::TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction *ThisTickFunction)
{
	// skip if we don't want component updated when not rendered or if updated component can't move
	if (ShouldSkipUpdate(DeltaTime))
	{
		return;
	}

	Super::TickComponent(DeltaTime, TickType, ThisTickFunction);

	if (!IsValid(UpdatedComponent))
	{
		return;
	}

	// Compute new rotation
	const FQuat OldRotation = UpdatedComponent->GetComponentQuat();
	const FQuat DeltaRotation = (RotationRate * DeltaTime).Quaternion();
	const FQuat NewRotation = bRotationInLocalSpace ? (OldRotation * DeltaRotation) : (DeltaRotation * OldRotation);

	// Compute new location
	FVector DeltaLocation = FVector::ZeroVector;
	if (!PivotTranslation.IsZero())
	{
		const FVector OldPivot = OldRotation.RotateVector(PivotTranslation);
		const FVector NewPivot = NewRotation.RotateVector(PivotTranslation);
		DeltaLocation = (OldPivot - NewPivot); // ConstrainDirectionToPlane() not necessary because it's done by MoveUpdatedComponent() below.
	}

	const bool bEnableCollision = false;
	MoveUpdatedComponent(DeltaLocation, NewRotation, bEnableCollision);
}
bool UMovementComponent::SafeMoveUpdatedComponent(const FVector& Delta, const FQuat& NewRotation, bool bSweep, FHitResult& OutHit, ETeleportType Teleport)
{
	if (UpdatedComponent == NULL)
	{
		OutHit.Reset(1.f);
		return false;
	}

	bool bMoveResult = MoveUpdatedComponent(Delta, NewRotation, bSweep, &OutHit, Teleport);

	// Handle initial penetrations
	if (OutHit.bStartPenetrating && UpdatedComponent)
	{
		const FVector RequestedAdjustment = GetPenetrationAdjustment(OutHit);
		if (ResolvePenetration(RequestedAdjustment, OutHit, NewRotation))
		{
			// Retry original move
			bMoveResult = MoveUpdatedComponent(Delta, NewRotation, bSweep, &OutHit, Teleport);
		}
	}

	return bMoveResult;
}
void UObstacleMovementComponent::TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction *ThisTickFunction)
{
	Super::TickComponent(DeltaTime, TickType, ThisTickFunction);

	if (!UpdatedComponent)
	{
		return;
	}

	AActor* ActorOwner = UpdatedComponent->GetOwner();
	if (!ActorOwner || ActorOwner->IsPendingKill())
	{
		return;
	}

	FVector CurrentLocation = UpdatedComponent->GetComponentLocation();
	FRotator CurrentRotation = UpdatedComponent->GetComponentRotation();

	if (MovingRight)
	{
		CurrentLocation.Y += MovementSpeed * DeltaTime;

		if (CurrentLocation.Y >= RightMovementTarget)
		{
			MovingRight = !MovingRight;
			CurrentLocation.Y = RightMovementTarget;
		}
	}
	else
	{
		CurrentLocation.Y -= MovementSpeed * DeltaTime;

		if (CurrentLocation.Y <= LeftMovementTarget)
		{
			MovingRight = !MovingRight;
			CurrentLocation.Y = LeftMovementTarget;
		}
	}

	FHitResult Hit(1.0f);
	MoveUpdatedComponent(CurrentLocation - UpdatedComponent->GetComponentLocation(), CurrentRotation, true, &Hit);

	// If we hit a trigger that destroyed us, abort.
	if (ActorOwner->IsPendingKill() || !UpdatedComponent)
	{
		return;
	}

	UpdateComponentVelocity();
}
void UProjectileMovementComponent::TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction *ThisTickFunction)
{
	QUICK_SCOPE_CYCLE_COUNTER( STAT_ProjectileMovementComponent_TickComponent );

	// skip if don't want component updated when not rendered or updated component can't move
	if (HasStoppedSimulation() || ShouldSkipUpdate(DeltaTime))
	{
		return;
	}

	Super::TickComponent(DeltaTime, TickType, ThisTickFunction);

	AActor* ActorOwner = UpdatedComponent->GetOwner();
	if ( !ActorOwner || !CheckStillInWorld() )
	{
		return;
	}

	if (UpdatedComponent->IsSimulatingPhysics())
	{
		return;
	}

	float RemainingTime	= DeltaTime;
	uint32 NumBounces = 0;
	int32 Iterations = 0;
	FHitResult Hit(1.f);
	
	while( RemainingTime >= MIN_TICK_TIME && (Iterations < MaxSimulationIterations) && !ActorOwner->IsPendingKill() && !HasStoppedSimulation() )
	{
		Iterations++;

		// subdivide long ticks to more closely follow parabolic trajectory
		const float TimeTick = ShouldUseSubStepping() ? GetSimulationTimeStep(RemainingTime, Iterations) : RemainingTime;
		RemainingTime -= TimeTick;

		Hit.Time = 1.f;
		const FVector OldVelocity = Velocity;
		const FVector MoveDelta = ComputeMoveDelta(OldVelocity, TimeTick);

		const FRotator NewRotation = (bRotationFollowsVelocity && !OldVelocity.IsNearlyZero(0.01f)) ? OldVelocity.Rotation() : ActorOwner->GetActorRotation();

		// Move the component
		if (bShouldBounce)
		{
			// If we can bounce, we are allowed to move out of penetrations, so use SafeMoveUpdatedComponent which does that automatically.
			SafeMoveUpdatedComponent( MoveDelta, NewRotation, true, Hit );
		}
		else
		{
			// If we can't bounce, then we shouldn't adjust if initially penetrating, because that should be a blocking hit that causes a hit event and stop simulation.
			TGuardValue<EMoveComponentFlags> ScopedFlagRestore(MoveComponentFlags, MoveComponentFlags | MOVECOMP_NeverIgnoreBlockingOverlaps);
			MoveUpdatedComponent(MoveDelta, NewRotation, true, &Hit );
		}
		
		// If we hit a trigger that destroyed us, abort.
		if( ActorOwner->IsPendingKill() || HasStoppedSimulation() )
		{
			return;
		}

		// Handle hit result after movement
		if( !Hit.bBlockingHit )
		{
			PreviousHitTime = 1.f;
			bIsSliding = false;

			// Only calculate new velocity if events didn't change it during the movement update.
			if (Velocity == OldVelocity)
			{
				Velocity = ComputeVelocity(Velocity, TimeTick);				
			}
		}
		else
		{
			// Only calculate new velocity if events didn't change it during the movement update.
			if (Velocity == OldVelocity)
			{
				// re-calculate end velocity for partial time
				Velocity = (Hit.Time > KINDA_SMALL_NUMBER) ? ComputeVelocity(OldVelocity, TimeTick * Hit.Time) : OldVelocity;
			}

			// Handle blocking hit
			float SubTickTimeRemaining = TimeTick * (1.f - Hit.Time);
			const EHandleBlockingHitResult HandleBlockingResult = HandleBlockingHit(Hit, TimeTick, MoveDelta, SubTickTimeRemaining);
			if (HandleBlockingResult == EHandleBlockingHitResult::Abort || HasStoppedSimulation())
			{
				break;
			}
			else if (HandleBlockingResult == EHandleBlockingHitResult::Deflect)
			{
				NumBounces++;
				HandleDeflection(Hit, OldVelocity, NumBounces, SubTickTimeRemaining);
				PreviousHitTime = Hit.Time;
				PreviousHitNormal = ConstrainNormalToPlane(Hit.Normal);
			}
			else if (HandleBlockingResult == EHandleBlockingHitResult::AdvanceNextSubstep)
			{
				// Reset deflection logic to ignore this hit
				PreviousHitTime = 1.f;
			}
			else
			{
				// Unhandled EHandleBlockingHitResult
				checkNoEntry();
			}
			
			
			// A few initial bounces should add more time and iterations to complete most of the simulation.
			if (NumBounces <= 2 && SubTickTimeRemaining >= MIN_TICK_TIME)
			{
				RemainingTime += SubTickTimeRemaining;
				Iterations--;
			}
		}
	}

	UpdateComponentVelocity();
}
bool UMovementComponent::ResolvePenetrationImpl(const FVector& ProposedAdjustment, const FHitResult& Hit, const FQuat& NewRotationQuat)
{
	// SceneComponent can't be in penetration, so this function really only applies to PrimitiveComponent.
	const FVector Adjustment = ConstrainDirectionToPlane(ProposedAdjustment);
	if (!Adjustment.IsZero() && UpdatedPrimitive)
	{
		// See if we can fit at the adjusted location without overlapping anything.
		AActor* ActorOwner = UpdatedComponent->GetOwner();
		if (!ActorOwner)
		{
			return false;
		}

		UE_LOG(LogMovement, Verbose, TEXT("ResolvePenetration: %s.%s at location %s inside %s.%s at location %s by %.3f (netmode: %d)"),
			   *ActorOwner->GetName(),
			   *UpdatedComponent->GetName(),
			   *UpdatedComponent->GetComponentLocation().ToString(),
			   *GetNameSafe(Hit.GetActor()),
			   *GetNameSafe(Hit.GetComponent()),
			   Hit.Component.IsValid() ? *Hit.GetComponent()->GetComponentLocation().ToString() : TEXT("<unknown>"),
			   Hit.PenetrationDepth,
			   (uint32)GetNetMode());

		// We really want to make sure that precision differences or differences between the overlap test and sweep tests don't put us into another overlap,
		// so make the overlap test a bit more restrictive.
		const float OverlapInflation = CVarPenetrationOverlapCheckInflation.GetValueOnGameThread();
		bool bEncroached = OverlapTest(Hit.TraceStart + Adjustment, NewRotationQuat, UpdatedPrimitive->GetCollisionObjectType(), UpdatedPrimitive->GetCollisionShape(OverlapInflation), ActorOwner);
		if (!bEncroached)
		{
			// Move without sweeping.
			MoveUpdatedComponent(Adjustment, NewRotationQuat, false, nullptr, ETeleportType::TeleportPhysics);
			UE_LOG(LogMovement, Verbose, TEXT("ResolvePenetration:   teleport by %s"), *Adjustment.ToString());
			return true;
		}
		else
		{
			// Disable MOVECOMP_NeverIgnoreBlockingOverlaps if it is enabled, otherwise we wouldn't be able to sweep out of the object to fix the penetration.
			TGuardValue<EMoveComponentFlags> ScopedFlagRestore(MoveComponentFlags, EMoveComponentFlags(MoveComponentFlags & (~MOVECOMP_NeverIgnoreBlockingOverlaps)));

			// Try sweeping as far as possible...
			FHitResult SweepOutHit(1.f);
			bool bMoved = MoveUpdatedComponent(Adjustment, NewRotationQuat, true, &SweepOutHit, ETeleportType::TeleportPhysics);
			UE_LOG(LogMovement, Verbose, TEXT("ResolvePenetration:   sweep by %s (success = %d)"), *Adjustment.ToString(), bMoved);
			
			// Still stuck?
			if (!bMoved && SweepOutHit.bStartPenetrating)
			{
				// Combine two MTD results to get a new direction that gets out of multiple surfaces.
				const FVector SecondMTD = GetPenetrationAdjustment(SweepOutHit);
				const FVector CombinedMTD = Adjustment + SecondMTD;
				if (SecondMTD != Adjustment && !CombinedMTD.IsZero())
				{
					bMoved = MoveUpdatedComponent(CombinedMTD, NewRotationQuat, true, nullptr, ETeleportType::TeleportPhysics);
					UE_LOG(LogMovement, Verbose, TEXT("ResolvePenetration:   sweep by %s (MTD combo success = %d)"), *CombinedMTD.ToString(), bMoved);
				}
			}

			// Still stuck?
			if (!bMoved)
			{
				// Try moving the proposed adjustment plus the attempted move direction. This can sometimes get out of penetrations with multiple objects
				const FVector MoveDelta = ConstrainDirectionToPlane(Hit.TraceEnd - Hit.TraceStart);
				if (!MoveDelta.IsZero())
				{
					bMoved = MoveUpdatedComponent(Adjustment + MoveDelta, NewRotationQuat, true, nullptr, ETeleportType::TeleportPhysics);
					UE_LOG(LogMovement, Verbose, TEXT("ResolvePenetration:   sweep by %s (adjusted attempt success = %d)"), *(Adjustment + MoveDelta).ToString(), bMoved);
				}
			}	

			return bMoved;
		}
	}

	return false;
}
void UInterpToMovementComponent::TickComponent(float DeltaTime, enum ELevelTick TickType, FActorComponentTickFunction *ThisTickFunction)
{
	QUICK_SCOPE_CYCLE_COUNTER(STAT_InterpToMovementComponent_TickComponent);
	Super::TickComponent(DeltaTime, TickType, ThisTickFunction);

	// skip if don't want component updated when not rendered or updated component can't move
	if (!UpdatedComponent || ShouldSkipUpdate(DeltaTime))
	{
		return;
	}
	AActor* ActorOwner = UpdatedComponent->GetOwner();
	if (!ActorOwner || !CheckStillInWorld())
	{
		return;
	}

	if (UpdatedComponent->IsSimulatingPhysics())
	{
		return;
	}
	if((bStopped == true ) || ( ActorOwner->IsPendingKill() ) )
	{
		return;
	}
	if( ControlPoints.Num()== 0 ) 
	{
		return;
	}

	// This will update any control points coordinates that are linked to actors.
	UpdateControlPoints(false);

	float RemainingTime = DeltaTime;
	int32 NumBounces = 0;
	int32 Iterations = 0;
	FHitResult Hit(1.f);

	FVector WaitPos = FVector::ZeroVector;
	if (bIsWaiting == true)
	{
		WaitPos = UpdatedComponent->GetComponentLocation();
	}
	while (RemainingTime >= MIN_TICK_TIME && (Iterations < MaxSimulationIterations) && !ActorOwner->IsPendingKill() && UpdatedComponent)
	{
		Iterations++;

		const float TimeTick = ShouldUseSubStepping() ? GetSimulationTimeStep(RemainingTime, Iterations) : RemainingTime;
		RemainingTime -= TimeTick;

		// Calculate the current time with this tick iteration
		float Time = FMath::Clamp(CurrentTime + ((DeltaTime*TimeMultiplier)*CurrentDirection),0.0f,1.0f);		
		FVector MoveDelta = ComputeMoveDelta(Time);
		
		// Update the rotation on the spline if required
		FRotator CurrentRotation = UpdatedComponent->GetComponentRotation();				
		
		// Move the component
 		if ((bPauseOnImpact == false ) && (BehaviourType != EInterpToBehaviourType::OneShot))
 		{
 			// If we can bounce, we are allowed to move out of penetrations, so use SafeMoveUpdatedComponent which does that automatically.
 			SafeMoveUpdatedComponent(MoveDelta, CurrentRotation, true, Hit);
 		}
 		else
		{
			// If we can't bounce, then we shouldn't adjust if initially penetrating, because that should be a blocking hit that causes a hit event and stop simulation.
			TGuardValue<EMoveComponentFlags> ScopedFlagRestore(MoveComponentFlags, MoveComponentFlags | MOVECOMP_NeverIgnoreBlockingOverlaps);
			MoveUpdatedComponent(MoveDelta, CurrentRotation, true, &Hit);
		}
		//DrawDebugPoint(GetWorld(), UpdatedComponent->GetComponentLocation(), 16, FColor::White,true,5.0f);
		// If we hit a trigger that destroyed us, abort.
		if (ActorOwner->IsPendingKill() || !UpdatedComponent)
		{
			return;
		}

		// Handle hit result after movement
		if (!Hit.bBlockingHit)
		{
			// If we were 'waiting' were not any more - broadcast we are off again
			if( bIsWaiting == true )
			{
				OnWaitEndDelegate.Broadcast(Hit, Time);
				bIsWaiting = false;
			}
			else
			{				
				CalculateNewTime(CurrentTime, TimeTick, Hit, true, bStopped);
				if (bStopped == true)
				{
					return;
				}
			}
		}
		else
		{
			if (HandleHitWall(Hit, TimeTick, MoveDelta))
			{
				break;
			}

			NumBounces++;
			float SubTickTimeRemaining = TimeTick * (1.f - Hit.Time);
			
			// A few initial bounces should add more time and iterations to complete most of the simulation.
			if (NumBounces <= 2 && SubTickTimeRemaining >= MIN_TICK_TIME)
			{
				RemainingTime += SubTickTimeRemaining;
				Iterations--;
			}
		}
	}
	if( bIsWaiting == false )
	{		
		FHitResult DummyHit;
		CurrentTime = CalculateNewTime(CurrentTime, DeltaTime, DummyHit, false, bStopped);		
	}
	UpdateComponentVelocity();
}
void UMainCharacterMovementComponent::TickComponent(float deltaTime, enum ELevelTick tickType, FActorComponentTickFunction *thisTickFunction)
{
    UPawnMovementComponent::TickComponent(deltaTime, tickType, thisTickFunction);

    if (!PawnOwner || !UpdatedComponent || ShouldSkipUpdate(deltaTime))
    {
        return;
    }

    if (m_character)
    {
        const FVector posInRoom = m_character->GetRelativePositionInRoom(); // pos should be center of room

        if (auto* room = m_character->GetCurrentRoom())
        {
            int ladderPosInRoom = room->GetLadderPos();
            bool isInsideLadderRegion = abs(posInRoom.X - ladderPosInRoom) <= (ARoom::c_ladderWidth * 0.5);
            
            // handle climbing up
            if (isInsideLadderRegion)
            {
                if (m_wantsToClimbUp)
                {
                    if (room->HasLadderUp())
                    {
                        if (auto* neighbour = room->GetNeighbour(RoomNeighbour::Up))
                        {
                            m_isMoving = false;
                            m_character->TeleportToRoom(neighbour);
                        }
                    }
                }

                // handle climbing down
                if (m_wantsToClimbDown)
                {
                    if (room->HasLadderDown())
                    {
                        if (auto* neighbour = room->GetNeighbour(RoomNeighbour::Down))
                        {
                            m_isMoving = false;
                            m_character->TeleportToRoom(neighbour);
                        }
                    }
                }
            }

            // handle left and right
            FVector desiredMovementThisFrame = ConsumeInputVector().GetClampedToMaxSize(1.0f) * deltaTime * m_walkSpeed;
            if (!desiredMovementThisFrame.IsNearlyZero())
            {
                m_isMoving = true;
                if (desiredMovementThisFrame.X < 0.0f)
                {
                    m_direction = FacingDirection::Left;
                }
                else if (desiredMovementThisFrame.X > 0.0f)
                {
                    m_direction = FacingDirection::Right;
                }


                const float leftWallPos = room->GetLeftWallXPos();
                const float rightWallPos = room->GetRightWallXPos();

                FVector desiredPosInRoom = posInRoom - desiredMovementThisFrame;

                // no neighbour == wall
                // poor collision detection that won't work in low FPS (but hey, who gives a f***s?)
                // hint: not me
                if (!room->GetNeighbour(RoomNeighbour::Left) &&
                    desiredMovementThisFrame.X < 0 &&
                    desiredPosInRoom.X < leftWallPos)
                {
                    desiredMovementThisFrame.X = 0;
                    m_isMoving = false;

                }

                if (!room->GetNeighbour(RoomNeighbour::Right) &&
                    desiredMovementThisFrame.X > 0 &&
                    desiredPosInRoom.X > rightWallPos)
                {
                    desiredMovementThisFrame.X = 0;
                    m_isMoving = false;
                }

                FHitResult hit;
                MoveUpdatedComponent(desiredMovementThisFrame, UpdatedComponent->GetComponentRotation().Quaternion(), true, &hit);
            }
            else
            {
                m_isMoving = false;
            }
        }
    }

    m_wantsToClimbUp = false;
    m_wantsToClimbDown = false;
}