Vector *MGIter(int NoLevels, QMatrix *A, Vector *x, Vector *b, Matrix *R, Matrix *P, int MaxIter, int Gamma, IterProcType SmoothProc, int Nu1, int Nu2, PrecondProcType PrecondProc, double Omega, IterProcType SolvProc, int NuC, PrecondProcType PrecondProcC, double OmegaC) /* multigrid method with residual termination control */ { int Iter; double bNorm; size_t Dim; Vector r; Dim = Q_GetDim(&A[NoLevels - 1]); V_Constr(&r, "r", Dim, Normal, True); if (LASResult() == LASOK) { bNorm = l2Norm_V(&b[NoLevels - 1]); Iter = 0; /* r = b - A x(i) at NoLevels - 1 */ Asgn_VV(&r, Sub_VV(&b[NoLevels - 1], Mul_QV(&A[NoLevels - 1], &x[NoLevels - 1]))); while (!RTCResult(Iter, l2Norm_V(&r), bNorm, MGIterId) && Iter < MaxIter) { Iter++; /* one multigrid step */ MGStep(NoLevels, A, x, b, R, P, NoLevels - 1, Gamma, SmoothProc, Nu1, Nu2, PrecondProc, Omega, SolvProc, NuC, PrecondProcC, OmegaC); /* r = b - A x(i) at NoLevels - 1 */ Asgn_VV(&r, Sub_VV(&b[NoLevels - 1], Mul_QV(&A[NoLevels - 1], &x[NoLevels - 1]))); } } V_Destr(&r); return(&x[NoLevels - 1]); }
void LaspackVector<T>::add_vector (const NumericVector<T> & vec_in, const SparseMatrix<T> & mat_in) { // Make sure the data passed in are really in Laspack types const LaspackVector<T> * vec = cast_ptr<const LaspackVector<T> *>(&vec_in); const LaspackMatrix<T> * mat = cast_ptr<const LaspackMatrix<T> *>(&mat_in); libmesh_assert(vec); libmesh_assert(mat); // += mat*vec AddAsgn_VV (&_vec, Mul_QV(const_cast<QMatrix*>(&mat->_QMat), const_cast<QVector*>(&vec->_vec))); }
Vector *MGStep(int NoLevels, QMatrix *A, Vector *x, Vector *b, Matrix *R, Matrix *P, int Level, int Gamma, IterProcType SmoothProc, int Nu1, int Nu2, PrecondProcType PrecondProc, double Omega, IterProcType SolvProc, int NuC, PrecondProcType PrecondProcC, double OmegaC) /* one multigrid iteration */ { int CoarseMGIter; /* multi grid iteration counter for coarser grid */ if (Level == 0) { /* solving of system of equations for the residual on the coarsest grid */ (*SolvProc)(&A[Level], &x[Level], &b[Level], NuC, PrecondProcC, OmegaC); } else { /* pre-smoothing - Nu1 iterations */ (*SmoothProc)(&A[Level], &x[Level], &b[Level], Nu1, PrecondProc, Omega); /* restiction of the residual to the coarser grid */ Asgn_VV(&b[Level - 1], Mul_MV(&R[Level - 1], Sub_VV(&b[Level], Mul_QV(&A[Level], &x[Level])))); /* initialisation of vector of unknowns on the coarser grid */ V_SetAllCmp(&x[Level - 1], 0.0); /* solving of system of equations for the residual on the coarser grid */ for (CoarseMGIter = 1; CoarseMGIter <= Gamma; CoarseMGIter++) MGStep(NoLevels, A, x, b, R, P, Level - 1, Gamma, SmoothProc, Nu1, Nu2, PrecondProc, Omega, SolvProc, NuC, PrecondProcC, OmegaC); /* interpolation of the solution from the coarser grid */ if (P != NULL) AddAsgn_VV(&x[Level], Mul_MV(&P[Level], &x[Level - 1])); else AddAsgn_VV(&x[Level], Mul_MV(Transp_M(&R[Level - 1]), &x[Level - 1])); /* post-smoothing - Nu2 iterations */ (*SmoothProc)(&A[Level], &x[Level], &b[Level], Nu2, PrecondProc, Omega); } return(&x[Level]); }
Vector *NestedMGIter(int NoLevels, QMatrix *A, Vector *x, Vector *b, Matrix *R, Matrix *P, int Gamma, IterProcType SmoothProc, int Nu1, int Nu2, PrecondProcType PrecondProc, double Omega, IterProcType SolvProc, int NuC, PrecondProcType PrecondProcC, double OmegaC) /* nested multigrid method */ { int Level; /* solution of system of equations on coarsest grid */ V_SetAllCmp(&x[0], 0.0); MGStep(NoLevels, A, x, b, R, P, 0, Gamma, SmoothProc, Nu1, Nu2, PrecondProc, Omega, SolvProc, NuC, PrecondProcC, OmegaC); for (Level = 1; Level < NoLevels; Level++) { /* prolongation of solution to finer grid */ if (P != NULL) Asgn_VV(&x[Level], Mul_MV(&P[Level], &x[Level - 1])); else Asgn_VV(&x[Level], Mul_MV(Transp_M(&R[Level - 1]), &x[Level - 1])); /* solution of system of equations on finer grid with multigrid method */ MGStep(NoLevels, A, x, b, R, P, Level, Gamma, SmoothProc, Nu1, Nu2, PrecondProc, Omega, SolvProc, NuC, PrecondProcC, OmegaC); } /* submission of reached accuracy to RTC */ RTCResult(1, l2Norm_V(Sub_VV(&b[NoLevels - 1], Mul_QV(&A[NoLevels - 1], &x[NoLevels - 1]))), l2Norm_V(&b[NoLevels - 1]), NestedMGIterId); return(&x[NoLevels - 1]); }
Vector *BPXPCGIter(int NoLevels, QMatrix *A, Vector *z, Vector *r, Matrix *R, Matrix *P, int MaxIter, IterProcType SmoothProc, int Nu, PrecondProcType PrecondProc, double Omega, IterProcType SmoothProcC, int NuC, PrecondProcType PrecondProcC, double OmegaC) /* BPX preconditioned CG method */ { int Iter; double Alpha, Beta, Rho, RhoOld = 0.0; double bNorm; size_t Dim; Vector x, p, q, b; Dim = Q_GetDim(&A[NoLevels - 1]); V_Constr(&x, "x", Dim, Normal, True); V_Constr(&p, "p", Dim, Normal, True); V_Constr(&q, "q", Dim, Normal, True); V_Constr(&b, "b", Dim, Normal, True); if (LASResult() == LASOK) { /* copy solution and right hand side stored in parameters z and r */ Asgn_VV(&x, &z[NoLevels - 1]); Asgn_VV(&b, &r[NoLevels - 1]); bNorm = l2Norm_V(&b); Iter = 0; Asgn_VV(&r[NoLevels - 1], Sub_VV(&b, Mul_QV(&A[NoLevels - 1], &x))); while (!RTCResult(Iter, l2Norm_V(&r[NoLevels - 1]), bNorm, BPXPCGIterId) && Iter < MaxIter) { Iter++; /* BPX preconditioner */ BPXPrecond(NoLevels, A, z, r, R, P, NoLevels - 1, SmoothProc, Nu, PrecondProc, Omega, SmoothProcC, NuC, PrecondProcC, OmegaC); Rho = Mul_VV(&r[NoLevels - 1], &z[NoLevels - 1]); if (Iter == 1) { Asgn_VV(&p, &z[NoLevels - 1]); } else { Beta = Rho / RhoOld; Asgn_VV(&p, Add_VV(&z[NoLevels - 1], Mul_SV(Beta, &p))); } Asgn_VV(&q, Mul_QV(&A[NoLevels - 1], &p)); Alpha = Rho / Mul_VV(&p, &q); AddAsgn_VV(&x, Mul_SV(Alpha, &p)); SubAsgn_VV(&r[NoLevels - 1], Mul_SV(Alpha, &q)); RhoOld = Rho; } /* put solution and right hand side vectors back */ Asgn_VV(&z[NoLevels - 1], &x); Asgn_VV(&r[NoLevels - 1], &b); } V_Destr(&x); V_Destr(&p); V_Destr(&q); V_Destr(&b); return(&z[NoLevels - 1]); }
static void EstimEigenvals(QMatrix *A, PrecondProcType PrecondProc, double OmegaPrecond) /* estimates extremal eigenvalues of the matrix A by means of the Lanczos method */ { /* * for details to the Lanczos algorithm see * * G. H. Golub, Ch. F. van Loan: * Matrix Computations; * North Oxford Academic, Oxford, 1986 * * (for modification for preconditioned matrices compare with sec. 10.3) * */ double LambdaMin = 0.0, LambdaMax = 0.0; double LambdaMinOld, LambdaMaxOld; double GershBoundMin = 0.0, GershBoundMax = 0.0; double *Alpha, *Beta; size_t Dim, j; Boolean Found; Vector q, qOld, h, p; Q_Lock(A); Dim = Q_GetDim(A); V_Constr(&q, "q", Dim, Normal, True); V_Constr(&qOld, "qOld", Dim, Normal, True); V_Constr(&h, "h", Dim, Normal, True); if (PrecondProc != NULL) V_Constr(&p, "p", Dim, Normal, True); if (LASResult() == LASOK) { Alpha = (double *)malloc((Dim + 1) * sizeof(double)); Beta = (double *)malloc((Dim + 1) * sizeof(double)); if (Alpha != NULL && Beta != NULL) { j = 0; V_SetAllCmp(&qOld, 0.0); V_SetRndCmp(&q); if (Q_KerDefined(A)) OrthoRightKer_VQ(&q, A); if (Q_GetSymmetry(A) && PrecondProc != NULL) { (*PrecondProc)(A, &p, &q, OmegaPrecond); MulAsgn_VS(&q, 1.0 / sqrt(Mul_VV(&q, &p))); } else { MulAsgn_VS(&q, 1.0 / l2Norm_V(&q)); } Beta[0] = 1.0; do { j++; if (Q_GetSymmetry(A) && PrecondProc != NULL) { /* p = M^(-1) q */ (*PrecondProc)(A, &p, &q, OmegaPrecond); /* h = A p */ Asgn_VV(&h, Mul_QV(A, &p)); if (Q_KerDefined(A)) OrthoRightKer_VQ(&h, A); /* Alpha = p . h */ Alpha[j] = Mul_VV(&p, &h); /* r = h - Alpha q - Beta qOld */ SubAsgn_VV(&h, Add_VV(Mul_SV(Alpha[j], &q), Mul_SV(Beta[j-1], &qOld))); /* z = M^(-1) r */ (*PrecondProc)(A, &p, &h, OmegaPrecond); /* Beta = sqrt(r . z) */ Beta[j] = sqrt(Mul_VV(&h, &p)); Asgn_VV(&qOld, &q); /* q = r / Beta */ Asgn_VV(&q, Mul_SV(1.0 / Beta[j], &h)); } else { /* h = A p */ if (Q_GetSymmetry(A)) { Asgn_VV(&h, Mul_QV(A, &q)); } else { if (PrecondProc != NULL) { (*PrecondProc)(A, &h, Mul_QV(A, &q), OmegaPrecond); (*PrecondProc)(Transp_Q(A), &h, &h, OmegaPrecond); Asgn_VV(&h, Mul_QV(Transp_Q(A), &h)); } else { Asgn_VV(&h, Mul_QV(Transp_Q(A), Mul_QV(A, &q))); } } if (Q_KerDefined(A)) OrthoRightKer_VQ(&h, A); /* Alpha = q . h */ Alpha[j] = Mul_VV(&q, &h); /* r = h - Alpha q - Beta qOld */ SubAsgn_VV(&h, Add_VV(Mul_SV(Alpha[j], &q), Mul_SV(Beta[j-1], &qOld))); /* Beta = || r || */ Beta[j] = l2Norm_V(&h); Asgn_VV(&qOld, &q); /* q = r / Beta */ Asgn_VV(&q, Mul_SV(1.0 / Beta[j], &h)); } LambdaMaxOld = LambdaMax; LambdaMinOld = LambdaMin; /* determination of extremal eigenvalues of the tridiagonal matrix (Beta[i-1] Alpha[i] Beta[i]) (where 1 <= i <= j) by means of the method of bisection; bounds for eigenvalues are determined after Gershgorin circle theorem */ if (j == 1) { GershBoundMin = Alpha[1] - fabs(Beta[1]); GershBoundMax = Alpha[1] + fabs(Beta[1]); LambdaMin = Alpha[1]; LambdaMax = Alpha[1]; } else { GershBoundMin = min(Alpha[j] - fabs(Beta[j]) - fabs(Beta[j - 1]), GershBoundMin); GershBoundMax = max(Alpha[j] + fabs(Beta[j]) + fabs(Beta[j - 1]), GershBoundMax); SearchEigenval(j, Alpha, Beta, 1, GershBoundMin, LambdaMin, &Found, &LambdaMin); if (!Found) SearchEigenval(j, Alpha, Beta, 1, GershBoundMin, GershBoundMax, &Found, &LambdaMin); SearchEigenval(j, Alpha, Beta, j, LambdaMax, GershBoundMax, &Found, &LambdaMax); if (!Found) SearchEigenval(j, Alpha, Beta, j, GershBoundMin, GershBoundMax, &Found, &LambdaMax); } } while (!IsZero(Beta[j]) && j < Dim && (fabs(LambdaMin - LambdaMinOld) > EigenvalEps * LambdaMin || fabs(LambdaMax - LambdaMaxOld) > EigenvalEps * LambdaMax) && LASResult() == LASOK); if (Q_GetSymmetry(A)) { LambdaMin = (1.0 - j * EigenvalEps) * LambdaMin; } else { LambdaMin = (1.0 - sqrt(j) * EigenvalEps) * sqrt(LambdaMin); } if (Alpha != NULL) free(Alpha); if (Beta != NULL) free(Beta); } else { LASError(LASMemAllocErr, "EstimEigenvals", Q_GetName(A), NULL, NULL); } } V_Destr(&q); V_Destr(&qOld); V_Destr(&h); if (PrecondProc != NULL) V_Destr(&p); if (LASResult() == LASOK) { ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MinEigenval = LambdaMin; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MaxEigenval = LambdaMax; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->PrecondProcUsed = PrecondProc; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->OmegaPrecondUsed = OmegaPrecond; } else { ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MinEigenval = 1.0; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MaxEigenval = 1.0; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->PrecondProcUsed = NULL; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->OmegaPrecondUsed = 1.0; } Q_Unlock(A); }