Example #1
0
T LaspackVector<T>::dot (const NumericVector<T> & v_in) const
{
  libmesh_assert (this->initialized());

  // Make sure the NumericVector passed in is really a LaspackVector
  const LaspackVector<T> * v = cast_ptr<const LaspackVector<T> *>(&v_in);
  libmesh_assert(v);

  return Mul_VV (const_cast<QVector*>(&(this->_vec)),
                 const_cast<QVector*>(&(v->_vec)));
}
Example #2
0
Vector *BPXPCGIter(int NoLevels, QMatrix *A, Vector *z, Vector *r,
		   Matrix *R, Matrix *P, int MaxIter,
                   IterProcType SmoothProc, int Nu, 
		   PrecondProcType PrecondProc, double Omega,
                   IterProcType SmoothProcC, int NuC,
		   PrecondProcType PrecondProcC, double OmegaC)
/* BPX preconditioned CG method */
{
    int Iter;
    double Alpha, Beta, Rho, RhoOld = 0.0;
    double bNorm;
    size_t Dim;
    Vector x, p, q, b;

    Dim = Q_GetDim(&A[NoLevels - 1]);
    V_Constr(&x, "x", Dim, Normal, True);
    V_Constr(&p, "p", Dim, Normal, True);
    V_Constr(&q, "q", Dim, Normal, True);
    V_Constr(&b, "b", Dim, Normal, True);

    if (LASResult() == LASOK) {
        /* copy solution and right hand side stored in parameters z and r */
        Asgn_VV(&x, &z[NoLevels - 1]);
        Asgn_VV(&b, &r[NoLevels - 1]);
        
        bNorm = l2Norm_V(&b);
        
        Iter = 0;
        Asgn_VV(&r[NoLevels - 1], Sub_VV(&b, Mul_QV(&A[NoLevels - 1], &x)));
        while (!RTCResult(Iter, l2Norm_V(&r[NoLevels - 1]), bNorm, BPXPCGIterId)
            && Iter < MaxIter) {
            Iter++;
            /* BPX preconditioner */
            BPXPrecond(NoLevels, A, z, r, R, P, NoLevels - 1,
		SmoothProc, Nu, PrecondProc, Omega, SmoothProcC, NuC, PrecondProcC, OmegaC);
            Rho = Mul_VV(&r[NoLevels - 1], &z[NoLevels - 1]);
            if (Iter == 1) {
                Asgn_VV(&p, &z[NoLevels - 1]);
            } else {
                Beta = Rho / RhoOld;
                Asgn_VV(&p, Add_VV(&z[NoLevels - 1], Mul_SV(Beta, &p)));
            }
            Asgn_VV(&q, Mul_QV(&A[NoLevels - 1], &p));
            Alpha = Rho / Mul_VV(&p, &q);
            AddAsgn_VV(&x, Mul_SV(Alpha, &p));
            SubAsgn_VV(&r[NoLevels - 1], Mul_SV(Alpha, &q));
            RhoOld = Rho;
        }
        
	/* put solution and right hand side vectors back */
        Asgn_VV(&z[NoLevels - 1], &x);
        Asgn_VV(&r[NoLevels - 1], &b);
    }
    
    V_Destr(&x);
    V_Destr(&p);
    V_Destr(&q);
    V_Destr(&b);

    return(&z[NoLevels - 1]);
}
Example #3
0
static void EstimEigenvals(QMatrix *A, PrecondProcType PrecondProc, double OmegaPrecond)
/* estimates extremal eigenvalues of the matrix A by means of the Lanczos method */
{
    /*
     *  for details to the Lanczos algorithm see
     *
     *  G. H. Golub, Ch. F. van Loan:
     *  Matrix Computations;
     *  North Oxford Academic, Oxford, 1986
     *
     *  (for modification for preconditioned matrices compare with sec. 10.3) 
     *
     */
   
    double LambdaMin = 0.0, LambdaMax = 0.0;
    double LambdaMinOld, LambdaMaxOld;
    double GershBoundMin = 0.0, GershBoundMax = 0.0;
    double *Alpha, *Beta;
    size_t Dim, j;
    Boolean Found;
    Vector q, qOld, h, p;

    Q_Lock(A);
    
    Dim = Q_GetDim(A);
    V_Constr(&q, "q", Dim, Normal, True);
    V_Constr(&qOld, "qOld", Dim, Normal, True);
    V_Constr(&h, "h", Dim, Normal, True);
    if (PrecondProc != NULL)
        V_Constr(&p, "p", Dim, Normal, True);
   
    if (LASResult() == LASOK) {
        Alpha = (double *)malloc((Dim + 1) * sizeof(double));
        Beta = (double *)malloc((Dim + 1) * sizeof(double));
        if (Alpha != NULL && Beta != NULL) {
	    j = 0;
            
            V_SetAllCmp(&qOld, 0.0);
            V_SetRndCmp(&q);
	    if (Q_KerDefined(A))
	        OrthoRightKer_VQ(&q, A);
            if (Q_GetSymmetry(A) && PrecondProc != NULL) {
	        (*PrecondProc)(A, &p, &q, OmegaPrecond);
                MulAsgn_VS(&q, 1.0 / sqrt(Mul_VV(&q, &p)));
	    } else {
                MulAsgn_VS(&q, 1.0 / l2Norm_V(&q));
	    }
            
            Beta[0] = 1.0;
            do {
	        j++;
                if (Q_GetSymmetry(A) && PrecondProc != NULL) {
		    /* p = M^(-1) q */
		    (*PrecondProc)(A, &p, &q, OmegaPrecond);
		    /* h = A p */
                    Asgn_VV(&h, Mul_QV(A, &p));
	            if (Q_KerDefined(A))
	                OrthoRightKer_VQ(&h, A);
		    /* Alpha = p . h */
                    Alpha[j] = Mul_VV(&p, &h);
		    /* r = h - Alpha q - Beta qOld */
                    SubAsgn_VV(&h, Add_VV(Mul_SV(Alpha[j], &q), Mul_SV(Beta[j-1], &qOld)));
                    /* z = M^(-1) r */
		    (*PrecondProc)(A, &p, &h, OmegaPrecond);
		    /* Beta = sqrt(r . z) */
                    Beta[j] = sqrt(Mul_VV(&h, &p));
                    Asgn_VV(&qOld, &q);
		    /* q = r / Beta */
                    Asgn_VV(&q, Mul_SV(1.0 / Beta[j], &h));
		} else {
		    /* h = A p */
  		    if (Q_GetSymmetry(A)) {
                        Asgn_VV(&h, Mul_QV(A, &q));
		    } else {
                        if (PrecondProc != NULL) {
			    (*PrecondProc)(A, &h, Mul_QV(A, &q), OmegaPrecond);
			    (*PrecondProc)(Transp_Q(A), &h, &h, OmegaPrecond);
                            Asgn_VV(&h, Mul_QV(Transp_Q(A), &h));
                        } else {
                            Asgn_VV(&h, Mul_QV(Transp_Q(A), Mul_QV(A, &q)));
                        }
                    }
	            if (Q_KerDefined(A))
	                OrthoRightKer_VQ(&h, A); 
		    /* Alpha = q . h */
                    Alpha[j] = Mul_VV(&q, &h);
		    /* r = h - Alpha q - Beta qOld */
                    SubAsgn_VV(&h, Add_VV(Mul_SV(Alpha[j], &q), Mul_SV(Beta[j-1], &qOld)));
                    /* Beta = || r || */
		    Beta[j] = l2Norm_V(&h);
                    Asgn_VV(&qOld, &q);
		    /* q = r / Beta */
                    Asgn_VV(&q, Mul_SV(1.0 / Beta[j], &h));
		}
		
		LambdaMaxOld = LambdaMax;
                LambdaMinOld = LambdaMin;
		
                /* determination of extremal eigenvalues of the tridiagonal matrix
                   (Beta[i-1] Alpha[i] Beta[i]) (where 1 <= i <= j) 
		   by means of the method of bisection; bounds for eigenvalues
		   are determined after Gershgorin circle theorem */
                if (j == 1) {
		    GershBoundMin = Alpha[1] - fabs(Beta[1]);
	  	    GershBoundMax = Alpha[1] + fabs(Beta[1]);
		    
                    LambdaMin = Alpha[1];
                    LambdaMax = Alpha[1];
		} else {
		    GershBoundMin = min(Alpha[j] - fabs(Beta[j]) - fabs(Beta[j - 1]),
					GershBoundMin);
		    GershBoundMax = max(Alpha[j] + fabs(Beta[j]) + fabs(Beta[j - 1]),
				        GershBoundMax);

                    SearchEigenval(j, Alpha, Beta, 1, GershBoundMin, LambdaMin,
		        &Found, &LambdaMin);
		    if (!Found)
                        SearchEigenval(j, Alpha, Beta, 1, GershBoundMin, GershBoundMax,
		            &Found, &LambdaMin);
		    
	            SearchEigenval(j, Alpha, Beta, j, LambdaMax, GershBoundMax,
		        &Found, &LambdaMax);
		    if (!Found)
                        SearchEigenval(j, Alpha, Beta, j, GershBoundMin, GershBoundMax,
		            &Found, &LambdaMax);
                }
            } while (!IsZero(Beta[j]) && j < Dim
		&& (fabs(LambdaMin - LambdaMinOld) > EigenvalEps * LambdaMin
                || fabs(LambdaMax - LambdaMaxOld) > EigenvalEps * LambdaMax)
                && LASResult() == LASOK);
                
	    if (Q_GetSymmetry(A)) {
	        LambdaMin = (1.0 - j * EigenvalEps) * LambdaMin;
	    } else {
	        LambdaMin = (1.0 - sqrt(j) * EigenvalEps) * sqrt(LambdaMin);
            }
            if (Alpha != NULL)
                free(Alpha);
            if (Beta != NULL)
                free(Beta);
        } else {
            LASError(LASMemAllocErr, "EstimEigenvals", Q_GetName(A), NULL, NULL);
	}

    }
    
    V_Destr(&q);
    V_Destr(&qOld);
    V_Destr(&h);
    if (PrecondProc != NULL)
        V_Destr(&p);
    
    if (LASResult() == LASOK) {
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MinEigenval = LambdaMin;
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MaxEigenval = LambdaMax;
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->PrecondProcUsed = PrecondProc;
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->OmegaPrecondUsed = OmegaPrecond;
    } else {
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MinEigenval = 1.0;
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MaxEigenval = 1.0;
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->PrecondProcUsed = NULL;
        ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->OmegaPrecondUsed = 1.0;
    }

    Q_Unlock(A);
}