bool LIB_ARC::Load( LINE_READER& aLineReader, wxString& aErrorMsg ) { int startx, starty, endx, endy, cnt; char tmp[256]; char* line = (char*) aLineReader; cnt = sscanf( line + 2, "%d %d %d %d %d %d %d %d %s %d %d %d %d", &m_Pos.x, &m_Pos.y, &m_Radius, &m_t1, &m_t2, &m_Unit, &m_Convert, &m_Width, tmp, &startx, &starty, &endx, &endy ); if( cnt < 8 ) { aErrorMsg.Printf( _( "arc only had %d parameters of the required 8" ), cnt ); return false; } if( tmp[0] == 'F' ) m_Fill = FILLED_SHAPE; if( tmp[0] == 'f' ) m_Fill = FILLED_WITH_BG_BODYCOLOR; NORMALIZE_ANGLE_POS( m_t1 ); NORMALIZE_ANGLE_POS( m_t2 ); // Actual Coordinates of arc ends are read from file if( cnt >= 13 ) { m_ArcStart.x = startx; m_ArcStart.y = starty; m_ArcEnd.x = endx; m_ArcEnd.y = endy; } else { // Actual Coordinates of arc ends are not read from file // (old library), calculate them m_ArcStart.x = m_Radius; m_ArcStart.y = 0; m_ArcEnd.x = m_Radius; m_ArcEnd.y = 0; RotatePoint( &m_ArcStart.x, &m_ArcStart.y, -m_t1 ); m_ArcStart.x += m_Pos.x; m_ArcStart.y += m_Pos.y; RotatePoint( &m_ArcEnd.x, &m_ArcEnd.y, -m_t2 ); m_ArcEnd.x += m_Pos.x; m_ArcEnd.y += m_Pos.y; } return true; }
void MODULE::SetOrientation( double newangle ) { double angleChange = newangle - m_Orient; // change in rotation NORMALIZE_ANGLE_POS( newangle ); m_Orient = newangle; for( D_PAD* pad = m_Pads; pad; pad = pad->Next() ) { pad->SetOrientation( pad->GetOrientation() + angleChange ); pad->SetDrawCoord(); } // Update of the reference and value. m_Reference->SetDrawCoord(); m_Value->SetDrawCoord(); // Displace contours and text of the footprint. for( BOARD_ITEM* item = m_Drawings; item; item = item->Next() ) { if( item->Type() == PCB_MODULE_EDGE_T ) { static_cast<EDGE_MODULE*>( item )->SetDrawCoord(); } else if( item->Type() == PCB_MODULE_TEXT_T ) { static_cast<TEXTE_MODULE*>( item )->SetDrawCoord(); } } CalculateBoundingBox(); }
/* Creates the footprint shape list. * Since module shape is customizable after the placement we cannot share them; * instead we opt for the one-module-one-shape-one-component-one-device approach */ static void CreateShapesSection( FILE* aFile, BOARD* aPcb ) { MODULE* module; D_PAD* pad; const char* layer; wxString pinname; const char* mirror = "0"; fputs( "$SHAPES\n", aFile ); const LSET all_cu = LSET::AllCuMask(); for( module = aPcb->m_Modules; module; module = module->Next() ) { FootprintWriteShape( aFile, module ); for( pad = module->Pads(); pad; pad = pad->Next() ) { /* Funny thing: GenCAD requires the pad side even if you use * padstacks (which are theorically optional but gerbtools *requires* them). Now the trouble thing is that 'BOTTOM' * is interpreted by someone as a padstack flip even * if the spec explicitly says it's not... */ layer = "ALL"; if( ( pad->GetLayerSet() & all_cu ) == LSET( B_Cu ) ) { layer = module->GetFlag() ? "TOP" : "BOTTOM"; } else if( ( pad->GetLayerSet() & all_cu ) == LSET( F_Cu ) ) { layer = module->GetFlag() ? "BOTTOM" : "TOP"; } pad->StringPadName( pinname ); if( pinname.IsEmpty() ) pinname = wxT( "none" ); double orient = pad->GetOrientation() - module->GetOrientation(); NORMALIZE_ANGLE_POS( orient ); // Bottom side modules use the flipped padstack fprintf( aFile, (module->GetFlag()) ? "PIN %s PAD%dF %g %g %s %g %s\n" : "PIN %s PAD%d %g %g %s %g %s\n", TO_UTF8( pinname ), pad->GetSubRatsnest(), pad->GetPos0().x / SCALE_FACTOR, -pad->GetPos0().y / SCALE_FACTOR, layer, orient / 10.0, mirror ); } } fputs( "$ENDSHAPES\n\n", aFile ); }
const double DRAWSEGMENT::GetArcAngleStart() const { // due to the Y axis orient atan2 needs - y value double angleStart = ArcTangente( GetArcStart().y - GetCenter().y, GetArcStart().x - GetCenter().x ); // Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg // because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg. // and this is not easy to handle in calculations NORMALIZE_ANGLE_POS( angleStart ); return angleStart; }
/* Return text rotation for drawings and plotting */ double TEXTE_MODULE::GetDrawRotation() const { MODULE* module = (MODULE*) m_Parent; double rotation = m_Orient; if( module ) rotation += module->GetOrientation(); NORMALIZE_ANGLE_POS( rotation ); // For angle = 0 .. 180 deg while( rotation > 900 ) rotation -= 1800; return rotation; }
void MODULE::Flip( const wxPoint& aCentre ) { // Move module to its final position: wxPoint finalPos = m_Pos; finalPos.y = aCentre.y - ( finalPos.y - aCentre.y ); /// Mirror the Y position SetPosition( finalPos ); // Flip layer SetLayer( FlipLayer( GetLayer() ) ); // Reverse mirror orientation. NEGATE( m_Orient ); NORMALIZE_ANGLE_POS( m_Orient ); // Mirror pads to other side of board about the x axis, i.e. vertically. for( D_PAD* pad = m_Pads; pad; pad = pad->Next() ) pad->Flip( m_Pos ); // Mirror reference. m_Reference->FlipWithModule( m_Pos.y ); // Mirror value. m_Value->FlipWithModule( m_Pos.y ); // Reverse mirror module graphics and texts. for( EDA_ITEM* item = m_Drawings; item; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_EDGE_T: ( (EDGE_MODULE*) item )->Flip( m_Pos ); break; case PCB_MODULE_TEXT_T: static_cast<TEXTE_MODULE*>( item )->FlipWithModule( m_Pos.y ); break; default: wxMessageBox( wxT( "MODULE::Flip() error: Unknown Draw Type" ) ); break; } } CalculateBoundingBox(); }
/* Fills all routing matrix cells contained in the arc * angle = ArcAngle, half-width lg * center = ux0,uy0, starting at ux1, uy1. Coordinates are in * PCB units. */ void TraceArc( int ux0, int uy0, int ux1, int uy1, double ArcAngle, int lg, LAYER_NUM layer, int color, int op_logic ) { int radius, nb_segm; int x0, y0, // Starting point of the current segment trace x1, y1; // End point int ii; double angle, StAngle; radius = KiROUND( Distance( ux0, uy0, ux1, uy1 ) ); x0 = ux1 - ux0; y0 = uy1 - uy0; StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 ); if( lg < 1 ) lg = 1; nb_segm = ( 2 * radius ) / lg; nb_segm = ( nb_segm * std::abs( ArcAngle ) ) / 3600; if( nb_segm < 5 ) nb_segm = 5; if( nb_segm > 100 ) nb_segm = 100; for( ii = 1; ii <= nb_segm; ii++ ) { angle = ( ArcAngle * ii ) / nb_segm; angle += StAngle; NORMALIZE_ANGLE_POS( angle ); x1 = KiROUND( cosdecideg( radius, angle ) ); y1 = KiROUND( cosdecideg( radius, angle ) ); DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logic ); x0 = x1; y0 = y1; } }
void MODULE::SetOrientation( double newangle ) { double angleChange = newangle - m_Orient; // change in rotation wxPoint pt; NORMALIZE_ANGLE_POS( newangle ); m_Orient = newangle; for( D_PAD* pad = m_Pads; pad; pad = pad->Next() ) { pt = pad->GetPos0(); pad->SetOrientation( pad->GetOrientation() + angleChange ); RotatePoint( &pt, m_Orient ); pad->SetPosition( GetPosition() + pt ); } // Update of the reference and value. m_Reference->SetDrawCoord(); m_Value->SetDrawCoord(); // Displace contours and text of the footprint. for( BOARD_ITEM* item = m_Drawings; item; item = item->Next() ) { if( item->Type() == PCB_MODULE_EDGE_T ) { EDGE_MODULE* edge = (EDGE_MODULE*) item; edge->SetDrawCoord(); } else if( item->Type() == PCB_MODULE_TEXT_T ) { TEXTE_MODULE* text = (TEXTE_MODULE*) item; text->SetDrawCoord(); } } CalculateBoundingBox(); }
void RotatePoint( double* pX, double* pY, double angle ) { double tmp; NORMALIZE_ANGLE_POS( angle ); // Cheap and dirty optimizations for 0, 90, 180, and 270 degrees. if( angle == 0 ) return; if( angle == 900 ) /* sin = 1, cos = 0 */ { tmp = *pX; *pX = *pY; *pY = -tmp; } else if( angle == 1800 ) /* sin = 0, cos = -1 */ { *pX = -*pX; *pY = -*pY; } else if( angle == 2700 ) /* sin = -1, cos = 0 */ { tmp = *pX; *pX = -*pY; *pY = tmp; } else { double fangle = DECIDEG2RAD( angle ); double sinus = sin( fangle ); double cosinus = cos( fangle ); double fpx = (*pY * sinus ) + (*pX * cosinus ); double fpy = (*pY * cosinus ) - (*pX * sinus ); *pX = fpx; *pY = fpy; } }
double TEXTE_MODULE::GetDrawRotation() const { MODULE* module = (MODULE*) m_Parent; double rotation = GetTextAngle(); if( module ) rotation += module->GetOrientation(); if( m_unlocked ) { NORMALIZE_ANGLE_POS( rotation ); } else { // Keep angle between -90 .. 90 deg. Otherwise the text is not easy to read while( rotation > 900 ) rotation -= 1800; while( rotation < -900 ) rotation += 1800; } return rotation; }
/* test DRC between 2 pads. * this function can be also used to test DRC between a pad and a hole, * because a hole is like a round or oval pad. */ bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad ) { int dist; double pad_angle; // Get the clearance between the 2 pads. this is the min distance between aRefPad and aPad int dist_min = aRefPad->GetClearance( aPad ); // relativePadPos is the aPad shape position relative to the aRefPad shape position wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos(); dist = KiROUND( EuclideanNorm( relativePadPos ) ); // Quick test: Clearance is OK if the bounding circles are further away than "dist_min" if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min ) return true; /* Here, pads are near and DRC depend on the pad shapes * We must compare distance using a fine shape analysis * Because a circle or oval shape is the easier shape to test, try to have * aRefPad shape type = PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. * if aRefPad = TRAP. and aPad = RECT, also swap pads * Swap aRefPad and aPad if needed */ bool swap_pads; swap_pads = false; // swap pads to make comparisons easier // Note also a ROUNDRECT pad with a corner radius = r can be considered as // a smaller RECT (size - 2*r) with a clearance increased by r // priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE ) { // pad ref shape is here oval, rect, roundrect, trapezoid or custom switch( aPad->GetShape() ) { case PAD_SHAPE_CIRCLE: swap_pads = true; break; case PAD_SHAPE_OVAL: swap_pads = true; break; case PAD_SHAPE_RECT: case PAD_SHAPE_ROUNDRECT: if( aRefPad->GetShape() != PAD_SHAPE_OVAL ) swap_pads = true; break; default: break; } } if( swap_pads ) { std::swap( aRefPad, aPad ); relativePadPos = -relativePadPos; } // corners of aRefPad (used only for rect/roundrect/trap pad) wxPoint polyref[4]; // corners of aRefPad (used only for custom pad) SHAPE_POLY_SET polysetref; // corners of aPad (used only for rect/roundrect/trap pad) wxPoint polycompare[4]; // corners of aPad (used only custom pad) SHAPE_POLY_SET polysetcompare; /* Because pad exchange, aRefPad shape is PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL, * if one of the 2 pads was a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. * Therefore, if aRefPad is a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID, * aPad is also a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID */ bool diag = true; switch( aRefPad->GetShape() ) { case PAD_SHAPE_CIRCLE: /* One can use checkClearanceSegmToPad to test clearance * aRefPad is like a track segment with a null length and a witdth = GetSize().x */ m_segmLength = 0; m_segmAngle = 0; m_segmEnd.x = m_segmEnd.y = 0; m_padToTestPos = relativePadPos; diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min ); break; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_ROUNDRECT: case PAD_SHAPE_RECT: // pad_angle = pad orient relative to the aRefPad orient pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation(); NORMALIZE_ANGLE_POS( pad_angle ); if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT ) { int padRadius = aRefPad->GetRoundRectCornerRadius(); dist_min += padRadius; GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ), aRefPad->GetSize(), aRefPad->GetOrientation() ); } else aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); switch( aPad->GetShape() ) { case PAD_SHAPE_ROUNDRECT: case PAD_SHAPE_RECT: case PAD_SHAPE_TRAPEZOID: if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT ) { int padRadius = aPad->GetRoundRectCornerRadius(); dist_min += padRadius; GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos, aPad->GetSize(), aPad->GetOrientation() ); } else { aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; } // And now test polygons: if( polysetref.OutlineCount() ) { const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 ); // And now test polygons: if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(), polycompare, 4, dist_min ) ) diag = false; } else if( !poly2polyDRC( polyref, 4, polycompare, 4, dist_min ) ) diag = false; break; default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() ); break; } break; case PAD_SHAPE_OVAL: /* an oval pad is like a track segment */ { /* Create a track segment with same dimensions as the oval aRefPad * and use checkClearanceSegmToPad function to test aPad to aRefPad clearance */ int segm_width; m_segmAngle = aRefPad->GetOrientation(); // Segment orient. if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment { segm_width = aRefPad->GetSize().y; m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y; } else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg { segm_width = aRefPad->GetSize().x; m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x; m_segmAngle += 900; } /* the start point must be 0,0 and currently relativePadPos * is relative the center of pad coordinate */ wxPoint segstart; segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment // Calculate segment end position relative to the segment origin m_segmEnd.x = -2 * segstart.x; m_segmEnd.y = -2 * segstart.y; // Recalculate the equivalent segment angle in 0,1 degrees // to prepare a call to checkClearanceSegmToPad() m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x ); // move pad position relative to the segment origin m_padToTestPos = relativePadPos - segstart; // Use segment to pad check to test the second pad: diag = checkClearanceSegmToPad( aPad, segm_width, dist_min ); break; } default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unknown pad shape" ) ); break; } return diag; }
bool DRAWSEGMENT::HitTest( const wxPoint& aPosition ) { switch( m_Shape ) { case S_CIRCLE: case S_ARC: { wxPoint relPos = aPosition - GetCenter(); int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( relPos ) ); if( abs( radius - dist ) <= ( m_Width / 2 ) ) { if( m_Shape == S_CIRCLE ) return true; // For arcs, the test point angle must be >= arc angle start // and <= arc angle end // However angle values > 360 deg are not easy to handle // so we calculate the relative angle between arc start point and teast point // this relative arc should be < arc angle if arc angle > 0 (CW arc) // and > arc angle if arc angle < 0 (CCW arc) double arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg, in 0.1 deg double arc_hittest = ArcTangente( relPos.y, relPos.x ); // Calculate relative angle between the starting point of the arc, and the test point arc_hittest -= arc_angle_start; // Normalise arc_hittest between 0 ... 360 deg NORMALIZE_ANGLE_POS( arc_hittest ); // Check angle: inside the arc angle when it is > 0 // and outside the not drawn arc when it is < 0 if( GetAngle() >= 0.0 ) { if( arc_hittest <= GetAngle() ) return true; } else { if( arc_hittest >= (3600.0 + GetAngle()) ) return true; } } } break; case S_CURVE: for( unsigned int i= 1; i < m_BezierPoints.size(); i++) { if( TestSegmentHit( aPosition, m_BezierPoints[i-1], m_BezierPoints[i-1], m_Width / 2 ) ) return true; } break; case S_SEGMENT: if( TestSegmentHit( aPosition, m_Start, m_End, m_Width / 2 ) ) return true; break; default: wxASSERT( 0 ); break; } return false; }
/* test DRC between 2 pads. * this function can be also used to test DRC between a pas and a hole, * because a hole is like a round pad. */ bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad ) { int dist; double pad_angle; // Get the clerance between the 2 pads. this is the min distance between aRefPad and aPad int dist_min = aRefPad->GetClearance( aPad ); // relativePadPos is the aPad shape position relative to the aRefPad shape position wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos(); dist = KiROUND( EuclideanNorm( relativePadPos ) ); // Quick test: Clearance is OK if the bounding circles are further away than "dist_min" if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min ) return true; /* Here, pads are near and DRC depend on the pad shapes * We must compare distance using a fine shape analysis * Because a circle or oval shape is the easier shape to test, try to have * aRefPad shape type = PAD_CIRCLE or PAD_OVAL. * if aRefPad = TRAP. and aPad = RECT, also swap pads * Swap aRefPad and aPad if needed */ bool swap_pads; swap_pads = false; // swap pads to make comparisons easier // priority is aRefPad = ROUND then OVAL then RECT then other if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_CIRCLE ) { // pad ref shape is here oval, rect or trapezoid switch( aPad->GetShape() ) { case PAD_CIRCLE: swap_pads = true; break; case PAD_OVAL: swap_pads = true; break; case PAD_RECT: if( aRefPad->GetShape() != PAD_OVAL ) swap_pads = true; break; default: break; } } if( swap_pads ) { EXCHG( aRefPad, aPad ); relativePadPos = -relativePadPos; } /* Because pad exchange, aRefPad shape is PAD_CIRCLE or PAD_OVAL, * if one of the 2 pads was a PAD_CIRCLE or PAD_OVAL. * Therefore, if aRefPad is a PAD_RECT or a PAD_TRAPEZOID, * aPad is also a PAD_RECT or a PAD_TRAPEZOID */ bool diag = true; switch( aRefPad->GetShape() ) { case PAD_CIRCLE: /* One can use checkClearanceSegmToPad to test clearance * aRefPad is like a track segment with a null length and a witdth = GetSize().x */ m_segmLength = 0; m_segmAngle = 0; m_segmEnd.x = m_segmEnd.y = 0; m_padToTestPos = relativePadPos; diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min ); break; case PAD_RECT: // pad_angle = pad orient relative to the aRefPad orient pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation(); NORMALIZE_ANGLE_POS( pad_angle ); if( aPad->GetShape() == PAD_RECT ) { wxSize size = aPad->GetSize(); // The trivial case is if both rects are rotated by multiple of 90 deg // Most of time this is the case, and the test is fast if( ( (aRefPad->GetOrientation() == 0) || (aRefPad->GetOrientation() == 900) || (aRefPad->GetOrientation() == 1800) || (aRefPad->GetOrientation() == 2700) ) && ( (aPad->GetOrientation() == 0) || (aPad->GetOrientation() == 900) || (aPad->GetOrientation() == 1800) || (aPad->GetOrientation() == 2700) ) ) { if( (pad_angle == 900) || (pad_angle == 2700) ) { EXCHG( size.x, size.y ); } // Test DRC: diag = false; RotatePoint( &relativePadPos, aRefPad->GetOrientation() ); relativePadPos.x = std::abs( relativePadPos.x ); relativePadPos.y = std::abs( relativePadPos.y ); if( ( relativePadPos.x - ( (size.x + aRefPad->GetSize().x) / 2 ) ) >= dist_min ) diag = true; if( ( relativePadPos.y - ( (size.y + aRefPad->GetSize().y) / 2 ) ) >= dist_min ) diag = true; } else // at least one pad has any other orient. Test is more tricky { // Use the trapezoid2trapezoidDRC which also compare 2 rectangles with any orientation wxPoint polyref[4]; // Shape of aRefPad wxPoint polycompare[4]; // Shape of aPad aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; // And now test polygons: if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) ) diag = false; } } else if( aPad->GetShape() == PAD_TRAPEZOID ) { wxPoint polyref[4]; // Shape of aRefPad wxPoint polycompare[4]; // Shape of aPad aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; // And now test polygons: if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) ) diag = false; } else { // Should not occur, because aPad and aRefPad are swapped // to have only aPad shape RECT or TRAP and aRefPad shape TRAP or RECT. wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad ref RECT @ %d, %d to pad shape %d @ %d, %d"), aRefPad->GetPosition().x, aRefPad->GetPosition().y, aPad->GetShape(), aPad->GetPosition().x, aPad->GetPosition().y ); } break; case PAD_OVAL: /* an oval pad is like a track segment */ { /* Create a track segment with same dimensions as the oval aRefPad * and use checkClearanceSegmToPad function to test aPad to aRefPad clearance */ int segm_width; m_segmAngle = aRefPad->GetOrientation(); // Segment orient. if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment { segm_width = aRefPad->GetSize().y; m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y; } else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg { segm_width = aRefPad->GetSize().x; m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x; m_segmAngle += 900; } /* the start point must be 0,0 and currently relativePadPos * is relative the center of pad coordinate */ wxPoint segstart; segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment // Calculate segment end position relative to the segment origin m_segmEnd.x = -2 * segstart.x; m_segmEnd.y = -2 * segstart.y; // Recalculate the equivalent segment angle in 0,1 degrees // to prepare a call to checkClearanceSegmToPad() m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x ); // move pad position relative to the segment origin m_padToTestPos = relativePadPos - segstart; // Use segment to pad check to test the second pad: diag = checkClearanceSegmToPad( aPad, segm_width, dist_min ); break; } case PAD_TRAPEZOID: // at this point, aPad is also a trapezoid, because all other shapes // have priority, and are already tested wxASSERT( aPad->GetShape() == PAD_TRAPEZOID ); { wxPoint polyref[4]; // Shape of aRefPad wxPoint polycompare[4]; // Shape of aPad aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; // And now test polygons: if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) ) diag = false; } break; default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape" ) ); break; } return diag; }
void MODULE::Flip( const wxPoint& aCentre ) { TEXTE_MODULE* text; // Move module to its final position: wxPoint finalPos = m_Pos; finalPos.y = aCentre.y - ( finalPos.y - aCentre.y ); /// Mirror the Y position SetPosition( finalPos ); // Flip layer SetLayer( FlipLayer( GetLayer() ) ); // Reverse mirror orientation. NEGATE( m_Orient ); NORMALIZE_ANGLE_POS( m_Orient ); // Mirror pads to other side of board about the x axis, i.e. vertically. for( D_PAD* pad = m_Pads; pad; pad = pad->Next() ) pad->Flip( m_Pos ); // Mirror reference. text = m_Reference; text->m_Pos.y -= m_Pos.y; NEGATE( text->m_Pos.y ); text->m_Pos.y += m_Pos.y; NEGATE(text->m_Pos0.y); NEGATE_AND_NORMALIZE_ANGLE_POS( text->m_Orient ); text->SetLayer( FlipLayer( text->GetLayer() ) ); text->m_Mirror = IsBackLayer( GetLayer() ); // Mirror value. text = m_Value; text->m_Pos.y -= m_Pos.y; NEGATE( text->m_Pos.y ); text->m_Pos.y += m_Pos.y; NEGATE( text->m_Pos0.y ); NEGATE_AND_NORMALIZE_ANGLE_POS( text->m_Orient ); text->SetLayer( FlipLayer( text->GetLayer() ) ); text->m_Mirror = IsBackLayer( GetLayer() ); // Reverse mirror module graphics and texts. for( EDA_ITEM* item = m_Drawings; item; item = item->Next() ) { switch( item->Type() ) { case PCB_MODULE_EDGE_T: { EDGE_MODULE* em = (EDGE_MODULE*) item; wxPoint s = em->GetStart(); s.y -= m_Pos.y; s.y = -s.y; s.y += m_Pos.y; em->SetStart( s ); wxPoint e = em->GetEnd(); e.y -= m_Pos.y; e.y = -e.y; e.y += m_Pos.y; em->SetEnd( e ); NEGATE( em->m_Start0.y ); NEGATE( em->m_End0.y ); if( em->GetShape() == S_ARC ) { em->SetAngle( -em->GetAngle() ); } em->SetLayer( FlipLayer( em->GetLayer() ) ); } break; case PCB_MODULE_TEXT_T: text = (TEXTE_MODULE*) item; text->m_Pos.y -= m_Pos.y; NEGATE( text->m_Pos.y ); text->m_Pos.y += m_Pos.y; NEGATE( text->m_Pos0.y ); NEGATE_AND_NORMALIZE_ANGLE_POS( text->m_Orient ); text->SetLayer( FlipLayer( text->GetLayer() ) ); text->m_Mirror = IsBackLayer( GetLayer() ); break; default: wxMessageBox( wxT( "MODULE::Flip() error: Unknown Draw Type" ) ); break; } } CalculateBoundingBox(); }
void DIMENSION::AdjustDimensionDetails( bool aDoNotChangeText ) { const int arrowz = Mils2iu( 50 ); // size of arrows int ii; int measure, deltax, deltay; // value of the measure on X and Y axes int arrow_up_X = 0, arrow_up_Y = 0; // coordinates of arrow line / int arrow_dw_X = 0, arrow_dw_Y = 0; // coordinates of arrow line '\' int hx, hy; // dimension line interval double angle, angle_f; wxString msg; // Init layer : m_Text.SetLayer( GetLayer() ); // calculate the size of the dimension (text + line above the text) ii = m_Text.GetSize().y + m_Text.GetThickness() + (m_Width * 3); deltax = m_featureLineDO.x - m_featureLineGO.x; deltay = m_featureLineDO.y - m_featureLineGO.y; // Calculate dimension value measure = KiROUND( hypot( deltax, deltay ) ); angle = atan2( (double)deltay, (double)deltax ); // Calculation of parameters X and Y dimensions of the arrows and lines. hx = hy = ii; // Taking into account the slope of the side lines. if( measure ) { hx = abs( KiROUND( ( (double) deltay * hx ) / measure ) ); hy = abs( KiROUND( ( (double) deltax * hy ) / measure ) ); if( m_featureLineGO.x > m_crossBarO.x ) hx = -hx; if( m_featureLineGO.x == m_crossBarO.x ) hx = 0; if( m_featureLineGO.y > m_crossBarO.y ) hy = -hy; if( m_featureLineGO.y == m_crossBarO.y ) hy = 0; angle_f = angle + DEG2RAD( 27.5 ); arrow_up_X = wxRound( arrowz * cos( angle_f ) ); arrow_up_Y = wxRound( arrowz * sin( angle_f ) ); angle_f = angle - DEG2RAD( 27.5 ); arrow_dw_X = wxRound( arrowz * cos( angle_f ) ); arrow_dw_Y = wxRound( arrowz * sin( angle_f ) ); } int dx = KiROUND( m_Height * cos( angle + M_PI / 2 ) ); int dy = KiROUND( m_Height * sin( angle + M_PI / 2 ) ); m_crossBarO.x = m_featureLineGO.x + dx; m_crossBarO.y = m_featureLineGO.y + dy; m_crossBarF.x = m_featureLineDO.x + dx; m_crossBarF.y = m_featureLineDO.y + dy; m_arrowG1F.x = m_crossBarO.x + arrow_up_X; m_arrowG1F.y = m_crossBarO.y + arrow_up_Y; m_arrowG2F.x = m_crossBarO.x + arrow_dw_X; m_arrowG2F.y = m_crossBarO.y + arrow_dw_Y; /* The right arrow is symmetrical to the left. * / = -\ and \ = -/ */ m_arrowD1F.x = m_crossBarF.x - arrow_dw_X; m_arrowD1F.y = m_crossBarF.y - arrow_dw_Y; m_arrowD2F.x = m_crossBarF.x - arrow_up_X; m_arrowD2F.y = m_crossBarF.y - arrow_up_Y; m_featureLineGF.x = m_crossBarO.x + hx; m_featureLineGF.y = m_crossBarO.y + hy; m_featureLineDF.x = m_crossBarF.x + hx; m_featureLineDF.y = m_crossBarF.y + hy; // Calculate the better text position and orientation: wxPoint textPos; textPos.x = (m_crossBarF.x + m_featureLineGF.x) / 2; textPos.y = (m_crossBarF.y + m_featureLineGF.y) / 2; m_Text.SetTextPosition( textPos ); double newAngle = -RAD2DECIDEG( angle ); NORMALIZE_ANGLE_POS( newAngle ); if( newAngle > 900 && newAngle < 2700 ) newAngle -= 1800; m_Text.SetOrientation( newAngle ); if( !aDoNotChangeText ) { m_Value = measure; msg = ::CoordinateToString( m_Value ); SetText( msg ); } }
void D_PAD::SetOrientation( double aAngle ) { NORMALIZE_ANGLE_POS( aAngle ); m_Orient = aAngle; }
void WinEDA_BasePcbFrame::Change_Side_Module(MODULE * Module, wxDC * DC) /**********************************************************************/ /* Change de cote un composant : il y a inversion MIROIR autour de l'axe X Le changement n'est fait que si la couche est - CUIVRE ou CMP Si DC == NULL, il n'y a pas de redessin du composant et du chevelu */ { D_PAD* pt_pad ; TEXTE_MODULE* pt_texte; EDGE_MODULE * pt_edgmod ; EDA_BaseStruct * PtStruct; if ( Module == NULL ) return; if( (Module->m_Layer != CMP_N) && (Module->m_Layer != CUIVRE_N) ) return; m_CurrentScreen->SetModify(); if ( ! (Module->m_Flags & IS_MOVED) ) { m_Pcb->m_Status_Pcb &= ~( LISTE_CHEVELU_OK | CONNEXION_OK); if ( DC ) Module->Draw(DrawPanel, DC, wxPoint(0,0), GR_XOR); /* Effacement chevelu general si necessaire */ if ( DC && g_Show_Ratsnest) DrawGeneralRatsnest(DC); /* Init des variables utilisees dans la routine Dessine_Drag_segment() */ g_Offset_Module.x = 0; g_Offset_Module.y = 0; } else // Module en deplacement { /* efface empreinte ( vue en contours) si elle a ete deja dessinee */ if ( DC ) { DrawModuleOutlines(DrawPanel, DC, Module); Dessine_Segments_Dragges(DrawPanel, DC); } } /* mise a jour du Flag de l'empreinte et des couches des contours et textes */ Module->m_Layer = ChangeSideNumLayer(Module->m_Layer); /* Inversion miroir de l'orientation */ Module->m_Orient = - Module->m_Orient; NORMALIZE_ANGLE_POS(Module->m_Orient); /* Inversion miroir + layers des pastilles */ pt_pad = Module->m_Pads; for ( ; pt_pad != NULL; pt_pad = (D_PAD*) pt_pad->Pnext ) { pt_pad->m_Pos.y -= Module->m_Pos.y ; pt_pad->m_Pos.y = -pt_pad->m_Pos.y; pt_pad->m_Pos.y += Module->m_Pos.y; pt_pad->m_Pos0.y = - pt_pad->m_Pos0.y; pt_pad->m_Offset.y = -pt_pad->m_Offset.y; pt_pad->m_DeltaSize.y = -pt_pad->m_DeltaSize.y; NEGATE_AND_NORMALIZE_ANGLE_POS(pt_pad->m_Orient); /* change cote pour pastilles surfaciques */ pt_pad->m_Masque_Layer = ChangeSideMaskLayer(pt_pad->m_Masque_Layer); } /* Inversion miroir de la Reference et mise en miroir : */ pt_texte = Module->m_Reference; pt_texte->m_Pos.y -= Module->m_Pos.y; pt_texte->m_Pos.y = -pt_texte->m_Pos.y; pt_texte->m_Pos.y += Module->m_Pos.y; pt_texte->m_Pos0.y = pt_texte->m_Pos0.y; pt_texte->m_Miroir = 1 ; NEGATE_AND_NORMALIZE_ANGLE_POS(pt_texte->m_Orient); pt_texte->m_Layer = Module->m_Layer; pt_texte->m_Layer = ChangeSideNumLayer(pt_texte->m_Layer); if( Module->m_Layer == CUIVRE_N) pt_texte->m_Layer = SILKSCREEN_N_CU; if( Module->m_Layer == CMP_N) pt_texte->m_Layer = SILKSCREEN_N_CMP; if( (Module->m_Layer == SILKSCREEN_N_CU) || (Module->m_Layer == ADHESIVE_N_CU) || (Module->m_Layer == CUIVRE_N) ) pt_texte->m_Miroir = 0 ; /* Inversion miroir de la Valeur et mise en miroir : */ pt_texte = Module->m_Value; pt_texte->m_Pos.y -= Module->m_Pos.y; pt_texte->m_Pos.y = -pt_texte->m_Pos.y; pt_texte->m_Pos.y += Module->m_Pos.y; pt_texte->m_Pos0.y = pt_texte->m_Pos0.y; pt_texte->m_Miroir = 1 ; NEGATE_AND_NORMALIZE_ANGLE_POS(pt_texte->m_Orient); pt_texte->m_Layer = Module->m_Layer; pt_texte->m_Layer = ChangeSideNumLayer(pt_texte->m_Layer); if( Module->m_Layer == CUIVRE_N) pt_texte->m_Layer = SILKSCREEN_N_CU; if( Module->m_Layer == CMP_N) pt_texte->m_Layer = SILKSCREEN_N_CMP; if( (Module->m_Layer == SILKSCREEN_N_CU) || (Module->m_Layer == ADHESIVE_N_CU) || (Module->m_Layer == CUIVRE_N) ) pt_texte->m_Miroir = 0 ; /* Inversion miroir des dessins de l'empreinte : */ PtStruct = Module->m_Drawings; for( ; PtStruct != NULL; PtStruct = PtStruct->Pnext) { switch( PtStruct->m_StructType) { case TYPEEDGEMODULE: pt_edgmod = (EDGE_MODULE *) PtStruct; pt_edgmod->m_Start.y -= Module->m_Pos.y; pt_edgmod->m_Start.y = -pt_edgmod->m_Start.y ; pt_edgmod->m_Start.y += Module->m_Pos.y; pt_edgmod->m_End.y -= Module->m_Pos.y; pt_edgmod->m_End.y = -pt_edgmod->m_End.y ; pt_edgmod->m_End.y += Module->m_Pos.y; /* inversion des coords locales */ pt_edgmod->m_Start0.y = -pt_edgmod->m_Start0.y; pt_edgmod->m_End0.y = -pt_edgmod->m_End0.y; if ( pt_edgmod->m_Shape == S_ARC ) { pt_edgmod->m_Angle = - pt_edgmod->m_Angle; } pt_edgmod->m_Layer = ChangeSideNumLayer(pt_edgmod->m_Layer); break; case TYPETEXTEMODULE: /* Inversion miroir de la position et mise en miroir : */ pt_texte = (TEXTE_MODULE*)PtStruct; pt_texte->m_Pos.y -= Module->m_Pos.y; pt_texte->m_Pos.y = -pt_texte->m_Pos.y; pt_texte->m_Pos.y += Module->m_Pos.y; pt_texte->m_Pos0.y = pt_texte->m_Pos0.y; pt_texte->m_Miroir = 1 ; NEGATE_AND_NORMALIZE_ANGLE_POS(pt_texte->m_Orient); pt_texte->m_Layer = Module->m_Layer; pt_texte->m_Layer = ChangeSideNumLayer(pt_texte->m_Layer); if( Module->m_Layer == CUIVRE_N) pt_texte->m_Layer = SILKSCREEN_N_CU; if(Module->m_Layer == CMP_N) pt_texte->m_Layer = SILKSCREEN_N_CMP; if((Module->m_Layer == SILKSCREEN_N_CU) || (Module->m_Layer == ADHESIVE_N_CU) || (Module->m_Layer == CUIVRE_N)) pt_texte->m_Miroir = 0 ; break; default: DisplayError(this, wxT("Unknown Draw Type")); break; } } /* calcul du rectangle d'encadrement */ Module->Set_Rectangle_Encadrement(); Module->Display_Infos(this); if( !(Module->m_Flags & IS_MOVED) ) /* Inversion simple */ { if ( DC ) { Module->Draw(DrawPanel, DC, wxPoint(0,0), GR_OR); /* affichage chevelu general si necessaire */ ReCompile_Ratsnest_After_Changes( DC ); } } else { if ( DC ) { DrawModuleOutlines(DrawPanel, DC, Module); Dessine_Segments_Dragges(DrawPanel, DC); } m_Pcb->m_Status_Pcb &= ~CHEVELU_LOCAL_OK; } }