Example #1
0
void structExcitation :: v_info () {
	double *y = z [1];
	long numberOfMaxima = 0;
	structData :: v_info ();
	MelderInfo_writeLine (L"Loudness: ", Melder_half (Excitation_getLoudness (this)), L" sones");
	for (long i = 2; i < nx; i ++) if (y [i] > y [i - 1] && y [i] >= y [i + 1]) {
		double i_real, formant_bark, strength;
		if (++ numberOfMaxima > 15) break;
		strength = NUMimproveMaximum (z [1], nx, i, NUM_PEAK_INTERPOLATE_SINC70, & i_real);
		formant_bark = x1 + (i_real - 1) * dx;
		MelderInfo_write (L"Peak at ", Melder_single (formant_bark), L" Bark");
		MelderInfo_write (L", ", Melder_integer ((long) NUMbarkToHertz (formant_bark)), L" Hz");
		MelderInfo_writeLine (L", ", Melder_half (strength), L" phon.");
	}
}
Example #2
0
Sound Sound_deepenBandModulation (Sound me, double enhancement_dB,
	double flow, double fhigh, double slowModulation, double fastModulation, double bandSmoothing)
{
	try {
		autoSound thee = Data_copy (me);
		double maximumFactor = pow (10, enhancement_dB / 20), alpha = sqrt (log (2.0));
		double alphaslow = alpha / slowModulation, alphafast = alpha / fastModulation;

		for (long channel = 1; channel <= my ny; channel ++) {
			autoSound channelSound = Sound_extractChannel (me, channel);
			autoSpectrum orgspec = Sound_to_Spectrum (channelSound.peek(), true);

			/*
			 * Keep the part of the sound that is outside the filter bank.
			 */
			autoSpectrum spec = Data_copy (orgspec.peek());
			Spectrum_stopHannBand (spec.peek(), flow, fhigh, bandSmoothing);
			autoSound filtered = Spectrum_to_Sound (spec.peek());
			long n = thy nx;
			double *amp = thy z [channel];
			for (long i = 1; i <= n; i ++) amp [i] = filtered -> z [1] [i];

			autoMelderProgress progress (U"Deepen band modulation...");
			double fmin = flow;
			while (fmin < fhigh) {
				/*
				 * Take a one-bark frequency band.
				 */
				double fmid_bark = NUMhertzToBark (fmin) + 0.5, ceiling;
				double fmax = NUMbarkToHertz (NUMhertzToBark (fmin) + 1);
				if (fmax > fhigh) fmax = fhigh;
				Melder_progress (fmin / fhigh, U"Band: ", Melder_fixed (fmin, 0), U" ... ", Melder_fixed (fmax, 0), U" Hz");
				NUMmatrix_copyElements (orgspec -> z, spec -> z, 1, 2, 1, spec -> nx);
				Spectrum_passHannBand (spec.peek(), fmin, fmax, bandSmoothing);
				autoSound band = Spectrum_to_Sound (spec.peek());
				/*
				 * Compute a relative intensity contour.
				 */		
				autoSound intensity = Data_copy (band.peek());
				n = intensity -> nx;
				amp = intensity -> z [1];
				for (long i = 1; i <= n; i ++) amp [i] = 10 * log10 (amp [i] * amp [i] + 1e-6);
				autoSpectrum intensityFilter = Sound_to_Spectrum (intensity.peek(), true);
				n = intensityFilter -> nx;
				for (long i = 1; i <= n; i ++) {
					double frequency = intensityFilter -> x1 + (i - 1) * intensityFilter -> dx;
					double slow = alphaslow * frequency, fast = alphafast * frequency;
					double factor = exp (- fast * fast) - exp (- slow * slow);
					intensityFilter -> z [1] [i] *= factor;
					intensityFilter -> z [2] [i] *= factor;
				}
				intensity.reset (Spectrum_to_Sound (intensityFilter.peek()));
				n = intensity -> nx;
				amp = intensity -> z [1];
				for (long i = 1; i <= n; i ++) amp [i] = pow (10, amp [i] / 2);
				/*
				 * Clip to maximum enhancement.
				 */
				ceiling = 1 + (maximumFactor - 1.0) * (0.5 - 0.5 * cos (NUMpi * fmid_bark / 13));
				for (long i = 1; i <= n; i ++) amp [i] = 1 / (1 / amp [i] + 1 / ceiling);

				n = thy nx;
				amp = thy z [channel];
				for (long i = 1; i <= n; i ++) amp [i] += band -> z [1] [i] * intensity -> z [1] [i];

				fmin = fmax;
			}
		}
		Vector_scale (thee.peek(), 0.99);
		/* Truncate. */
		thy xmin = my xmin;
		thy xmax = my xmax;
		thy nx = my nx;
		thy x1 = my x1;
		return thee.transfer();
	} catch (MelderError) {
		Melder_throw (me, U": band modulation not deepened.");
	}
}