void dCollisionCapsuleNodeInfo::CalculateInertiaGeometry (dScene* const world, dVector& inertia, dVector& centerOfMass) const
{
	NewtonWorld* const newton = world->GetNewtonWorld();
	NewtonCollision* const shape = NewtonCreateCapsule(newton, m_radius0, m_radius1, m_height, 0, &m_matrix[0][0]);
	CalculateGeometryProperies (shape, inertia, centerOfMass);
	NewtonDestroyCollision (shape);
}
Example #2
0
NzCapsuleGeom::NzCapsuleGeom(NzPhysWorld* physWorld, float length, float radius, const NzMatrix4f& transformMatrix) :
NzBaseGeom(physWorld),
m_length(length),
m_radius(radius)
{
	m_collision = NewtonCreateCapsule(physWorld->GetHandle(), radius, length, 0, transformMatrix);
}
Example #3
0
NewtonCollision* CreateNewtonCapsule (NewtonWorld* world, NewtonEntity *ent, float height, float radius, int shapeId, const glm::mat4& orientation)
{
	// Place the shape origin at the geometrical center of the entity
	glm::vec3 origin( (ent->maxBox + ent->minBox)*0.5f );

    glm::mat4 offset = glm::gtc::matrix_transform::translate(orientation,origin);

	// now create a collision Box for this entity
	return NewtonCreateCapsule(world, radius, height, shapeId, &offset[0][0]);
}
NewtonCollision* dCollisionCapsuleNodeInfo::CreateNewtonCollision (NewtonWorld* const world, dScene* const scene, dScene::dTreeNode* const myNode) const
{
	dAssert (IsType (dCollisionCapsuleNodeInfo::GetRttiType()));

	// get the collision node	
	int collisionID = GetShapeId ();
	const dMatrix& offsetMatrix = GetTransform ();
	
	// create a newton collision shape from the node.
	return NewtonCreateCapsule(world, m_radius0, m_radius1, m_height, collisionID, &offsetMatrix[0][0]);
}
Example #5
0
    iPhysicsCollision* iPhysics::createCapsule(float32 radius, float32 height, const iaMatrixf& offset, uint64 worldID)
    {
        iPhysicsCollision* result = nullptr;
        const NewtonWorld* world = static_cast<const NewtonWorld*>(getWorld(worldID)->getNewtonWorld());

        if (world != nullptr)
        {
            NewtonCollision* collision = NewtonCreateCapsule(static_cast<const NewtonWorld*>(world), radius, height, 0, 0, offset.getData());

            result = new iPhysicsCollision(collision, worldID);
            NewtonCollisionSetUserID(static_cast<const NewtonCollision*>(collision), result->getID());

            _collisionsListMutex.lock();
            _collisions[result->getID()] = result;
            _collisionsListMutex.unlock();
        }

        return result;
    }
dCustomPlayerController* dCustomPlayerControllerManager::CreateController(const dMatrix& location, const dMatrix& localAxis, dFloat mass, dFloat radius, dFloat height, dFloat stepHeight)
{
	NewtonWorld* const world = GetWorld();

	dMatrix shapeMatrix(localAxis);
	shapeMatrix.m_posit = shapeMatrix.m_front.Scale (height * 0.5f);
	shapeMatrix.m_posit.m_w = 1.0f;

	dFloat scale = 3.0f;
	height = dMax(height - 2.0f * radius / scale, dFloat(0.1f));
	NewtonCollision* const bodyCapsule = NewtonCreateCapsule(world, radius / scale, radius / scale, height, 0, &shapeMatrix[0][0]);
	NewtonCollisionSetScale(bodyCapsule, 1.0f, scale, scale);

	// create the kinematic body
	NewtonBody* const body = NewtonCreateKinematicBody(world, bodyCapsule, &location[0][0]);

	// players must have weight, otherwise they are infinitely strong when they collide
	NewtonCollision* const shape = NewtonBodyGetCollision(body);
	NewtonBodySetMassProperties(body, mass, shape);

	// make the body collidable with other dynamics bodies, by default
	NewtonBodySetCollidable(body, 1);
	NewtonDestroyCollision(bodyCapsule);

	dCustomPlayerController& controller = m_playerList.Append()->GetInfo();

	controller.m_localFrame = localAxis;
	controller.m_mass = mass;
	controller.m_invMass = 1.0f / mass;
	controller.m_manager = this;
	controller.m_kinematicBody = body;
	controller.m_contactPatch = radius / scale;
	controller.m_stepHeight = dMax (stepHeight, controller.m_contactPatch * 2.0f);

	return &controller;
}
Example #7
0
// create a rope of boxes
void AddRope (NewtonWorld* nWorld)
{
	int i;
	dFloat mass;
	dFloat Ixx;
	dFloat Iyy;
	dFloat Izz;
	NewtonBody* link0;
	NewtonBody* link1;
	NewtonCustomJoint* joint;
	
	NewtonCollision* collision;
	RenderPrimitive* visualObject;


	dVector size (2.0f, 0.25f, 0.25f);

	// calculate a acurate momenet of inertia
	mass = 2.0f;
	Ixx = 0.7f * mass * (size.m_y * size.m_y + size.m_z * size.m_z) / 12.0f;
	Iyy = 0.7f * mass * (size.m_x * size.m_x + size.m_z * size.m_z) / 12.0f;
	Izz = 0.7f * mass * (size.m_x * size.m_x + size.m_y * size.m_y) / 12.0f;


	// create 100 tack of 10 boxes each
	//dMatrix location (GetIdentityMatrix());
	dMatrix location (dgRollMatrix(3.1426f * 0.5f));
	location.m_posit.m_y = 11.5f; 
	location.m_posit.m_z = -5.0f; 

	// create a collision primitive to be shared by all links
	collision = NewtonCreateCapsule (nWorld, size.m_y, size.m_x, NULL);
	link0 = NULL;

	// create a lon vertical rope with limits
	for (i = 0; i < 7; i ++) {
		// create the a graphic character (use a visualObject as our body
		visualObject = new CapsulePrimitive (location, size.m_y, size.m_x);

		//create the rigid body
		link1 = NewtonCreateBody (nWorld, collision);


		// add some damping to each link
		NewtonBodySetLinearDamping (link1, 0.2f);
		dVector angularDamp (0.2f, 0.2f, 0.2f);
		NewtonBodySetAngularDamping (link1, &angularDamp.m_x);

		// Set Material Id for this object
		NewtonBodySetMaterialGroupID (link1, woodID);

		// save the pointer to the graphic object with the body.
		NewtonBodySetUserData (link1, visualObject);

		// set a destrutor for this rigid body
		NewtonBodySetDestructorCallback (link1, PhysicsBodyDestructor);

		// set the tranform call back function
		NewtonBodySetTransformCallback (link1, PhysicsSetTransform);

		// set the force and torque call back funtion
		NewtonBodySetForceAndTorqueCallback (link1,PhysicsApplyGravityForce);

		// set the mass matrix
		NewtonBodySetMassMatrix (link1, mass, Ixx, Iyy, Izz);

		// set the matrix for tboth the rigid nody and the graphic body
		NewtonBodySetMatrix (link1, &location[0][0]);
		PhysicsSetTransform (link1, &location[0][0]);

		dVector pivot (location.m_posit);
		pivot.m_y += (size.m_x - size.m_y) * 0.5f;

		dFloat coneAngle = 2.0 * 3.1416f / 180.0f;
		dFloat twistAngle = 2.0 * 3.1416f / 180.0f;
		dVector pin (location.m_front.Scale (-1.0f));

		joint = new CustomConeLimitedBallAndSocket(twistAngle, coneAngle, pin, pivot, link1, link0);

		link0 = link1;
		location.m_posit.m_y -= (size.m_x - size.m_y);
	}


	// vrete a short horizontal rope with limits
	location = GetIdentityMatrix();
	location.m_posit.m_y = 2.5f; 
	location.m_posit.m_z = -7.0f; 
	link0 = NULL;
	for (i = 0; i < 3; i ++) {
		// create the a graphic character (use a visualObject as our body
		visualObject = new CapsulePrimitive (location, size.m_y, size.m_x);

		//create the rigid body
		link1 = NewtonCreateBody (nWorld, collision);

		// add some damping to each link
		NewtonBodySetLinearDamping (link1, 0.2f);
		dVector angularDamp (0.2f, 0.2f, 0.2f);
		NewtonBodySetAngularDamping (link1, &angularDamp.m_x);

		// Set Material Id for this object
		NewtonBodySetMaterialGroupID (link1, woodID);

		// save the pointer to the graphic object with the body.
		NewtonBodySetUserData (link1, visualObject);

		// make sure it is active
		NewtonWorldUnfreezeBody (nWorld, link1);
		//NewtonBodySetAutoFreeze (link1, 0);

		// set a destrutor for this rigid body
		NewtonBodySetDestructorCallback (link1, PhysicsBodyDestructor);

		// set the tranform call back function
		NewtonBodySetTransformCallback (link1, PhysicsSetTransform);

		// set the force and torque call back funtion
		NewtonBodySetForceAndTorqueCallback (link1,PhysicsApplyGravityForce);

		// set the mass matrix
		NewtonBodySetMassMatrix (link1, mass, Ixx, Iyy, Izz);

		// set the matrix for tboth the rigid nody and the graphic body
		NewtonBodySetMatrix (link1, &location[0][0]);
		PhysicsSetTransform (link1, &location[0][0]);

		dVector pivot (location.m_posit);
		pivot.m_x += (size.m_x - size.m_y) * 0.5f;

		dFloat coneAngle = 10.0 * 3.1416f / 180.0f;
		dFloat twistAngle = 10.0 * 3.1416f / 180.0f;
		dVector pin (location.m_front.Scale (-1.0f));
		joint = new CustomConeLimitedBallAndSocket(twistAngle, coneAngle, pin, pivot, link1, link0);

		link0 = link1;
		location.m_posit.m_x -= (size.m_x - size.m_y);
	}

	// release the collision geometry when not need it
	NewtonReleaseCollision (nWorld, collision);
}
	NewtonCollision* CapsuleCollider3D::CreateHandle(PhysWorld3D* world) const
	{
		return NewtonCreateCapsule(world->GetHandle(), m_radius, m_length, 0, m_matrix);
	}
Example #9
0
NewtonCollision* CreateConvexCollision (NewtonWorld* world, const dMatrix& srcMatrix, const dVector& originalSize, PrimitiveType type, int materialID__)
{
	dVector size (originalSize);

	NewtonCollision* collision = NULL;
	switch (type) 
	{
		case _NULL_PRIMITIVE:
		{
			collision = NewtonCreateNull (world); 
			break;
		}

		case _SPHERE_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateSphere (world, size.m_x * 0.5f, 0, NULL); 
			break;
		}

		case _BOX_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateBox (world, size.m_x, size.m_y, size.m_z, 0, NULL); 
			break;
		}


		case _CONE_PRIMITIVE:
		{
			dFloat r = size.m_x * 0.5f;
			dFloat h = size.m_y;

			// create the collision 
			collision = NewtonCreateCone (world, r, h, 0, NULL); 
			break;
		}

		case _CYLINDER_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateCylinder (world, size.m_x * 0.5f, size.m_y, 0, NULL); 
			break;
		}


		case _CAPSULE_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateCapsule (world, size.m_x * 0.5f, size.m_y, 0, NULL); 
			break;
		}

		case _TAPERED_CAPSULE_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateTaperedCapsule (world, size.m_x * 0.5f, size.m_z * 0.5f, size.m_y, 0, NULL); 
			break;
		}


		case _CHAMFER_CYLINDER_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateChamferCylinder (world, size.m_x * 0.5f, size.m_y, 0, NULL); 
			break;
		}

		case _TAPERED_CYLINDER_PRIMITIVE:
		{
			// create the collision 
			collision = NewtonCreateTaperedCylinder (world, size.m_x * 0.5f, size.m_z * 0.5f, size.m_y, 0, NULL); 
			break;
		}


		case _RANDOM_CONVEX_HULL_PRIMITIVE:
		{
			// Create a clouds of random point around the origin
			#define SAMPLE_COUNT 200
			dVector cloud [SAMPLE_COUNT];

			// make sure that at least the top and bottom are present
			cloud [0] = dVector ( size.m_x * 0.5f, 0.0f, 0.0f, 0.0f);
			cloud [1] = dVector (-size.m_x * 0.5f, 0.0f, 0.0f, 0.0f);
			cloud [2] = dVector ( 0.0f,  size.m_y * 0.5f, 0.0f, 0.0f); 
			cloud [3] = dVector ( 0.0f, -size.m_y * 0.5f, 0.0f, 0.0f);
			cloud [4] = dVector (0.0f, 0.0f,  size.m_z * 0.5f, 0.0f); 
			cloud [5] = dVector (0.0f, 0.0f, -size.m_z * 0.5f, 0.0f); 

			int count = 6;
			// populate the cloud with pseudo Gaussian random points
			for (int i = 6; i < SAMPLE_COUNT; i ++) {
				cloud [i].m_x = RandomVariable(size.m_x);
				cloud [i].m_y = RandomVariable(size.m_y);
				cloud [i].m_z = RandomVariable(size.m_z);
				count ++;
			}
			collision = NewtonCreateConvexHull (world, count, &cloud[0].m_x, sizeof (dVector), 0.01f, 0, NULL); 
			break;
		}

		case _REGULAR_CONVEX_HULL_PRIMITIVE:
		{
			// Create a clouds of random point around the origin
			#define STEPS_HULL 6
			//#define STEPS_HULL 3

			dVector cloud [STEPS_HULL * 4 + 256];
			int count = 0;
			dFloat radius = size.m_y;
			dFloat height = size.m_x * 0.999f;
			dFloat x = - height * 0.5f;
			dMatrix rotation (dPitchMatrix(2.0f * 3.141592f / STEPS_HULL));
			for (int i = 0; i < 4; i ++) {
				dFloat pad = ((i == 1) || (i == 2)) * 0.25f * radius;
				dVector p (x, 0.0f, radius + pad);
				x += 0.3333f * height;
				dMatrix acc (dGetIdentityMatrix());
				for (int j = 0; j < STEPS_HULL; j ++) {
					cloud[count] = acc.RotateVector(p);
					acc = acc * rotation;
					count ++;
				}
			}

			collision = NewtonCreateConvexHull (world, count, &cloud[0].m_x, sizeof (dVector), 0.02f, 0, NULL); 
			break;
		}

		case _COMPOUND_CONVEX_CRUZ_PRIMITIVE:
		{
			//dMatrix matrix (GetIdentityMatrix());
			dMatrix matrix (dPitchMatrix(15.0f * 3.1416f / 180.0f) * dYawMatrix(15.0f * 3.1416f / 180.0f) * dRollMatrix(15.0f * 3.1416f / 180.0f));
//			NewtonCollision* const collisionA = NewtonCreateBox (world, size.m_x, size.m_x * 0.25f, size.m_x * 0.25f, 0, &matrix[0][0]); 
//			NewtonCollision* const collisionB = NewtonCreateBox (world, size.m_x * 0.25f, size.m_x, size.m_x * 0.25f, 0, &matrix[0][0]); 
//			NewtonCollision* const collisionC = NewtonCreateBox (world, size.m_x * 0.25f, size.m_x * 0.25f, size.m_x, 0, &matrix[0][0]); 

matrix.m_posit = dVector (size.m_x * 0.5f, 0.0f, 0.0f, 1.0f);
NewtonCollision* const collisionA = NewtonCreateBox (world, size.m_x, size.m_x * 0.25f, size.m_x * 0.25f, 0, &matrix[0][0]); 
matrix.m_posit = dVector (0.0f, size.m_x * 0.5f, 0.0f, 1.0f);
NewtonCollision* const collisionB = NewtonCreateBox (world, size.m_x * 0.25f, size.m_x, size.m_x * 0.25f, 0, &matrix[0][0]); 
matrix.m_posit = dVector (0.0f, 0.0f, size.m_x * 0.5f, 1.0f);
NewtonCollision* const collisionC = NewtonCreateBox (world, size.m_x * 0.25f, size.m_x * 0.25f, size.m_x, 0, &matrix[0][0]); 


			collision = NewtonCreateCompoundCollision (world, 0);

			NewtonCompoundCollisionBeginAddRemove(collision);

			NewtonCompoundCollisionAddSubCollision (collision, collisionA);
			NewtonCompoundCollisionAddSubCollision (collision, collisionB);
			NewtonCompoundCollisionAddSubCollision (collision, collisionC);

			NewtonCompoundCollisionEndAddRemove(collision);	

			NewtonDestroyCollision(collisionA);
			NewtonDestroyCollision(collisionB);
			NewtonDestroyCollision(collisionC);
			break;
		}

		default: dAssert (0);
	}


	dMatrix matrix (srcMatrix);
	matrix.m_front = matrix.m_front.Scale (1.0f / dSqrt (matrix.m_front % matrix.m_front));
	matrix.m_right = matrix.m_front * matrix.m_up;
	matrix.m_right = matrix.m_right.Scale (1.0f / dSqrt (matrix.m_right % matrix.m_right));
	matrix.m_up = matrix.m_right * matrix.m_front;
	NewtonCollisionSetMatrix(collision, &matrix[0][0]);

	return collision;
}
void CustomPlayerController::Init(dFloat mass, dFloat outerRadius, dFloat innerRadius, dFloat height, dFloat stairStep, const dMatrix& localAxis)
{
	dAssert (stairStep >= 0.0f);
	dAssert (innerRadius >= 0.0f);
	dAssert (outerRadius >= innerRadius);
	dAssert (height >= stairStep);
	dAssert (localAxis[0].m_w == dFloat (0.0f));
	dAssert (localAxis[1].m_w == dFloat (0.0f));

	CustomPlayerControllerManager* const manager = (CustomPlayerControllerManager*) GetManager();
	NewtonWorld* const world = manager->GetWorld();

	SetRestrainingDistance (0.0f);

	m_outerRadio = outerRadius;
	m_innerRadio = innerRadius;
	m_height = height;
	m_stairStep = stairStep;
	SetClimbSlope(45.0f * 3.1416f/ 180.0f);
	m_upVector = localAxis[0];
	m_frontVector = localAxis[1];

	m_groundPlane = dVector (0.0f, 0.0f, 0.0f, 0.0f);
	m_groundVelocity = dVector (0.0f, 0.0f, 0.0f, 0.0f);

	const int steps = 12;
	dVector convexPoints[2][steps];

	// create an inner thin cylinder
	dFloat shapeHigh = height;
	dAssert (shapeHigh > 0.0f);
	dVector p0 (0.0f, m_innerRadio, 0.0f, 0.0f);
	dVector p1 (shapeHigh, m_innerRadio, 0.0f, 0.0f);
	for (int i = 0; i < steps; i ++) {
		dMatrix rotation (dPitchMatrix (i * 2.0f * 3.141592f / steps));
		convexPoints[0][i] = localAxis.RotateVector(rotation.RotateVector(p0));
		convexPoints[1][i] = localAxis.RotateVector(rotation.RotateVector(p1));
	}
	NewtonCollision* const supportShape = NewtonCreateConvexHull(world, steps * 2, &convexPoints[0][0].m_x, sizeof (dVector), 0.0f, 0, NULL); 

	// create the outer thick cylinder
	dMatrix outerShapeMatrix (localAxis);
	dFloat capsuleHigh = m_height - stairStep;
	dAssert (capsuleHigh > 0.0f);
	m_sphereCastOrigin = capsuleHigh * 0.5f + stairStep;
	outerShapeMatrix.m_posit = outerShapeMatrix[0].Scale(m_sphereCastOrigin);
	outerShapeMatrix.m_posit.m_w = 1.0f;
	NewtonCollision* const bodyCapsule = NewtonCreateCapsule(world, 0.25f, 0.5f, 0, &outerShapeMatrix[0][0]);
	NewtonCollisionSetScale(bodyCapsule, capsuleHigh, m_outerRadio * 4.0f, m_outerRadio * 4.0f);

	// compound collision player controller
	NewtonCollision* const playerShape = NewtonCreateCompoundCollision(world, 0);
	NewtonCompoundCollisionBeginAddRemove(playerShape);	
	NewtonCompoundCollisionAddSubCollision (playerShape, supportShape);
	NewtonCompoundCollisionAddSubCollision (playerShape, bodyCapsule);
	NewtonCompoundCollisionEndAddRemove (playerShape);	

	// create the kinematic body
	dMatrix locationMatrix (dGetIdentityMatrix());
	m_body = NewtonCreateKinematicBody(world, playerShape, &locationMatrix[0][0]);

	// players must have weight, otherwise they are infinitely strong when they collide
	NewtonCollision* const shape = NewtonBodyGetCollision(m_body);
	NewtonBodySetMassProperties(m_body, mass, shape);

	// make the body collidable with other dynamics bodies, by default
	NewtonBodySetCollidable (m_body, true);

	dFloat castHigh = capsuleHigh * 0.4f;
	dFloat castRadio = (m_innerRadio * 0.5f > 0.05f) ? m_innerRadio * 0.5f : 0.05f;

	dVector q0 (0.0f, castRadio, 0.0f, 0.0f);
	dVector q1 (castHigh, castRadio, 0.0f, 0.0f);
	for (int i = 0; i < steps; i ++) {
		dMatrix rotation (dPitchMatrix (i * 2.0f * 3.141592f / steps));
		convexPoints[0][i] = localAxis.RotateVector(rotation.RotateVector(q0));
		convexPoints[1][i] = localAxis.RotateVector(rotation.RotateVector(q1));
	}
	m_castingShape = NewtonCreateConvexHull(world, steps * 2, &convexPoints[0][0].m_x, sizeof (dVector), 0.0f, 0, NULL); 


	m_supportShape = NewtonCompoundCollisionGetCollisionFromNode (shape, NewtonCompoundCollisionGetNodeByIndex (shape, 0));
	m_upperBodyShape = NewtonCompoundCollisionGetCollisionFromNode (shape, NewtonCompoundCollisionGetNodeByIndex (shape, 1));

	NewtonDestroyCollision (bodyCapsule);
	NewtonDestroyCollision (supportShape);
	NewtonDestroyCollision (playerShape);

	m_isJumping = false;
}
	cCollideShapeNewton::cCollideShapeNewton(eCollideShapeType aType, const cVector3f &avSize,
											cMatrixf* apOffsetMtx, NewtonWorld* apNewtonWorld,
											iPhysicsWorld *apWorld)
	: iCollideShape(apWorld)
	{
		mpNewtonCollision = NULL;
		mpNewtonWorld = apNewtonWorld;
		mvSize = avSize;
		mType = aType;

		mfVolume = 0;

		float *pMtx = NULL;
		cMatrixf mtxTranspose;
		if(apOffsetMtx)
		{
			m_mtxOffset = *apOffsetMtx;
			mtxTranspose = m_mtxOffset.GetTranspose();

			pMtx = &(mtxTranspose.m[0][0]);
		}
		else
			m_mtxOffset = cMatrixf::Identity;

		////////////////////////////////////////////
		// Create Newton collision

		switch(aType)
		{
		case eCollideShapeType_Null:		mpNewtonCollision = NewtonCreateNull(apNewtonWorld); break;

		case eCollideShapeType_Box:			mpNewtonCollision = NewtonCreateBox(apNewtonWorld,
												mvSize.x, mvSize.y, mvSize.z,
												pMtx); break;

		case eCollideShapeType_Sphere:		mpNewtonCollision = NewtonCreateSphere(apNewtonWorld,
												mvSize.x, mvSize.y, mvSize.z,
												pMtx); break;

		case eCollideShapeType_Cylinder:	mpNewtonCollision = NewtonCreateCylinder(apNewtonWorld,
												mvSize.x, mvSize.y,
												pMtx); break;

		case eCollideShapeType_Capsule:		mpNewtonCollision = NewtonCreateCapsule(apNewtonWorld,
												mvSize.x, mvSize.y,
												pMtx); break;
		}

		////////////////////////////////////////////
		// Calculate Bounding volume and volume.
		if(mType == eCollideShapeType_Box)
		{
			mBoundingVolume.SetSize(mvSize);

			mfVolume = mvSize.x * mvSize.y *mvSize.z;
		}
		else if(mType == eCollideShapeType_Sphere)
		{
			mBoundingVolume.SetSize(mvSize*2);

			mfVolume = (4.0f / 3.0f) * kPif * (mvSize.x*mvSize.x*mvSize.x);
		}
		else if(mType == eCollideShapeType_Cylinder ||
				mType == eCollideShapeType_Capsule)
		{
			mBoundingVolume.SetSize(cVector3f(mvSize.y,mvSize.x*2,mvSize.x*2));

			//Not gonna be correct for capsule...
			if(mType == eCollideShapeType_Cylinder)
				mfVolume = kPif * (mvSize.x*mvSize.x)*mvSize.y;
			else
			{
				//Height of the cylinder part.
				float fCylHeight = mvSize.y - (mvSize.x*2);
				mfVolume =0;

				//The volume of the cylinder part.
				if(fCylHeight>0)
					mfVolume += kPif * (mvSize.x*mvSize.x)*fCylHeight;

				//The volume of the sphere part.
				mfVolume += (4.0f / 3.0f) * kPif * (mvSize.x*mvSize.x*mvSize.x);
			}
		}

		mBoundingVolume.SetTransform(m_mtxOffset);
	}
static void MakeFunnyCompound (DemoEntityManager* const scene, const dVector& origin)
{
	NewtonWorld* const world = scene->GetNewton();

	// create an empty compound collision
	NewtonCollision* const compound = NewtonCreateCompoundCollision (world, 0);
	
	
#if 1
	NewtonCompoundCollisionBeginAddRemove(compound);	

	// add a bunch of convex collision at random position and orientation over the surface of a big sphere
	float radio = 5.0f;
	for (int i = 0 ; i < 300; i ++) {
		NewtonCollision* collision = NULL;

		float pitch = RandomVariable (1.0f) * 2.0f * 3.1416f;
		float yaw = RandomVariable (1.0f) * 2.0f * 3.1416f;
		float roll = RandomVariable (1.0f) * 2.0f * 3.1416f;

		float x = RandomVariable (0.5f);
		float y = RandomVariable (0.5f);
		float z = RandomVariable (0.5f);
		if ((x == 0.0f) && (y == 0.0f) && (z == 0.0f)){
			x = 0.1f;
		}
		dVector p (x, y, z, 1.0f) ;
		p = p.Scale (radio / dSqrt (p % p));

		dMatrix matrix (dPitchMatrix (pitch) * dYawMatrix (yaw) * dRollMatrix (roll));
		matrix.m_posit = p;
		int r = dRand();	
		switch ((r >>2) & 3) 
		{
			case 0:
			{
				collision = NewtonCreateSphere(world, 0.5, 0, &matrix[0][0]) ;
				break; 
			}

			case 1:
			{
				collision = NewtonCreateCapsule(world, 0.3f, 0.2f, 0.5f, 0, &matrix[0][0]) ;
				break; 
			}

			case 2:
			{
				collision = NewtonCreateCylinder(world, 0.25, 0.5, 0.25, 0, &matrix[0][0]) ;
				break; 
			}

			case 3:
			{
				collision = NewtonCreateCone(world, 0.25, 0.25, 0, &matrix[0][0]) ;
				break; 
			}
		}

		dAssert (collision);
		// we can set a collision id, and use data per sub collision 
		NewtonCollisionSetUserID(collision, i);
		NewtonCollisionSetUserData(collision, (void*) i);

		// add this new collision 
		NewtonCompoundCollisionAddSubCollision (compound, collision);
		NewtonDestroyCollision(collision);
	}
	// finish adding shapes
	NewtonCompoundCollisionEndAddRemove(compound);	

	{
		// remove the first 10 shapes
		// test remove shape form a compound
		NewtonCompoundCollisionBeginAddRemove(compound);	
		void* node = NewtonCompoundCollisionGetFirstNode(compound);
		for (int i = 0; i < 10; i ++) {
			//NewtonCollision* const collision = NewtonCompoundCollisionGetCollisionFromNode(compound, node);
			void* const nextNode = NewtonCompoundCollisionGetNextNode(compound, node);
			NewtonCompoundCollisionRemoveSubCollision(compound, node);
			node = nextNode;
		}
		// finish remove 

		void* handle1 = NewtonCompoundCollisionGetNodeByIndex (compound, 30);
		void* handle2 = NewtonCompoundCollisionGetNodeByIndex (compound, 100);
		NewtonCollision* const shape1 = NewtonCompoundCollisionGetCollisionFromNode (compound, handle1);
		NewtonCollision* const shape2 = NewtonCompoundCollisionGetCollisionFromNode (compound, handle2);

		NewtonCollision* const copyShape1 = NewtonCollisionCreateInstance (shape1);
		NewtonCollision* const copyShape2 = NewtonCollisionCreateInstance (shape2);

		// you can also remove shape by their index
		NewtonCompoundCollisionRemoveSubCollisionByIndex (compound, 30);	
		NewtonCompoundCollisionRemoveSubCollisionByIndex (compound, 100);	

		handle1 = NewtonCompoundCollisionAddSubCollision (compound, copyShape1);
		handle2 = NewtonCompoundCollisionAddSubCollision (compound, copyShape2);
		NewtonDestroyCollision(copyShape1);
		NewtonDestroyCollision(copyShape2);

		NewtonCompoundCollisionEndAddRemove(compound);	
	}

	{
		// show how to modify the children of a compound collision
		NewtonCompoundCollisionBeginAddRemove(compound);	
		for (void* node = NewtonCompoundCollisionGetFirstNode(compound); node; node = NewtonCompoundCollisionGetNextNode(compound, node)) { 
			NewtonCollision* const collision = NewtonCompoundCollisionGetCollisionFromNode(compound, node);
			// you can scale, change the matrix, change the inertia, do anything you want with the change
			NewtonCollisionSetUserData(collision, NULL);
		}
		NewtonCompoundCollisionEndAddRemove(compound);	
	}

//	NewtonCollisionSetScale(compound, 0.5f, 0.25f, 0.125f);

#else 

	//test Yeside compound shape shape
	//	- Rotation="1.5708 -0 0" Translation="0 0 0.024399" Size="0.021 0.096" Pos="0 0 0.115947"
	//	- Rotation="1.5708 -0 0" Translation="0 0 0.056366" Size="0.195 0.024" Pos="0 0 0.147914"
	//	- Rotation="1.5708 -0 0" Translation="0 0 -0.056366" Size="0.0065 0.07 Pos="0 0 0.035182"

	NewtonCompoundCollisionBeginAddRemove(compound);	

	NewtonCollision* collision;
	dMatrix offsetMatrix (dPitchMatrix(1.5708f));
	offsetMatrix.m_posit.m_z = 0.115947f;
	collision = NewtonCreateCylinder (world, 0.021f, 0.096f, 0, &offsetMatrix[0][0]) ;
	NewtonCompoundCollisionAddSubCollision (compound, collision);
	NewtonDestroyCollision(collision);

	offsetMatrix.m_posit.m_z = 0.035182f;
	collision = NewtonCreateCylinder (world, 0.0065f, 0.07f, 0, &offsetMatrix[0][0]) ;
	NewtonCompoundCollisionAddSubCollision (compound, collision);
	NewtonDestroyCollision(collision);

	offsetMatrix.m_posit.m_z = 0.147914f;
	collision = NewtonCreateCylinder (world, 0.195f, 0.024f, 0, &offsetMatrix[0][0]) ;
	NewtonCompoundCollisionAddSubCollision (compound, collision);
	NewtonDestroyCollision(collision);

	NewtonCompoundCollisionEndAddRemove(compound);	

#endif



	// for now we will simple make simple Box,  make a visual Mesh
	DemoMesh* const visualMesh = new DemoMesh ("big ball", compound, "metal_30.tga", "metal_30.tga", "metal_30.tga");

	int instaceCount = 2;
	dMatrix matrix (dGetIdentityMatrix());
	matrix.m_posit = origin;
	for (int ix = 0; ix < instaceCount; ix ++) {
		for (int iz = 0; iz < instaceCount; iz ++) {
			dFloat y = origin.m_y;
			dFloat x = origin.m_x + (ix - instaceCount/2) * 15.0f;
			dFloat z = origin.m_z + (iz - instaceCount/2) * 15.0f;
			matrix.m_posit = FindFloor (world, dVector (x, y + 10.0f, z, 0.0f), 20.0f); ;
			matrix.m_posit.m_y += 15.0f;
			CreateSimpleSolid (scene, visualMesh, 10.0f, matrix, compound, 0);
		}
	}
	visualMesh->Release();

	NewtonDestroyCollision(compound);
}
dNewtonCollisionCapsule::dNewtonCollisionCapsule(dNewtonWorld* const world, dFloat radio0, dFloat radio1, dFloat height)
	:dNewtonAlignedShapes(world, 0)
{
	NewtonWaitForUpdateToFinish(m_myWorld->m_world);
	SetShape(NewtonCreateCapsule(m_myWorld->m_world, radio0, radio1, height, 0, NULL));
}