void
MM_VerboseHandlerOutputStandard::handleConcurrentHalted(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_ConcurrentHaltedEvent* event = (MM_ConcurrentHaltedEvent*)eventData;
	MM_VerboseManager* manager = getManager();
	MM_VerboseWriterChain* writer = manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);

	char tagTemplate[200];
	enterAtomicReportingBlock();
	getTagTemplate(tagTemplate, sizeof(tagTemplate), manager->getIdAndIncrement(), omrtime_current_time_millis());
	writer->formatAndOutput(env, 0, "<concurrent-halted %s>", tagTemplate);

	handleConcurrentHaltedInternal(env, eventData);

	writer->formatAndOutput(env, 1,
			"<traced "
			"bytesTarget=\"%zu\" bytesTotal=\"%zu\" "
			"bytesByMutator=\"%zu\" bytesByHelper=\"%zu\" "
			"percent=\"%zu\" />",
			event->traceTarget, event->tracedTotal,
			event->tracedByMutators, event->tracedByHelpers,
			event->traceTarget == 0 ? 0 : (uintptr_t)(((uint64_t)event->tracedTotal * 100) / (uint64_t)event->traceTarget));
	writer->formatAndOutput(env, 1, "<cards cleaned=\"%zu\" thresholdBytes=\"%zu\" />", event->cardsCleaned, event->cardCleaningThreshold);
	writer->formatAndOutput(env, 0, "</concurrent-halted>");
	writer->flush(env);

	exitAtomicReportingBlock();
}
Example #2
0
void
MM_VerboseHandlerOutput::handleInitialized(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_InitializedEvent* event = (MM_InitializedEvent*)eventData;
	MM_VerboseWriterChain* writer = _manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);

	char tagTemplate[200];

	_manager->setInitializedTime(event->timestamp);

	getTagTemplate(tagTemplate, sizeof(tagTemplate), _manager->getIdAndIncrement(), omrtime_current_time_millis());
	enterAtomicReportingBlock();
	writer->formatAndOutput(env, 0, "<initialized %s>", tagTemplate);
	writer->formatAndOutput(env, 1, "<attribute name=\"gcPolicy\" value=\"%s\" />", event->gcPolicy);
#if defined(OMR_GC_CONCURRENT_SCAVENGER)
	if (_extensions->isConcurrentScavengerEnabled()) {
		writer->formatAndOutput(env, 1, "<attribute name=\"concurrentScavenger\" value=\"%s\" />",
#if defined(S390)
				_extensions->concurrentScavengerHWSupport ?
				"enabled, with H/W assistance" :
				"enabled, without H/W assistance");
#else /* defined(S390) */
				"enabled");
#endif /* defined(S390) */
	}
void
MM_VerboseHandlerOutputStandard::handleConcurrentKickoff(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_ConcurrentKickoffEvent* event = (MM_ConcurrentKickoffEvent*)eventData;
	MM_VerboseManager* manager = getManager();
	MM_VerboseWriterChain* writer = manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	MM_GCExtensionsBase* extensions = MM_GCExtensionsBase::getExtensions(env->getOmrVM());
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	char tagTemplate[200];
	enterAtomicReportingBlock();
	getTagTemplate(tagTemplate, sizeof(tagTemplate), manager->getIdAndIncrement(), omrtime_current_time_millis());
	writer->formatAndOutput(env, 0, "<concurrent-kickoff %s>", tagTemplate);

	const char* reasonString = getConcurrentKickoffReason(eventData);

	if (extensions->scavengerEnabled) {
		writer->formatAndOutput(
				env, 1, "<kickoff reason=\"%s\" targetBytes=\"%zu\" thresholdFreeBytes=\"%zu\"  remainingFree=\"%zu\" tenureFreeBytes=\"%zu\" nurseryFreeBytes=\"%zu\" />",
				reasonString, event->traceTarget, event->kickOffThreshold, event->remainingFree, event->commonData->tenureFreeBytes, event->commonData->nurseryFreeBytes);
	} else {
		writer->formatAndOutput(
				env, 1, "<kickoff reason=\"%s\" targetBytes=\"%zu\" thresholdFreeBytes=\"%zu\" remainingFree=\"%zu\" tenureFreeBytes=\"%zu\" />",
				reasonString, event->traceTarget, event->kickOffThreshold, event->remainingFree, event->commonData->tenureFreeBytes);
	}
	writer->formatAndOutput(env, 0, "</concurrent-kickoff>");
	writer->flush(env);

	handleConcurrentKickoffInternal(env, eventData);

	exitAtomicReportingBlock();
}
void
MM_VerboseHandlerOutputStandard::handleConcurrentCollectionEnd(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_ConcurrentCollectionEndEvent* event = (MM_ConcurrentCollectionEndEvent*)eventData;
	MM_VerboseManager* manager = getManager();
	MM_VerboseWriterChain* writer = manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	char tagTemplate[200];
	enterAtomicReportingBlock();
	getTagTemplate(tagTemplate, sizeof(tagTemplate), manager->getIdAndIncrement(), omrtime_current_time_millis());
	writer->formatAndOutput(env, 0, "<concurrent-collection-end %s />", tagTemplate);
	writer->flush(env);

	handleConcurrentCollectionEndInternal(env, eventData);

	exitAtomicReportingBlock();
}
void
MM_VerboseHandlerOutputStandard::handleConcurrentCollectionStart(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_ConcurrentCollectionStartEvent* event = (MM_ConcurrentCollectionStartEvent*)eventData;
	MM_VerboseManager* manager = getManager();
	MM_VerboseWriterChain* writer = manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	uint64_t currentTime = event->timestamp;
	uint64_t previousTime = manager->getLastConcurrentGCTime();
	manager->setLastConcurrentGCTime(currentTime);
	if (0 == previousTime) {
		previousTime = manager->getInitializedTime();
	}
	uint64_t deltaTime = omrtime_hires_delta(previousTime, currentTime, OMRPORT_TIME_DELTA_IN_MICROSECONDS);
	const char* cardCleaningReasonString = "unknown";

	switch (event->cardCleaningReason) {
	case TRACING_COMPLETED:
		cardCleaningReasonString = "tracing completed";
		break;
	case CARD_CLEANING_THRESHOLD_REACHED:
		cardCleaningReasonString = "card cleaning threshold reached";
		break;
	}

	char tagTemplate[200];
	enterAtomicReportingBlock();
	getTagTemplate(tagTemplate, sizeof(tagTemplate), manager->getIdAndIncrement(), omrtime_current_time_millis());
	writer->formatAndOutput(env, 0, "<concurrent-collection-start %s intervalms=\"%llu.%03llu\" >",
		tagTemplate, deltaTime / 1000, deltaTime % 1000);
	writer->formatAndOutput(env, 1, "<concurrent-trace-info reason=\"%s\" tracedByMutators=\"%zu\" tracedByHelpers=\"%zu\" cardsCleaned=\"%zu\" workStackOverflowCount=\"%zu\" />",
		cardCleaningReasonString, event->tracedByMutators, event->tracedByHelpers, event->cardsCleaned, event->workStackOverflowCount);
  	writer->formatAndOutput(env, 0, "</concurrent-collection-start>");

	writer->flush(env);

	handleConcurrentCollectionStartInternal(env, eventData);

	exitAtomicReportingBlock();
}
/*
 * Debug routine to dump details of the current state of the freelist
 */
void
MM_MemoryPoolSplitAddressOrderedListBase::printCurrentFreeList(MM_EnvironmentBase* env, const char* area)
{
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	omrtty_printf("Analysis of %s freelist: \n", area);

	for (uintptr_t i = 0; i < _heapFreeListCountExtended; ++i) {
		MM_HeapLinkedFreeHeader* currentFreeEntry = _heapFreeLists[i]._freeList;
		while (currentFreeEntry) {
			const char * msg = "Free chunk %p -> %p (%i) \n";
			if (_heapFreeListCount == i) {
				msg = "Reserved chunk %p -> %p (%i) \n";
			}
			omrtty_printf(msg,
						 currentFreeEntry,
						 currentFreeEntry->afterEnd(),
						 currentFreeEntry->getSize());
			currentFreeEntry = currentFreeEntry->getNext();
		}
	}
}
void
MM_VerboseHandlerOutputStandard::handleConcurrentTracingEnd(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_ConcurrentCompleteTracingEndEvent* event = (MM_ConcurrentCompleteTracingEndEvent*)eventData;
	MM_VerboseManager* manager = getManager();
	MM_VerboseWriterChain* writer = manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	uint64_t durationUs = omrtime_hires_delta(0, event->duration, OMRPORT_TIME_DELTA_IN_MICROSECONDS);

	enterAtomicReportingBlock();
	handleGCOPOuterStanzaStart(env, "tracing", env->_cycleState->_verboseContextID, durationUs, true);

	writer->formatAndOutput(env, 1, "<trace bytesTraced=\"%zu\" workStackOverflowCount=\"%zu\" />", event->bytesTraced, event->workStackOverflowCount);

	handleConcurrentTracingEndInternal(env, eventData);

	handleGCOPOuterStanzaEnd(env);
	writer->flush(env);
	exitAtomicReportingBlock();
}
void
MM_VerboseHandlerOutputStandard::handleConcurrentAborted(J9HookInterface** hook, uintptr_t eventNum, void* eventData)
{
	MM_ConcurrentAbortedEvent* event = (MM_ConcurrentAbortedEvent*)eventData;
	MM_VerboseManager* manager = getManager();
	MM_VerboseWriterChain* writer = manager->getWriterChain();
	MM_EnvironmentBase* env = MM_EnvironmentBase::getEnvironment(event->currentThread);
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	char tagTemplate[100];
	enterAtomicReportingBlock();
	getTagTemplate(tagTemplate, sizeof(tagTemplate), manager->getIdAndIncrement(), omrtime_current_time_millis());
	writer->formatAndOutput(env, 0, "<concurrent-aborted %s>", tagTemplate);

	const char* reason;
	switch((CollectionAbortReason)event->reason) {
	case ABORT_COLLECTION_INSUFFICENT_PROGRESS:
		reason = "insufficient progress made";
		break;
	case ABORT_COLLECTION_REMEMBERSET_OVERFLOW:
		reason = "remembered set overflow";
		break;
	case ABORT_COLLECTION_SCAVENGE_REMEMBEREDSET_OVERFLOW:
		reason = "scavenge remembered set overflow";
		break;
	case ABORT_COLLECTION_PREPARE_HEAP_FOR_WALK:
		reason = "prepare heap for walk";
		break;
	default:
		reason = "unknown";
		break;
	}

	writer->formatAndOutput(env, 1, "<reason value=\"%s\" />", reason);
	writer->formatAndOutput(env, 0, "</concurrent-aborted>");
	writer->flush(env);

	handleConcurrentAbortedInternal(env, eventData);

	exitAtomicReportingBlock();
}
bool
MM_MemoryPoolSplitAddressOrderedListBase::printFreeListValidity(MM_EnvironmentBase* env)
{
	OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
	bool result = true;

	omrtty_printf("----- START SPLIT FREE LIST VALIDITY FOR 0x%p -----\n", this);
	for (uintptr_t i = 0; i < _heapFreeListCountExtended; ++i) {
		if ( _heapFreeListCount == i ) {
			omrtty_printf("--- Reserved Free List ---\n");
		}
		bool listIsSane = true;
		uintptr_t calculatedSize = 0;
		uintptr_t calculatedHoles = 0;
		MM_HeapLinkedFreeHeader* currentFreeEntry = _heapFreeLists[i]._freeList;
		MM_HeapLinkedFreeHeader* previousFreeEntry = currentFreeEntry;
		while (NULL != currentFreeEntry) {
			listIsSane = listIsSane && ((NULL == currentFreeEntry->getNext()) || (currentFreeEntry < currentFreeEntry->getNext()));
			calculatedSize += currentFreeEntry->getSize();
			++calculatedHoles;
			previousFreeEntry = currentFreeEntry;
			currentFreeEntry = currentFreeEntry->getNext();
		}
		omrtty_printf("  -- Free List %4zu (head: 0x%p, tail: 0x%p, expected size: %16zu, expected holes: %16zu): ", i, _heapFreeLists[i]._freeList, previousFreeEntry, _heapFreeLists[i]._freeSize, _heapFreeLists[i]._freeCount);
		listIsSane = listIsSane && (calculatedSize == _heapFreeLists[i]._freeSize) && (calculatedHoles == _heapFreeLists[i]._freeCount);
		if (listIsSane) {
			omrtty_printf("VALID\n");
		} else {
			omrtty_printf("INVALID (calculated size: %16zu, calculated holes: %16zu)\n", calculatedSize, calculatedHoles);
		}
		result = result && listIsSane;
	}
	omrtty_printf("----- END SPLIT FREE LIST VALIDITY FOR 0x%p: %s -----\n", this, (result ? "VALID" : "INVALID"));

	return result;
}
Example #10
0
bool
MM_MemoryManager::createVirtualMemoryForHeap(MM_EnvironmentBase* env, MM_MemoryHandle* handle, uintptr_t heapAlignment, uintptr_t size, uintptr_t tailPadding, void* preferredAddress, void* ceiling)
{
	Assert_MM_true(NULL != handle);
	MM_GCExtensionsBase* extensions = env->getExtensions();

	MM_VirtualMemory* instance = NULL;
	uintptr_t mode = (OMRPORT_VMEM_MEMORY_MODE_READ | OMRPORT_VMEM_MEMORY_MODE_WRITE);
	uintptr_t options = 0;
	uint32_t memoryCategory = OMRMEM_CATEGORY_MM_RUNTIME_HEAP;

	uintptr_t pageSize = extensions->requestedPageSize;
	uintptr_t pageFlags = extensions->requestedPageFlags;
	Assert_MM_true(0 != pageSize);

	uintptr_t allocateSize = size;

	uintptr_t concurrentScavengerPageSize = 0;
	if (extensions->isConcurrentScavengerEnabled()) {
		OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
		/*
		 * Allocate extra memory to guarantee proper alignment regardless start address location
		 * Minimum size of over-allocation should be (Concurrent_Scavenger_page_size - section size) however
		 * Virtual Memory can return heap size shorter by a region (and here region size == section size)
		 * So to guarantee desired heap size over-allocate it by full Concurrent_Scavenger_page_size
		 */
		concurrentScavengerPageSize = extensions->getConcurrentScavengerPageSectionSize() * CONCURRENT_SCAVENGER_PAGE_SECTIONS;
		allocateSize += concurrentScavengerPageSize;
		if (extensions->isDebugConcurrentScavengerPageAlignment()) {
			omrtty_printf("Requested heap size 0x%zx has been extended to 0x%zx for guaranteed alignment\n", size, allocateSize);
		}
	} else {
		if (heapAlignment > pageSize) {
			allocateSize += (heapAlignment - pageSize);
		}
	}

#if defined(OMR_GC_MODRON_SCAVENGER)
	if (extensions->enableSplitHeap) {
		/* currently (ceiling != NULL) is using to recognize CompressedRefs so must be NULL for 32 bit platforms */
		Assert_MM_true(NULL == ceiling);

		switch(extensions->splitHeapSection) {
		case MM_GCExtensionsBase::HEAP_INITIALIZATION_SPLIT_HEAP_TENURE:
			/* trying to get Tenure at the bottom of virtual memory */
			options |= OMRPORT_VMEM_ALLOC_DIR_BOTTOM_UP;
			break;
		case MM_GCExtensionsBase::HEAP_INITIALIZATION_SPLIT_HEAP_NURSERY:
			/* trying to get Nursery at the top of virtual memory */
			options |= OMRPORT_VMEM_ALLOC_DIR_TOP_DOWN;
			break;
		case MM_GCExtensionsBase::HEAP_INITIALIZATION_SPLIT_HEAP_UNKNOWN:
		default:
			Assert_MM_unreachable();
			break;
		}
	}
#endif /* defined(OMR_GC_MODRON_SCAVENGER) */

	if (NULL == ceiling) {
		instance = MM_VirtualMemory::newInstance(env, heapAlignment, allocateSize, pageSize, pageFlags, tailPadding, preferredAddress,
												 ceiling, mode, options, memoryCategory);
	} else {
#if defined(OMR_GC_COMPRESSED_POINTERS)
		OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
		/*
		 * This function is used for Compressed References platforms only
		 * The ceiling for such platforms is set maximum memory value be supported (32G for 3-bit shift)
		 * The ceiling it is 0 for all other platforms
		 */
		/* NON_SCALING_LOW_MEMORY_HEAP_CEILING is set to 4G for 64-bit platforms only, 0 for 32-bit platforms */
		Assert_MM_true(NON_SCALING_LOW_MEMORY_HEAP_CEILING > 0);
		
		/*
		 * Usually the suballocator memory should be allocated first (before heap) however
		 * in case when preferred address is specified we will try to allocate heap first
		 * to avoid possible interference with requested heap location
		 */
		bool shouldHeapBeAllocatedFirst = (NULL != preferredAddress);
		void* startAllocationAddress = preferredAddress;

		/* Set the commit size for the sub allocator. This needs to be completed before the call to omrmem_ensure_capacity32 */
		omrport_control(OMRPORT_CTLDATA_ALLOCATE32_COMMIT_SIZE, extensions->suballocatorCommitSize);

		if (!shouldHeapBeAllocatedFirst) {
			if (OMRPORT_ENSURE_CAPACITY_FAILED == omrmem_ensure_capacity32(extensions->suballocatorInitialSize)) {
				extensions->heapInitializationFailureReason = MM_GCExtensionsBase::HEAP_INITIALIZATION_FAILURE_REASON_CAN_NOT_ALLOCATE_LOW_MEMORY_RESERVE;
				return false;
			}
		}

		options |= OMRPORT_VMEM_STRICT_ADDRESS | OMRPORT_VMEM_ALLOC_QUICK;

#if defined(J9ZOS39064)
		/* 2TO32G area is extended to 64G */
		options |= OMRPORT_VMEM_ZOS_USE2TO32G_AREA;

		/*
		 * On ZOS an address space below 2G can not be taken for virtual memory
		 */
#define TWO_GB_ADDRESS ((void*)((uintptr_t)2 * 1024 * 1024 * 1024))
		if (NULL == preferredAddress) {
			startAllocationAddress = TWO_GB_ADDRESS;
		}
#endif /* defined(J9ZOS39064) */

		void* requestedTopAddress = (void*)((uintptr_t)startAllocationAddress + allocateSize + tailPadding);

		if (extensions->isConcurrentScavengerEnabled()) {
			void * ceilingToRequest = ceiling;
			/* Requested top address might be higher then ceiling because of added chunk */
			if ((requestedTopAddress > ceiling) && ((void *)((uintptr_t)requestedTopAddress - concurrentScavengerPageSize) <= ceiling)) {
				/* ZOS 2_TO_64/2_TO_32 options would not allow memory request larger then 64G/32G so total requested size including tail padding should not exceed it */
				allocateSize = (uintptr_t)ceiling - (uintptr_t)startAllocationAddress - tailPadding;

				if (extensions->isDebugConcurrentScavengerPageAlignment()) {
					omrtty_printf("Total allocate size exceeds ceiling %p, reduce allocate size to 0x%zx\n", ceiling, allocateSize);
				}
				/*
				 * There is no way that Nursery will be pushed above ceiling for valid memory options however we have
				 * no idea about start address. So to guarantee an allocation up to the ceiling we need to request extended chunk of memory. 
				 * Set ceiling to NULL to disable ceiling control. This required bottom-up direction for allocation.
				 */
				ceilingToRequest = NULL;
			}

			options |= OMRPORT_VMEM_ALLOC_DIR_BOTTOM_UP;

			/* An attempt to allocate memory chunk for heap for Concurrent Scavenger */
			instance = MM_VirtualMemory::newInstance(env, heapAlignment, allocateSize, pageSize, pageFlags, tailPadding, preferredAddress, ceilingToRequest, mode, options, memoryCategory);
		} else {
			if (requestedTopAddress <= ceiling) {
				bool allocationTopDown = true;
				/* define the scan direction when reserving the GC heap in the range of (4G, 32G) */
#if defined(S390) || defined(J9ZOS390)
				/* s390 benefits from smaller shift values so allocate direction is bottom up */
				options |= OMRPORT_VMEM_ALLOC_DIR_BOTTOM_UP;
				allocationTopDown = false;
#else
				options |= OMRPORT_VMEM_ALLOC_DIR_TOP_DOWN;
#endif /* defined(S390) || defined(J9ZOS390) */

				if (allocationTopDown && extensions->shouldForceSpecifiedShiftingCompression) {
					/* force to allocate heap top-down from correspondent to shift address */
					void* maxAddress = (void *)(((uintptr_t)1 << 32) << extensions->forcedShiftingCompressionAmount);

					instance = MM_VirtualMemory::newInstance(env, heapAlignment, allocateSize, pageSize, pageFlags, tailPadding, preferredAddress,
							maxAddress, mode, options, memoryCategory);
				} else {
					if (requestedTopAddress < (void*)NON_SCALING_LOW_MEMORY_HEAP_CEILING) {
						/*
						 * Attempt to allocate heap below 4G
						 */
						instance = MM_VirtualMemory::newInstance(env, heapAlignment, allocateSize, pageSize, pageFlags, tailPadding, preferredAddress,
																 (void*)OMR_MIN(NON_SCALING_LOW_MEMORY_HEAP_CEILING, (uintptr_t)ceiling), mode, options, memoryCategory);
					}

					if ((NULL == instance) && (ceiling > (void*)NON_SCALING_LOW_MEMORY_HEAP_CEILING)) {

#define THIRTY_TWO_GB_ADDRESS ((uintptr_t)32 * 1024 * 1024 * 1024)
						if (requestedTopAddress <= (void *)THIRTY_TWO_GB_ADDRESS) {
							/*
							 * If requested object heap size is in range 28G-32G its allocation with 3-bit shift might compromise amount of low memory below 4G
							 * To prevent this go straight to 4-bit shift if it possible.
							 * Set of logical conditions to skip allocation attempt below 32G
							 *  - 4-bit shift is available option
							 *  - requested size is larger then 28G (32 minus 4)
							 *  - allocation direction is top-down, otherwise it does not make sense
							 */
							bool skipAllocationBelow32G = (ceiling > (void*)THIRTY_TWO_GB_ADDRESS)
								 && (requestedTopAddress > (void*)(THIRTY_TWO_GB_ADDRESS - NON_SCALING_LOW_MEMORY_HEAP_CEILING))
								 && allocationTopDown;

							if (!skipAllocationBelow32G) {
								/*
								 * Attempt to allocate heap below 32G
								 */
								instance = MM_VirtualMemory::newInstance(env, heapAlignment, allocateSize, pageSize, pageFlags, tailPadding, preferredAddress,
																		 (void*)OMR_MIN((uintptr_t)THIRTY_TWO_GB_ADDRESS, (uintptr_t)ceiling), mode, options, memoryCategory);
							}
						}

						/*
						 * Attempt to allocate above 32G
						 */
						if ((NULL == instance) && (ceiling > (void *)THIRTY_TWO_GB_ADDRESS)) {
							instance = MM_VirtualMemory::newInstance(env, heapAlignment, allocateSize, pageSize, pageFlags, tailPadding, preferredAddress,
																	 ceiling, mode, options, memoryCategory);
						}
					}
				}
			}
		}

		/*
		 * If preferredAddress is requested check is it really taken: if not - release memory
		 * for backward compatibility this check should be done for compressedrefs platforms only
		 */
		if ((NULL != preferredAddress) && (NULL != instance) && (instance->getHeapBase() != preferredAddress)) {
			extensions->heapInitializationFailureReason = MM_GCExtensionsBase::HEAP_INITIALIZATION_FAILURE_REASON_CAN_NOT_INSTANTIATE_HEAP;
			instance->kill(env);
			instance = NULL;
			return false;
		}

		if ((NULL != instance) && shouldHeapBeAllocatedFirst) {
			if (OMRPORT_ENSURE_CAPACITY_FAILED == omrmem_ensure_capacity32(extensions->suballocatorInitialSize)) {
				extensions->heapInitializationFailureReason = MM_GCExtensionsBase::HEAP_INITIALIZATION_FAILURE_REASON_CAN_NOT_ALLOCATE_LOW_MEMORY_RESERVE;
				instance->kill(env);
				instance = NULL;
				return false;
			}
		}
#else /* defined(OMR_GC_COMPRESSED_POINTERS) */

		/*
		 * Code above might be used for non-compressedrefs platforms but need a few adjustments on it for this:
		 *  - NON_SCALING_LOW_MEMORY_HEAP_CEILING should be set
		 *  - OMRPORT_VMEM_ZOS_USE2TO32G_AREA flag for ZOS is expected to be used for compressedrefs heap allocation only
		 */
		Assert_MM_unimplemented();

#endif /* defined(OMR_GC_COMPRESSED_POINTERS) */
	}

	if((NULL != instance) && extensions->largePageFailOnError && (instance->getPageSize() != extensions->requestedPageSize)) {
		extensions->heapInitializationFailureReason = MM_GCExtensionsBase::HEAP_INITIALIZATION_FAILURE_REASON_CAN_NOT_SATISFY_REQUESTED_PAGE_SIZE;
		instance->kill(env);
		instance = NULL;
		return false;
	}

	handle->setVirtualMemory(instance);
	if (NULL != instance) {
		instance->incrementConsumerCount();
		handle->setMemoryBase(instance->getHeapBase());
		handle->setMemoryTop(instance->getHeapTop());

		/*
		 * Aligning Nursery location to Concurrent Scavenger Page and calculate Concurrent Scavenger Page start address
		 * There are two possible cases here:
		 * - Nursery fits Concurrent Scavenger Page already = no extra alignment required
		 * - current Nursery location has crossed Concurrent Scavenger Page boundary so it needs to be pushed higher to
		 *   have Nursery low address to be aligned to Concurrent Scavenger Page
		 */
		if (extensions->isConcurrentScavengerEnabled()) {
			OMRPORT_ACCESS_FROM_ENVIRONMENT(env);
			/* projected Nursery base and top */
			/* assumed Nursery location in high addresses of the heap */
			uintptr_t heapBase = (uintptr_t)handle->getMemoryBase();
			uintptr_t nurseryTop = heapBase + size;
			uintptr_t nurseryBase = nurseryTop - extensions->maxNewSpaceSize;

			if (extensions->isDebugConcurrentScavengerPageAlignment()) {
				omrtty_printf("Allocated memory for heap: [%p,%p]\n", handle->getMemoryBase(), handle->getMemoryTop());
			}

			uintptr_t baseAligned = MM_Math::roundToCeiling(concurrentScavengerPageSize, nurseryBase + 1);
			uintptr_t topAligned = MM_Math::roundToCeiling(concurrentScavengerPageSize, nurseryTop);

			if (baseAligned == topAligned) {
				/* Nursery fits Concurrent Scavenger Page already */
				extensions->setConcurrentScavengerPageStartAddress((void *)(baseAligned - concurrentScavengerPageSize));

				if (extensions->isDebugConcurrentScavengerPageAlignment()) {
					omrtty_printf("Expected Nursery start address 0x%zx\n", nurseryBase);
				}
			} else {
				/* Nursery location should be adjusted */
				extensions->setConcurrentScavengerPageStartAddress((void *)baseAligned);

				if (extensions->isDebugConcurrentScavengerPageAlignment()) {
					omrtty_printf("Expected Nursery start address adjusted to 0x%zx\n", baseAligned);
				}

				/* Move up entire heap for proper Nursery adjustment */
				heapBase += (baseAligned - nurseryBase);
				handle->setMemoryBase((void *)heapBase);

				/* top of adjusted Nursery should fit reserved memory */
				Assert_GC_true_with_message3(env, ((heapBase + size) <= (uintptr_t)handle->getMemoryTop()),
						"End of projected heap (base 0x%zx + size 0x%zx) is larger then Top allocated %p\n",
						heapBase, size, handle->getMemoryTop());
			}

			/* adjust heap top to lowest possible address */
			handle->setMemoryTop((void *)(heapBase + size));

			if (extensions->isDebugConcurrentScavengerPageAlignment()) {
				omrtty_printf("Adjusted heap location: [%p,%p], Concurrent Scavenger Page start address %p, Concurrent Scavenger Page size 0x%zx\n",
						handle->getMemoryBase(), handle->getMemoryTop(), extensions->getConcurrentScavengerPageStartAddress(), concurrentScavengerPageSize);
			}

			/*
			 * Concurrent Scavenger Page location might be aligned out of Compressed References supported memory range
			 * Fail to initialize in this case
			 */
			if ((NULL != ceiling) && (handle->getMemoryTop() > ceiling)) {
				extensions->heapInitializationFailureReason = MM_GCExtensionsBase::HEAP_INITIALIZATION_FAILURE_REASON_CAN_NOT_INSTANTIATE_HEAP;
				destroyVirtualMemory(env, handle);
				instance = NULL;
			}
		}
	}

#if defined(OMR_VALGRIND_MEMCHECK)
	//Use handle's Memory Base to refer valgrind memory pool
	valgrindCreateMempool(extensions, env, (uintptr_t)handle->getMemoryBase());
#endif /* defined(OMR_VALGRIND_MEMCHECK) */

	return NULL != instance;
}