Example #1
0
/**
 * Provides fine-tuned implementation for IDIV/IREM operations on IA32-compatible platforms, 
 * in replacement of common arithmetic helper (see arith_rt.h).
 */
bool CodeGen::gen_a_platf(JavaByteCodes op, jtype jt)
{
    if (jt != i32) return false;
    if (op != OPCODE_IDIV && op != OPCODE_IREM) {
        return false;
    }
    //
    // The method is supposed to be platform-depended, and may not have 
    // Encoder support - leaving as-is, without implementing general 
    // support in Encoder
    //
    
    vpark(eax.reg());
    vpark(edx.reg());
    rlock(eax);
    rlock(edx);
    Val& v1 = vstack(1, vis_imm(1));
    Val& v2 = vstack(0, true);
    alu(alu_cmp, v2.as_opnd(), Opnd(-1));
    unsigned br_normal = br(ne, 0, 0);
    alu(alu_cmp, v1.as_opnd(), Opnd(INT_MIN));
    unsigned br_exit = NOTHING;
    if (op == OPCODE_IREM) {
        do_mov(edx, Opnd(0)); // prepare exit value for the corner case
        br_exit = br(eq, 0, 0);
    }
    else {
        do_mov(eax, v1);
        br_exit = br(eq, 0, 0);
    }
    patch(br_normal, ip());
    do_mov(eax, v1);
    //
    // The method is supposed to be platform-depended, and may not have 
    // Encoder support - leaving as-is, without implementing general 
    // support in Encoder
    //
    
    //CDQ
    EncoderBase::Operands args0(RegName_EDX, RegName_EAX);
    ip(EncoderBase::encode(ip(), Mnemonic_CDQ, args0));
    //IDIV
    EncoderBase::Operands args(RegName_EDX, RegName_EAX, 
                               devirt(v2.reg(), i32));
    ip(EncoderBase::encode(ip(), Mnemonic_IDIV, args));
    patch(br_exit, ip());

    vpop();
    vpop();
    vpush(op == OPCODE_IREM ? edx : eax);
    runlock(eax);
    runlock(edx);
    return true;
}
Example #2
0
void Compiler::gen_if(JavaByteCodes opcod, unsigned target)
{
    if (target <= m_pc) {
        // have back branch here
        gen_prof_be();
        gen_gc_safe_point();
    }
    jtype jt = i32;
    if (opcod == OPCODE_IFNULL) {
        opcod = OPCODE_IFEQ;
        jt = jobj;
    }
    else if (opcod == OPCODE_IFNONNULL) {
        opcod = OPCODE_IFNE;
        jt = jobj;
    }
    OpndKind kind = m_jframe->dip(0).kind();
    bool forceReg = (kind == opnd_imm) || (jt == jobj && g_refs_squeeze);
    Opnd op1 = vstack(0, forceReg).as_opnd();
    vpop();
    rlock(op1);
    COND cond = to_cond(opcod);
    static const Opnd zero((int)0);
    if (jt == jobj && g_refs_squeeze) {
        AR ar = valloc(jobj);
        movp(ar, NULL_REF);
        alu(alu_cmp, Opnd(jobj, ar), op1);
    }
    else if (opcod == OPCODE_IFEQ || opcod == OPCODE_IFNE) {
        if (op1.is_reg()) {
            alu(alu_test, op1, op1);
        }
        else {
            alu(alu_cmp, op1, zero);
        }
    }
    else {
        alu(alu_cmp, op1, zero);
    }
    runlock(op1);
    gen_bb_leave(target);
    br(cond, target, m_bbinfo->start);
}
Example #3
0
  Opnd
opnd_null()
{
  return Opnd();
}
Example #4
0
void Compiler::gen_switch(const JInst & jinst)
{
    assert(jinst.opcode == OPCODE_LOOKUPSWITCH 
           || jinst.opcode == OPCODE_TABLESWITCH);
    Opnd val = vstack(0, true).as_opnd();
    vpop();
    rlock(val);
    gen_bb_leave(NOTHING);

    if (jinst.opcode == OPCODE_LOOKUPSWITCH) {
        unsigned n = jinst.get_num_targets();
        for (unsigned i = 0; i < n; i++) {
            Opnd key(jinst.key(i));
            unsigned pc = jinst.get_target(i);
            alu(alu_cmp, val, key);
            br(eq, pc, m_bbinfo->start);
        }
        runlock(val);
        br(cond_none, jinst.get_def_target(), m_bbinfo->start);
        return;
    }
    //
    // TABLESWITCH
    //
    alu(alu_cmp, val, jinst.high());
    br(gt, jinst.get_def_target(), m_bbinfo->start);
    
    alu(alu_cmp, val, jinst.low());
    br(lt, jinst.get_def_target(), m_bbinfo->start);
    
    AR gr_tabl = valloc(jobj);
    movp(gr_tabl, DATA_SWITCH_TABLE | m_curr_inst->pc, m_bbinfo->start);
#ifdef _EM64T_
    // On EM64T, we operate with I_32 value in a register, but the 
    // register will be used as 64 bit in address form - have to extend
    sx(Opnd(i64, val.reg()), Opnd(i32, val.reg()));
#endif
    // Here, we need to extract 'index-=low()' - can pack this into 
    // complex address form:
    //      [table + index*sizeof(void*) - low()*sizeof(void*)],
    // but only if low()*sizeof(void*) does fit into displacement ...
    int tmp = -jinst.low();
    const int LO_BOUND = INT_MIN/(int)sizeof(void*);
    const int UP_BOUND = INT_MAX/(int)sizeof(void*);
    if (LO_BOUND<=tmp && tmp<=UP_BOUND) {
        ld(jobj, gr_tabl, gr_tabl, -jinst.low()*sizeof(void*), 
        val.reg(), sizeof(void*));
    }
    else {
        // ... otherwise subtract explicitly, but only if the register
        // is not used anywhere else
        if (rrefs(val.reg()) !=0) {
            Opnd vtmp(i32, valloc(i32));
            mov(vtmp, val); // make a copy of val
            runlock(val);
            val = vtmp;
            rlock(val);
        }
        alu(alu_sub, val, jinst.low());
        ld(jobj, gr_tabl, gr_tabl, 0, val.reg(), sizeof(void*));
    }
    runlock(val);
    br(gr_tabl);
}