void Config_ResetDefault() {
  float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  float tmp2[] = DEFAULT_MAX_FEEDRATE;
  long tmp3[] = DEFAULT_MAX_ACCELERATION;
  for (uint8_t i = 0; i < NUM_AXIS; i++) {
    axis_steps_per_unit[i] = tmp1[i];
    max_feedrate[i] = tmp2[i];
    max_acceleration_units_per_sq_second[i] = tmp3[i];
    #if ENABLED(SCARA)
      if (i < COUNT(axis_scaling))
        axis_scaling[i] = 1;
    #endif
  }

  // steps per sq second need to be updated to agree with the units per sq second
  reset_acceleration_rates();

  acceleration = DEFAULT_ACCELERATION;
  retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
  minsegmenttime = DEFAULT_MINSEGMENTTIME;
  mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
  max_xy_jerk = DEFAULT_XYJERK;
  max_z_jerk = DEFAULT_ZJERK;
  max_e_jerk = DEFAULT_EJERK;
  home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;

  #if ENABLED(MESH_BED_LEVELING)
    mbl.active = 0;
  #endif

  #if ENABLED(AUTO_BED_LEVELING_FEATURE)
    zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  #endif

  #if ENABLED(DELTA)
    endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
    delta_radius =  DELTA_RADIUS;
    delta_diagonal_rod =  DELTA_DIAGONAL_ROD;
    delta_segments_per_second =  DELTA_SEGMENTS_PER_SECOND;
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
  #elif ENABLED(Z_DUAL_ENDSTOPS)
    z_endstop_adj = 0;
  #endif

  #if ENABLED(ULTIPANEL)
    plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
    plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
    plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
    absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
    absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
    absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  #endif

  #if ENABLED(HAS_LCD_CONTRAST)
    lcd_contrast = DEFAULT_LCD_CONTRAST;
  #endif

  #if ENABLED(PIDTEMP)
    #if ENABLED(PID_PARAMS_PER_EXTRUDER)
      for (int e = 0; e < EXTRUDERS; e++)
    #else
      int e = 0; UNUSED(e); // only need to write once
    #endif
    {
      PID_PARAM(Kp, e) = DEFAULT_Kp;
      PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
      PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
      #if ENABLED(PID_ADD_EXTRUSION_RATE)
        PID_PARAM(Kc, e) = DEFAULT_Kc;
      #endif
    }
    #if ENABLED(PID_ADD_EXTRUSION_RATE)
      lpq_len = 20; // default last-position-queue size
    #endif
    // call updatePID (similar to when we have processed M301)
    updatePID();
  #endif // PIDTEMP

  #if ENABLED(PIDTEMPBED)
    bedKp = DEFAULT_bedKp;
    bedKi = scalePID_i(DEFAULT_bedKi);
    bedKd = scalePID_d(DEFAULT_bedKd);
  #endif

  #if ENABLED(FWRETRACT)
    autoretract_enabled = false;
    retract_length = RETRACT_LENGTH;
    #if EXTRUDERS > 1
      retract_length_swap = RETRACT_LENGTH_SWAP;
    #endif
    retract_feedrate = RETRACT_FEEDRATE;
    retract_zlift = RETRACT_ZLIFT;
    retract_recover_length = RETRACT_RECOVER_LENGTH;
    #if EXTRUDERS > 1
      retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
    #endif
    retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  #endif

  volumetric_enabled = false;
  for (uint8_t q = 0; q < COUNT(filament_size); q++)
    filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  calculate_volumetric_multipliers();

  SERIAL_ECHO_START;
  SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
void Config_PrintSettings(bool forReplay) {
  // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown

  CONFIG_ECHO_START;

  if (!forReplay) {
    SERIAL_ECHOLNPGM("Steps per unit:");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M92 X", axis_steps_per_unit[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
  SERIAL_EOL;

  CONFIG_ECHO_START;

  #if ENABLED(SCARA)
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Scaling factors:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M365 X", axis_scaling[X_AXIS]);
    SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
    SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
    SERIAL_EOL;
    CONFIG_ECHO_START;
  #endif // SCARA

  if (!forReplay) {
    SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M203 X", max_feedrate[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
  SERIAL_EOL;

  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M201 X", max_acceleration_units_per_sq_second[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
  SERIAL_EOL;
  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M204 P", acceleration);
  SERIAL_ECHOPAIR(" R", retract_acceleration);
  SERIAL_ECHOPAIR(" T", travel_acceleration);
  SERIAL_EOL;

  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M205 S", minimumfeedrate);
  SERIAL_ECHOPAIR(" T", mintravelfeedrate);
  SERIAL_ECHOPAIR(" B", minsegmenttime);
  SERIAL_ECHOPAIR(" X", max_xy_jerk);
  SERIAL_ECHOPAIR(" Z", max_z_jerk);
  SERIAL_ECHOPAIR(" E", max_e_jerk);
  SERIAL_EOL;

  CONFIG_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Home offset (mm):");
    CONFIG_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M206 X", home_offset[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  SERIAL_EOL;

  #if ENABLED(MESH_BED_LEVELING)
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Mesh bed leveling:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M420 S", (unsigned long)mbl.active);
    SERIAL_ECHOPAIR(" X", (unsigned long)MESH_NUM_X_POINTS);
    SERIAL_ECHOPAIR(" Y", (unsigned long)MESH_NUM_Y_POINTS);
    SERIAL_EOL;
    for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
      for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("  M421 X", mbl.get_x(x));
        SERIAL_ECHOPAIR(" Y", mbl.get_y(y));
        SERIAL_ECHOPAIR(" Z", mbl.z_values[y][x]);
        SERIAL_EOL;
      }
    }
  #endif

  #if ENABLED(DELTA)
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M666 X", endstop_adj[X_AXIS]);
    SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
    SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
    CONFIG_ECHO_START;
    SERIAL_ECHOPAIR("  M665 L", delta_diagonal_rod);
    SERIAL_ECHOPAIR(" R", delta_radius);
    SERIAL_ECHOPAIR(" S", delta_segments_per_second);
    SERIAL_EOL;
  #elif ENABLED(Z_DUAL_ENDSTOPS)
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M666 Z", z_endstop_adj);
    SERIAL_EOL;
  #endif // DELTA

  #if ENABLED(ULTIPANEL)
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Material heatup parameters:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M145 M0 H", (unsigned long)plaPreheatHotendTemp);
    SERIAL_ECHOPAIR(" B", (unsigned long)plaPreheatHPBTemp);
    SERIAL_ECHOPAIR(" F", (unsigned long)plaPreheatFanSpeed);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    SERIAL_ECHOPAIR("  M145 M1 H", (unsigned long)absPreheatHotendTemp);
    SERIAL_ECHOPAIR(" B", (unsigned long)absPreheatHPBTemp);
    SERIAL_ECHOPAIR(" F", (unsigned long)absPreheatFanSpeed);
    SERIAL_EOL;
  #endif // ULTIPANEL

  #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)

    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("PID settings:");
    }
    #if ENABLED(PIDTEMP)
      #if EXTRUDERS > 1
        if (forReplay) {
          for (uint8_t i = 0; i < EXTRUDERS; i++) {
            CONFIG_ECHO_START;
            SERIAL_ECHOPAIR("  M301 E", (unsigned long)i);
            SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
            SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
            SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
            #if ENABLED(PID_ADD_EXTRUSION_RATE)
              SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
              if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
            #endif
            SERIAL_EOL;
          }
        }
        else
      #endif // EXTRUDERS > 1
      // !forReplay || EXTRUDERS == 1
      {
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("  M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
        SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
        SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
        #if ENABLED(PID_ADD_EXTRUSION_RATE)
          SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
          SERIAL_ECHOPAIR(" L", lpq_len);
        #endif
        SERIAL_EOL;
      }
    #endif // PIDTEMP

    #if ENABLED(PIDTEMPBED)
      CONFIG_ECHO_START;
      SERIAL_ECHOPAIR("  M304 P", bedKp);
      SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi));
      SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd));
      SERIAL_EOL;
    #endif

  #endif // PIDTEMP || PIDTEMPBED

  #if ENABLED(HAS_LCD_CONTRAST)
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("LCD Contrast:");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M250 C", (unsigned long)lcd_contrast);
    SERIAL_EOL;
  #endif

  #if ENABLED(FWRETRACT)

    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M207 S", retract_length);
    #if EXTRUDERS > 1
      SERIAL_ECHOPAIR(" W", retract_length_swap);
    #endif
    SERIAL_ECHOPAIR(" F", retract_feedrate * 60);
    SERIAL_ECHOPAIR(" Z", retract_zlift);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M208 S", retract_recover_length);
    #if EXTRUDERS > 1
      SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
    #endif
    SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
    SERIAL_EOL;
    CONFIG_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
      CONFIG_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
    SERIAL_EOL;

  #endif // FWRETRACT

  /**
   * Volumetric extrusion M200
   */
  if (!forReplay) {
    CONFIG_ECHO_START;
    SERIAL_ECHOPGM("Filament settings:");
    if (volumetric_enabled)
      SERIAL_EOL;
    else
      SERIAL_ECHOLNPGM(" Disabled");
  }

  CONFIG_ECHO_START;
  SERIAL_ECHOPAIR("  M200 D", filament_size[0]);
  SERIAL_EOL;
  #if EXTRUDERS > 1
    CONFIG_ECHO_START;
    SERIAL_ECHOPAIR("  M200 T1 D", filament_size[1]);
    SERIAL_EOL;
    #if EXTRUDERS > 2
      CONFIG_ECHO_START;
      SERIAL_ECHOPAIR("  M200 T2 D", filament_size[2]);
      SERIAL_EOL;
      #if EXTRUDERS > 3
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("  M200 T3 D", filament_size[3]);
        SERIAL_EOL;
      #endif
    #endif
  #endif

  if (!volumetric_enabled) {
    CONFIG_ECHO_START;
    SERIAL_ECHOLNPGM("  M200 D0");
  }

  /**
   * Auto Bed Leveling
   */
  #if ENABLED(AUTO_BED_LEVELING_FEATURE)
    #if ENABLED(CUSTOM_M_CODES)
      if (!forReplay) {
        CONFIG_ECHO_START;
        SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
      }
      CONFIG_ECHO_START;
      SERIAL_ECHOPAIR("  M" STRINGIFY(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET) " Z", zprobe_zoffset);
    #else
      if (!forReplay) {
        CONFIG_ECHO_START;
        SERIAL_ECHOPAIR("Z-Probe Offset (mm):", zprobe_zoffset);
      }
    #endif
    SERIAL_EOL;
  #endif
}
void Config_StoreSettings()  {
  float dummy = 0.0f;
  char ver[4] = "000";
  int i = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(i, ver); // invalidate data first
  EEPROM_WRITE_VAR(i, axis_steps_per_unit);
  EEPROM_WRITE_VAR(i, max_feedrate);
  EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
  EEPROM_WRITE_VAR(i, acceleration);
  EEPROM_WRITE_VAR(i, retract_acceleration);
  EEPROM_WRITE_VAR(i, travel_acceleration);
  EEPROM_WRITE_VAR(i, minimumfeedrate);
  EEPROM_WRITE_VAR(i, mintravelfeedrate);
  EEPROM_WRITE_VAR(i, minsegmenttime);
  EEPROM_WRITE_VAR(i, max_xy_jerk);
  EEPROM_WRITE_VAR(i, max_z_jerk);
  EEPROM_WRITE_VAR(i, max_e_jerk);
  EEPROM_WRITE_VAR(i, home_offset);

  uint8_t mesh_num_x = 3;
  uint8_t mesh_num_y = 3;
  #if ENABLED(MESH_BED_LEVELING)
    // Compile time test that sizeof(mbl.z_values) is as expected
    typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS * sizeof(dummy)) ? 1 : -1];
    mesh_num_x = MESH_NUM_X_POINTS;
    mesh_num_y = MESH_NUM_Y_POINTS;
    EEPROM_WRITE_VAR(i, mbl.active);
    EEPROM_WRITE_VAR(i, mesh_num_x);
    EEPROM_WRITE_VAR(i, mesh_num_y);
    EEPROM_WRITE_VAR(i, mbl.z_values);
  #else
    uint8_t dummy_uint8 = 0;
    EEPROM_WRITE_VAR(i, dummy_uint8);
    EEPROM_WRITE_VAR(i, mesh_num_x);
    EEPROM_WRITE_VAR(i, mesh_num_y);
    dummy = 0.0f;
    for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
  #endif // MESH_BED_LEVELING

  #if DISABLED(AUTO_BED_LEVELING_FEATURE)
    float zprobe_zoffset = 0;
  #endif
  EEPROM_WRITE_VAR(i, zprobe_zoffset);

  #if ENABLED(DELTA)
    EEPROM_WRITE_VAR(i, endstop_adj);               // 3 floats
    EEPROM_WRITE_VAR(i, delta_radius);              // 1 float
    EEPROM_WRITE_VAR(i, delta_diagonal_rod);        // 1 float
    EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  #elif ENABLED(Z_DUAL_ENDSTOPS)
    EEPROM_WRITE_VAR(i, z_endstop_adj);            // 1 floats
    dummy = 0.0f;
    for (int q = 5; q--;) EEPROM_WRITE_VAR(i, dummy);
  #else
    dummy = 0.0f;
    for (int q = 6; q--;) EEPROM_WRITE_VAR(i, dummy);
  #endif

  #if DISABLED(ULTIPANEL)
    int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
        absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  #endif // !ULTIPANEL

  EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, absPreheatFanSpeed);

  for (int e = 0; e < 4; e++) {

    #if ENABLED(PIDTEMP)
      if (e < EXTRUDERS) {
        EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
        EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
        EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
        #if ENABLED(PID_ADD_EXTRUSION_RATE)
          EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
        #else
          dummy = 1.0f; // 1.0 = default kc
          EEPROM_WRITE_VAR(i, dummy);
        #endif
      }
      else
    #endif // !PIDTEMP
      {
        dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
        EEPROM_WRITE_VAR(i, dummy);
        dummy = 0.0f;
        for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
      }

  } // Extruders Loop

  #if DISABLED(PID_ADD_EXTRUSION_RATE)
    int lpq_len = 20;
  #endif
  EEPROM_WRITE_VAR(i, lpq_len);

  #if DISABLED(PIDTEMPBED)
    float bedKp = DUMMY_PID_VALUE, bedKi = DUMMY_PID_VALUE, bedKd = DUMMY_PID_VALUE;
  #endif

  EEPROM_WRITE_VAR(i, bedKp);
  EEPROM_WRITE_VAR(i, bedKi);
  EEPROM_WRITE_VAR(i, bedKd);

  #if DISABLED(HAS_LCD_CONTRAST)
    const int lcd_contrast = 32;
  #endif
  EEPROM_WRITE_VAR(i, lcd_contrast);

  #if ENABLED(SCARA)
    EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  #else
    dummy = 1.0f;
    EEPROM_WRITE_VAR(i, dummy);
  #endif

  #if ENABLED(FWRETRACT)
    EEPROM_WRITE_VAR(i, autoretract_enabled);
    EEPROM_WRITE_VAR(i, retract_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_feedrate);
    EEPROM_WRITE_VAR(i, retract_zlift);
    EEPROM_WRITE_VAR(i, retract_recover_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_recover_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  #endif // FWRETRACT

  EEPROM_WRITE_VAR(i, volumetric_enabled);

  // Save filament sizes
  for (int q = 0; q < 4; q++) {
    if (q < EXTRUDERS) dummy = filament_size[q];
    EEPROM_WRITE_VAR(i, dummy);
  }

  char ver2[4] = EEPROM_VERSION;
  int j = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(j, ver2); // validate data

  // Report storage size
  SERIAL_ECHO_START;
  SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
  SERIAL_ECHOLNPGM(" bytes)");
}
void Config_RetrieveSettings() {

  int i = EEPROM_OFFSET;
  char stored_ver[4];
  char ver[4] = EEPROM_VERSION;
  EEPROM_READ_VAR(i, stored_ver); //read stored version
  //  SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");

  if (strncmp(ver, stored_ver, 3) != 0) {
    Config_ResetDefault();
  }
  else {
    float dummy = 0;

    // version number match
    EEPROM_READ_VAR(i, axis_steps_per_unit);
    EEPROM_READ_VAR(i, max_feedrate);
    EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);

    // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
    reset_acceleration_rates();

    EEPROM_READ_VAR(i, acceleration);
    EEPROM_READ_VAR(i, retract_acceleration);
    EEPROM_READ_VAR(i, travel_acceleration);
    EEPROM_READ_VAR(i, minimumfeedrate);
    EEPROM_READ_VAR(i, mintravelfeedrate);
    EEPROM_READ_VAR(i, minsegmenttime);
    EEPROM_READ_VAR(i, max_xy_jerk);
    EEPROM_READ_VAR(i, max_z_jerk);
    EEPROM_READ_VAR(i, max_e_jerk);
    EEPROM_READ_VAR(i, home_offset);

    uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
    EEPROM_READ_VAR(i, dummy_uint8);
    EEPROM_READ_VAR(i, mesh_num_x);
    EEPROM_READ_VAR(i, mesh_num_y);
    #if ENABLED(MESH_BED_LEVELING)
      mbl.active = dummy_uint8;
      if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
        EEPROM_READ_VAR(i, mbl.z_values);
      } else {
        mbl.reset();
        for (int q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
      }
    #else
      for (int q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
    #endif // MESH_BED_LEVELING

    #if DISABLED(AUTO_BED_LEVELING_FEATURE)
      float zprobe_zoffset = 0;
    #endif
    EEPROM_READ_VAR(i, zprobe_zoffset);

    #if ENABLED(DELTA)
      EEPROM_READ_VAR(i, endstop_adj);                // 3 floats
      EEPROM_READ_VAR(i, delta_radius);               // 1 float
      EEPROM_READ_VAR(i, delta_diagonal_rod);         // 1 float
      EEPROM_READ_VAR(i, delta_segments_per_second);  // 1 float
    #elif ENABLED(Z_DUAL_ENDSTOPS)
      EEPROM_READ_VAR(i, z_endstop_adj);
      dummy = 0.0f;
      for (int q=5; q--;) EEPROM_READ_VAR(i, dummy);
    #else
      dummy = 0.0f;
      for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
    #endif

    #if DISABLED(ULTIPANEL)
      int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
          absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
    #endif

    EEPROM_READ_VAR(i, plaPreheatHotendTemp);
    EEPROM_READ_VAR(i, plaPreheatHPBTemp);
    EEPROM_READ_VAR(i, plaPreheatFanSpeed);
    EEPROM_READ_VAR(i, absPreheatHotendTemp);
    EEPROM_READ_VAR(i, absPreheatHPBTemp);
    EEPROM_READ_VAR(i, absPreheatFanSpeed);

    #if ENABLED(PIDTEMP)
      for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
        EEPROM_READ_VAR(i, dummy); // Kp
        if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
          // do not need to scale PID values as the values in EEPROM are already scaled
          PID_PARAM(Kp, e) = dummy;
          EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
          EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
          #if ENABLED(PID_ADD_EXTRUSION_RATE)
            EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
          #else
            EEPROM_READ_VAR(i, dummy);
          #endif
        }
        else {
          for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
        }
      }
    #else // !PIDTEMP
      // 4 x 4 = 16 slots for PID parameters
      for (int q=16; q--;) EEPROM_READ_VAR(i, dummy);  // 4x Kp, Ki, Kd, Kc
    #endif // !PIDTEMP

    #if DISABLED(PID_ADD_EXTRUSION_RATE)
      int lpq_len;
    #endif
    EEPROM_READ_VAR(i, lpq_len);

    #if DISABLED(PIDTEMPBED)
      float bedKp, bedKi, bedKd;
    #endif

    EEPROM_READ_VAR(i, dummy); // bedKp
    if (dummy != DUMMY_PID_VALUE) {
      bedKp = dummy; UNUSED(bedKp);
      EEPROM_READ_VAR(i, bedKi);
      EEPROM_READ_VAR(i, bedKd);
    }
    else {
      for (int q=2; q--;) EEPROM_READ_VAR(i, dummy); // bedKi, bedKd
    }

    #if DISABLED(HAS_LCD_CONTRAST)
      int lcd_contrast;
    #endif
    EEPROM_READ_VAR(i, lcd_contrast);

    #if ENABLED(SCARA)
      EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
    #else
      EEPROM_READ_VAR(i, dummy);
    #endif

    #if ENABLED(FWRETRACT)
      EEPROM_READ_VAR(i, autoretract_enabled);
      EEPROM_READ_VAR(i, retract_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_feedrate);
      EEPROM_READ_VAR(i, retract_zlift);
      EEPROM_READ_VAR(i, retract_recover_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_recover_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_recover_feedrate);
    #endif // FWRETRACT

    EEPROM_READ_VAR(i, volumetric_enabled);

    for (int q = 0; q < 4; q++) {
      EEPROM_READ_VAR(i, dummy);
      if (q < EXTRUDERS) filament_size[q] = dummy;
    }

    calculate_volumetric_multipliers();
    // Call updatePID (similar to when we have processed M301)
    updatePID();

    // Report settings retrieved and length
    SERIAL_ECHO_START;
    SERIAL_ECHO(ver);
    SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
    SERIAL_ECHOLNPGM(" bytes)");
  }

  #if ENABLED(EEPROM_CHITCHAT)
    Config_PrintSettings();
  #endif
}
Example #5
0
void Config_ResetDefault() {
  float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  float tmp2[] = DEFAULT_MAX_FEEDRATE;
  long tmp3[] = DEFAULT_MAX_ACCELERATION;
  for (int i = 0; i < NUM_AXIS; i++) {
    axis_steps_per_unit[i] = tmp1[i];
    max_feedrate[i] = tmp2[i];
    max_acceleration_units_per_sq_second[i] = tmp3[i];
    #ifdef SCARA
      if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
        axis_scaling[i] = 1;
    #endif
  }

  // steps per sq second need to be updated to agree with the units per sq second
  reset_acceleration_rates();

  acceleration = DEFAULT_ACCELERATION;
  retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
  minsegmenttime = DEFAULT_MINSEGMENTTIME;
  mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
  max_xy_jerk = DEFAULT_XYJERK;
  max_z_jerk = DEFAULT_ZJERK;
  max_e_jerk = DEFAULT_EJERK;
  add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;

  #ifdef DELTA
    endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
    delta_radius =  DELTA_RADIUS;
    delta_diagonal_rod =  DELTA_DIAGONAL_ROD;
    delta_segments_per_second =  DELTA_SEGMENTS_PER_SECOND;
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
  #endif

  #ifdef ULTIPANEL
    plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
    plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
    plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
    absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
    absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
    absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  #endif

  #ifdef LEVEL_SENSOR
    zprobe_zoffset = eeprom::StorageManager::single::instance().getOffset();
  #endif

  #ifdef DOGLCD
    lcd_contrast = DEFAULT_LCD_CONTRAST;
  #endif

  #ifdef PIDTEMP
    #ifdef PID_PARAMS_PER_EXTRUDER
      for (int e = 0; e < EXTRUDERS; e++)
    #else
      int e = 0; // only need to write once
    #endif
    {
      PID_PARAM(Kp, e) = DEFAULT_Kp;
      PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
      PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
      #ifdef PID_ADD_EXTRUSION_RATE
        PID_PARAM(Kc, e) = DEFAULT_Kc;
      #endif
    }
    // call updatePID (similar to when we have processed M301)
    updatePID();
  #endif // PIDTEMP

  #ifdef FWRETRACT
    autoretract_enabled = false;
    retract_length = RETRACT_LENGTH;
    #if EXTRUDERS > 1
      retract_length_swap = RETRACT_LENGTH_SWAP;
    #endif
    retract_feedrate = RETRACT_FEEDRATE;
    retract_zlift = RETRACT_ZLIFT;
    retract_recover_length = RETRACT_RECOVER_LENGTH;
    #if EXTRUDERS > 1
      retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
    #endif
    retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  #endif

  volumetric_enabled = false;
  filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
  #if EXTRUDERS > 1
    filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
    #if EXTRUDERS > 2
      filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
      #if EXTRUDERS > 3
        filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
      #endif
    #endif
  #endif
  calculate_volumetric_multipliers();

  SERIAL_ECHO_START;
  SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
Example #6
0
void Config_PrintSettings(bool forReplay) {
  // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown

  SERIAL_ECHO_START;

  if (!forReplay) {
    SERIAL_ECHOLNPGM("Steps per unit:");
    SERIAL_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M92 X", axis_steps_per_unit[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
  SERIAL_EOL;

  SERIAL_ECHO_START;

  #ifdef SCARA
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Scaling factors:");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M365 X", axis_scaling[X_AXIS]);
    SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
    SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
    SERIAL_EOL;
    SERIAL_ECHO_START;
  #endif // SCARA

  if (!forReplay) {
    SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
    SERIAL_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M203 X", max_feedrate[X_AXIS]);
  SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
  SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
  SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
  SERIAL_EOL;

  SERIAL_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
    SERIAL_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
  SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
  SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
  SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
  SERIAL_EOL;
  SERIAL_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration");
    SERIAL_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M204 S", acceleration );
  SERIAL_ECHOPAIR(" T", retract_acceleration);
  SERIAL_EOL;

  SERIAL_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
    SERIAL_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M205 S", minimumfeedrate );
  SERIAL_ECHOPAIR(" T", mintravelfeedrate );
  SERIAL_ECHOPAIR(" B", minsegmenttime );
  SERIAL_ECHOPAIR(" X", max_xy_jerk );
  SERIAL_ECHOPAIR(" Z", max_z_jerk);
  SERIAL_ECHOPAIR(" E", max_e_jerk);
  SERIAL_EOL;

  SERIAL_ECHO_START;
  if (!forReplay) {
    SERIAL_ECHOLNPGM("Home offset (mm):");
    SERIAL_ECHO_START;
  }
  SERIAL_ECHOPAIR("  M206 X", add_homing[X_AXIS] );
  SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] );
  SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] );
  SERIAL_EOL;

  #ifdef DELTA
    SERIAL_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("  M666 X", endstop_adj[X_AXIS] );
    SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
    SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
    SERIAL_EOL;
    SERIAL_ECHO_START;
    SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
    SERIAL_ECHO_START;
    SERIAL_ECHOPAIR("  M665 L", delta_diagonal_rod );
    SERIAL_ECHOPAIR(" R", delta_radius );
    SERIAL_ECHOPAIR(" S", delta_segments_per_second );
    SERIAL_EOL;
  #endif // DELTA

  #ifdef PIDTEMP
    SERIAL_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("PID settings:");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("   M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
    SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
    SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
    SERIAL_EOL;
  #endif // PIDTEMP

  #ifdef FWRETRACT

    SERIAL_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("   M207 S", retract_length);
    SERIAL_ECHOPAIR(" F", retract_feedrate*60);
    SERIAL_ECHOPAIR(" Z", retract_zlift);
    SERIAL_EOL;
    SERIAL_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("   M208 S", retract_recover_length);
    SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
    SERIAL_EOL;
    SERIAL_ECHO_START;
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("   M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
    SERIAL_EOL;

    #if EXTRUDERS > 1
      if (!forReplay) {
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM("Multi-extruder settings:");
        SERIAL_ECHO_START;
        SERIAL_ECHOPAIR("   Swap retract length (mm):    ", retract_length_swap);
        SERIAL_EOL;
        SERIAL_ECHO_START;
        SERIAL_ECHOPAIR("   Swap rec. addl. length (mm): ", retract_recover_length_swap);
        SERIAL_EOL;
      }
    #endif // EXTRUDERS > 1

  #endif // FWRETRACT

  SERIAL_ECHO_START;
  if (volumetric_enabled) {
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Filament settings:");
      SERIAL_ECHO_START;
    }
    SERIAL_ECHOPAIR("   M200 D", filament_size[0]);
    SERIAL_EOL;

    #if EXTRUDERS > 1
      SERIAL_ECHO_START;
      SERIAL_ECHOPAIR("   M200 T1 D", filament_size[1]);
      SERIAL_EOL;
      #if EXTRUDERS > 2
        SERIAL_ECHO_START;
        SERIAL_ECHOPAIR("   M200 T2 D", filament_size[2]);
        SERIAL_EOL;
        #if EXTRUDERS > 3
          SERIAL_ECHO_START;
          SERIAL_ECHOPAIR("   M200 T3 D", filament_size[3]);
          SERIAL_EOL;
        #endif
      #endif
    #endif

  } else {
    if (!forReplay) {
      SERIAL_ECHOLNPGM("Filament settings: Disabled");
    }
  }

  #ifdef LEVEL_SENSOR
    SERIAL_ECHO_START;
    #ifdef CUSTOM_M_CODES
      if (!forReplay) {
        SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
        SERIAL_ECHO_START;
      }
      SERIAL_ECHOPAIR("  M", (unsigned long)CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
      SERIAL_ECHOPAIR(" Z", zprobe_zoffset);
    #else
      if (!forReplay) {
        SERIAL_ECHOPAIR("Z-Probe Offset (mm):", zprobe_zoffset);
      }
    #endif
    SERIAL_EOL;
  #endif
}
/**
 * M503 - Print Configuration
 */
void Config_PrintSettings(bool forReplay) {
  // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown

  CONFIG_ECHO_START("Steps per unit:");
  ECHO_SMV(CFG, "  M92 X", planner.axis_steps_per_mm[X_AXIS]);
  ECHO_MV(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  ECHO_MV(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  ECHO_EMV(" E", planner.axis_steps_per_mm[E_AXIS]);
  #if EXTRUDERS > 1
    for (short i = 1; i < EXTRUDERS; i++) {
      ECHO_SMV(CFG, "  M92 T", i);
      ECHO_EMV(" E", planner.axis_steps_per_mm[E_AXIS + i]);
    }
  #endif //EXTRUDERS > 1

  #if MECH(SCARA)
    CONFIG_ECHO_START("Scaling factors:");
    ECHO_SMV(CFG, "  M365 X", axis_scaling[X_AXIS]);
    ECHO_MV(" Y", axis_scaling[Y_AXIS]);
    ECHO_EMV(" Z", axis_scaling[Z_AXIS]);
  #endif // SCARA

  CONFIG_ECHO_START("Maximum feedrates (mm/s):");
  ECHO_SMV(CFG, "  M203 X", planner.max_feedrate[X_AXIS]);
  ECHO_MV(" Y", planner.max_feedrate[Y_AXIS] );
  ECHO_MV(" Z", planner.max_feedrate[Z_AXIS] );
  ECHO_EMV(" E", planner.max_feedrate[E_AXIS]);
  #if EXTRUDERS > 1
    for (short i = 1; i < EXTRUDERS; i++) {
      ECHO_SMV(CFG, "  M203 T", i);
      ECHO_EMV(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
    }
  #endif //EXTRUDERS > 1

  CONFIG_ECHO_START("Maximum Acceleration (mm/s2):");
  ECHO_SMV(CFG, "  M201 X", planner.max_acceleration_mm_per_s2[X_AXIS] );
  ECHO_MV(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS] );
  ECHO_MV(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS] );
  ECHO_EMV(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  #if EXTRUDERS > 1
    for (int8_t i = 1; i < EXTRUDERS; i++) {
      ECHO_SMV(CFG, "  M201 T", i);
      ECHO_EMV(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
    }
  #endif //EXTRUDERS > 1
  
  CONFIG_ECHO_START("Accelerations: P=printing, V=travel and T* R=retract");
  ECHO_SMV(CFG,"  M204 P", planner.acceleration);
  ECHO_EMV(" V", planner.travel_acceleration);
  #if EXTRUDERS > 0
    for (int8_t i = 0; i < EXTRUDERS; i++) {
      ECHO_SMV(CFG, "  M204 T", i);
      ECHO_EMV(" R", planner.retract_acceleration[i]);
    }
  #endif

  CONFIG_ECHO_START("Advanced variables: S=Min feedrate (mm/s), V=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
  ECHO_SMV(CFG, "  M205 S", planner.min_feedrate );
  ECHO_MV(" V", planner.min_travel_feedrate );
  ECHO_MV(" B", planner.min_segment_time );
  ECHO_MV(" X", planner.max_xy_jerk );
  ECHO_MV(" Z", planner.max_z_jerk);
  ECHO_EMV(" E", planner.max_e_jerk[0]);
  #if (EXTRUDERS > 1)
    for(int8_t i = 1; i < EXTRUDERS; i++) {
      ECHO_SMV(CFG, "  M205 T", i);
      ECHO_EMV(" E" , planner.max_e_jerk[i]);
    }
  #endif

  CONFIG_ECHO_START("Home offset (mm):");
  ECHO_SMV(CFG, "  M206 X", home_offset[X_AXIS] );
  ECHO_MV(" Y", home_offset[Y_AXIS] );
  ECHO_EMV(" Z", home_offset[Z_AXIS] );

  CONFIG_ECHO_START("Hotend offset (mm):");
  for (int8_t h = 0; h < HOTENDS; h++) {
    ECHO_SMV(CFG, "  M218 T", h);
    ECHO_MV(" X", hotend_offset[X_AXIS][h]);
    ECHO_MV(" Y", hotend_offset[Y_AXIS][h]);
    ECHO_EMV(" Z", hotend_offset[Z_AXIS][h]);
  }

  #if HAS(LCD_CONTRAST)
    CONFIG_ECHO_START("LCD Contrast:");
    ECHO_LMV(CFG, "  M250 C", lcd_contrast);
  #endif

  #if ENABLED(MESH_BED_LEVELING)
    CONFIG_ECHO_START("Mesh bed leveling:");
    ECHO_SMV(CFG, "  M420 S", mbl.has_mesh() ? 1 : 0);
    ECHO_MV(" X", MESH_NUM_X_POINTS);
    ECHO_MV(" Y", MESH_NUM_Y_POINTS);
    ECHO_E;

    for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
      for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
        ECHO_SMV(CFG, "  G29 S3 X", px);
        ECHO_MV(" Y", py);
        ECHO_EMV(" Z", mbl.z_values[py-1][px-1], 5);
      }
    }
  #endif

  #if HEATER_USES_AD595
    CONFIG_ECHO_START("AD595 Offset and Gain:");
    for (int8_t h = 0; h < HOTENDS; h++) {
      ECHO_SMV(CFG, "  M595 T", h);
      ECHO_MV(" O", ad595_offset[h]);
      ECHO_EMV(", S", ad595_gain[h]);
    }
  #endif // HEATER_USES_AD595

  #if MECH(DELTA)
    CONFIG_ECHO_START("Delta Geometry adjustment:");
    ECHO_SMV(CFG, "  M666 A", tower_adj[0], 3);
    ECHO_MV(" B", tower_adj[1], 3);
    ECHO_MV(" C", tower_adj[2], 3);
    ECHO_MV(" I", tower_adj[3], 3);
    ECHO_MV(" J", tower_adj[4], 3);
    ECHO_MV(" K", tower_adj[5], 3);
    ECHO_MV(" U", diagrod_adj[0], 3);
    ECHO_MV(" V", diagrod_adj[1], 3);
    ECHO_MV(" W", diagrod_adj[2], 3);
    ECHO_MV(" R", delta_radius);
    ECHO_MV(" D", delta_diagonal_rod);
    ECHO_EMV(" H", sw_endstop_max[2]);

    CONFIG_ECHO_START("Endstop Offsets:");
    ECHO_SMV(CFG, "  M666 X", endstop_adj[X_AXIS]);
    ECHO_MV(" Y", endstop_adj[Y_AXIS]);
    ECHO_EMV(" Z", endstop_adj[Z_AXIS]);

  #elif ENABLED(Z_DUAL_ENDSTOPS)
    CONFIG_ECHO_START("Z2 Endstop adjustement (mm):");
    ECHO_LMV(CFG, "  M666 Z", z_endstop_adj );
  #endif // DELTA
  
  /**
   * Auto Bed Leveling
   */
  #if HAS(BED_PROBE)
    CONFIG_ECHO_START("Z Probe offset (mm):");
    ECHO_LMV(CFG, "  M666 P", zprobe_zoffset);
  #endif

  #if ENABLED(ULTIPANEL)
    CONFIG_ECHO_START("Material heatup parameters:");
    ECHO_SMV(CFG, "  M145 S0 H", plaPreheatHotendTemp);
    ECHO_MV(" B", plaPreheatHPBTemp);
    ECHO_MV(" F", plaPreheatFanSpeed);
    ECHO_EM(" (Material PLA)");
    ECHO_SMV(CFG, "  M145 S1 H", absPreheatHotendTemp);
    ECHO_MV(" B", absPreheatHPBTemp);
    ECHO_MV(" F", absPreheatFanSpeed);
    ECHO_EM(" (Material ABS)");
    ECHO_SMV(CFG, "  M145 S2 H", gumPreheatHotendTemp);
    ECHO_MV(" B", gumPreheatHPBTemp);
    ECHO_MV(" F", gumPreheatFanSpeed);
    ECHO_EM(" (Material GUM)");
  #endif // ULTIPANEL

  #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED) || ENABLED(PIDTEMPCHAMBER) || ENABLED(PIDTEMPCOOLER)
    CONFIG_ECHO_START("PID settings:");
    #if ENABLED(PIDTEMP)
      for (int8_t h = 0; h < HOTENDS; h++) {
        ECHO_SMV(CFG, "  M301 H", h);
        ECHO_MV(" P", PID_PARAM(Kp, h));
        ECHO_MV(" I", unscalePID_i(PID_PARAM(Ki, h)));
        ECHO_MV(" D", unscalePID_d(PID_PARAM(Kd, h)));
        #if ENABLED(PID_ADD_EXTRUSION_RATE)
          ECHO_MV(" C", PID_PARAM(Kc, h));
        #endif
        ECHO_E;
      }
      #if ENABLED(PID_ADD_EXTRUSION_RATE)
        ECHO_SMV(CFG, "  M301 L", lpq_len);
      #endif
    #endif
    #if ENABLED(PIDTEMPBED)
      ECHO_SMV(CFG, "  M304 P", bedKp);
      ECHO_MV(" I", unscalePID_i(bedKi));
      ECHO_EMV(" D", unscalePID_d(bedKd));
    #endif
    #if ENABLED(PIDTEMPCHAMBER)
      ECHO_SMV(CFG, "  M305 P", chamberKp);
      ECHO_MV(" I", unscalePID_i(chamberKi));
      ECHO_EMV(" D", unscalePID_d(chamberKd));
    #endif
    #if ENABLED(PIDTEMPCOOLER)
      ECHO_SMV(CFG, "  M306 P", coolerKp);
      ECHO_MV(" I", unscalePID_i(coolerKi));
      ECHO_EMV(" D", unscalePID_d(coolerKd));
    #endif
  #endif

  #if ENABLED(FWRETRACT)
    CONFIG_ECHO_START("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
    ECHO_SMV(CFG, "  M207 S", retract_length);
    #if EXTRUDERS > 1
      ECHO_MV(" W", retract_length_swap);
    #endif
    ECHO_MV(" F", retract_feedrate * 60);
    ECHO_EMV(" Z", retract_zlift);

    CONFIG_ECHO_START("Recover: S=Extra length (mm) F:Speed (mm/m)");
    ECHO_SMV(CFG, "  M208 S", retract_recover_length);
    #if EXTRUDERS > 1
      ECHO_MV(" W", retract_recover_length_swap);
    #endif
    ECHO_MV(" F", retract_recover_feedrate * 60);

    CONFIG_ECHO_START("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
    ECHO_LMV(CFG, "  M209 S", autoretract_enabled ? 1 : 0);
  #endif // FWRETRACT

  if (volumetric_enabled) {
    CONFIG_ECHO_START("Filament settings:");
    ECHO_LMV(CFG, "  M200 D", filament_size[0]);

    #if EXTRUDERS > 1
      ECHO_LMV(CFG, "  M200 T1 D", filament_size[1]);
      #if EXTRUDERS > 2
        ECHO_LMV(CFG, "  M200 T2 D", filament_size[2]);
        #if EXTRUDERS > 3
          ECHO_LMV(CFG, "  M200 T3 D", filament_size[3]);
        #endif
      #endif
    #endif

  }
  else
    CONFIG_ECHO_START("  M200 D0");

  #if MB(ALLIGATOR)
    CONFIG_ECHO_START("Motor current:");
    ECHO_SMV(CFG, "  M906 X", motor_current[X_AXIS]);
    ECHO_MV(" Y", motor_current[Y_AXIS]);
    ECHO_MV(" Z", motor_current[Z_AXIS]);
    ECHO_EMV(" E", motor_current[E_AXIS]);
    #if DRIVER_EXTRUDERS > 1
      for (uint8_t i = 1; i < DRIVER_EXTRUDERS; i++) {
        ECHO_SMV(CFG, "  M906 T", i);
        ECHO_EMV(" E", motor_current[E_AXIS + i]);
      }
    #endif // DRIVER_EXTRUDERS > 1
  #endif // ALLIGATOR

  ConfigSD_PrintSettings(forReplay);

}
Example #8
0
void Config_StoreSettings()  {
  float dummy = 0.0f;
  char ver[4] = "000";
  int i = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(i, ver); // invalidate data first
  EEPROM_WRITE_VAR(i, axis_steps_per_unit);
  EEPROM_WRITE_VAR(i, max_feedrate);
  EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
  EEPROM_WRITE_VAR(i, acceleration);
  EEPROM_WRITE_VAR(i, retract_acceleration);
  EEPROM_WRITE_VAR(i, minimumfeedrate);
  EEPROM_WRITE_VAR(i, mintravelfeedrate);
  EEPROM_WRITE_VAR(i, minsegmenttime);
  EEPROM_WRITE_VAR(i, max_xy_jerk);
  EEPROM_WRITE_VAR(i, max_z_jerk);
  EEPROM_WRITE_VAR(i, max_e_jerk);
  EEPROM_WRITE_VAR(i, add_homing);

  #ifdef DELTA
    EEPROM_WRITE_VAR(i, endstop_adj);               // 3 floats
    EEPROM_WRITE_VAR(i, delta_radius);              // 1 float
    EEPROM_WRITE_VAR(i, delta_diagonal_rod);        // 1 float
    EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  #else
    dummy = 0.0f;
    for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
  #endif

  #ifndef ULTIPANEL
    int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
        absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  #endif // !ULTIPANEL

  EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, zprobe_zoffset);

  for (int e = 0; e < 4; e++) {

    #ifdef PIDTEMP
      if (e < EXTRUDERS) {
        EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
        EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
        EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
        #ifdef PID_ADD_EXTRUSION_RATE
          EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
        #else
          dummy = 1.0f; // 1.0 = default kc
          EEPROM_WRITE_VAR(i, dummy);
        #endif
      }
      else {
    #else // !PIDTEMP
      {
    #endif // !PIDTEMP

        dummy = DUMMY_PID_VALUE;
        EEPROM_WRITE_VAR(i, dummy);
        dummy = 0.0f;
        for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
      }

  } // Extruders Loop

  #ifndef DOGLCD
    int lcd_contrast = 32;
  #endif
  EEPROM_WRITE_VAR(i, lcd_contrast);

  #ifdef SCARA
    EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  #else
    dummy = 1.0f;
    EEPROM_WRITE_VAR(i, dummy);
  #endif

  #ifdef FWRETRACT
    EEPROM_WRITE_VAR(i, autoretract_enabled);
    EEPROM_WRITE_VAR(i, retract_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_feedrate);
    EEPROM_WRITE_VAR(i, retract_zlift);
    EEPROM_WRITE_VAR(i, retract_recover_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_recover_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  #endif // FWRETRACT

  EEPROM_WRITE_VAR(i, volumetric_enabled);

  // Save filament sizes
  for (int q = 0; q < 4; q++) {
    if (q < EXTRUDERS) dummy = filament_size[q];
    EEPROM_WRITE_VAR(i, dummy);
  }

  int storageSize = i;

  char ver2[4] = EEPROM_VERSION;
  int j = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(j, ver2); // validate data

  // Report storage size
  SERIAL_ECHO_START;
  SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
  SERIAL_ECHOLNPGM(" bytes)");
}

void Config_RetrieveSettings() {

  int i = EEPROM_OFFSET;
  char stored_ver[4];
  char ver[4] = EEPROM_VERSION;
  EEPROM_READ_VAR(i, stored_ver); //read stored version
  //  SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");

  if (strncmp(ver, stored_ver, 3) != 0) {
    Config_ResetDefault();
  }
  else {
    float dummy = 0;

    // version number match
    EEPROM_READ_VAR(i, axis_steps_per_unit);
    EEPROM_READ_VAR(i, max_feedrate);
    EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);

        // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
    reset_acceleration_rates();

    EEPROM_READ_VAR(i, acceleration);
    EEPROM_READ_VAR(i, retract_acceleration);
    EEPROM_READ_VAR(i, minimumfeedrate);
    EEPROM_READ_VAR(i, mintravelfeedrate);
    EEPROM_READ_VAR(i, minsegmenttime);
    EEPROM_READ_VAR(i, max_xy_jerk);
    EEPROM_READ_VAR(i, max_z_jerk);
    EEPROM_READ_VAR(i, max_e_jerk);
    EEPROM_READ_VAR(i, add_homing);

    #ifdef DELTA
      EEPROM_READ_VAR(i, endstop_adj);                // 3 floats
      EEPROM_READ_VAR(i, delta_radius);               // 1 float
      EEPROM_READ_VAR(i, delta_diagonal_rod);         // 1 float
      EEPROM_READ_VAR(i, delta_segments_per_second);  // 1 float
    #else
      for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
    #endif

    #ifndef ULTIPANEL
      int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
          absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
    #endif

    EEPROM_READ_VAR(i, plaPreheatHotendTemp);
    EEPROM_READ_VAR(i, plaPreheatHPBTemp);
    EEPROM_READ_VAR(i, plaPreheatFanSpeed);
    EEPROM_READ_VAR(i, absPreheatHotendTemp);
    EEPROM_READ_VAR(i, absPreheatHPBTemp);
    EEPROM_READ_VAR(i, absPreheatFanSpeed);
    EEPROM_READ_VAR(i, zprobe_zoffset);

    #ifdef PIDTEMP
      for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
        EEPROM_READ_VAR(i, dummy);
        if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
          // do not need to scale PID values as the values in EEPROM are already scaled
          PID_PARAM(Kp, e) = dummy;
          EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
          EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
          #ifdef PID_ADD_EXTRUSION_RATE
            EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
          #else
            EEPROM_READ_VAR(i, dummy);
          #endif
        }
        else {
          for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
        }
      }
    #else // !PIDTEMP
      // 4 x 4 = 16 slots for PID parameters
      for (int q=16; q--;) EEPROM_READ_VAR(i, dummy);  // 4x Kp, Ki, Kd, Kc
    #endif // !PIDTEMP

    #ifndef DOGLCD
      int lcd_contrast;
    #endif
    EEPROM_READ_VAR(i, lcd_contrast);

    #ifdef SCARA
      EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
    #else
      EEPROM_READ_VAR(i, dummy);
    #endif

    #ifdef FWRETRACT
      EEPROM_READ_VAR(i, autoretract_enabled);
      EEPROM_READ_VAR(i, retract_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_feedrate);
      EEPROM_READ_VAR(i, retract_zlift);
      EEPROM_READ_VAR(i, retract_recover_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_recover_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_recover_feedrate);
    #endif // FWRETRACT

    EEPROM_READ_VAR(i, volumetric_enabled);

    for (int q = 0; q < 4; q++) {
      EEPROM_READ_VAR(i, dummy);
      if (q < EXTRUDERS) filament_size[q] = dummy;
    }

    calculate_volumetric_multipliers();
    // Call updatePID (similar to when we have processed M301)
    updatePID();

    // Report settings retrieved and length
    SERIAL_ECHO_START;
    SERIAL_ECHO(ver);
    SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
    SERIAL_ECHOLNPGM(" bytes)");
  }

  #ifdef EEPROM_CHITCHAT
    Config_PrintSettings();
  #endif
}
/**
 * M501 - Retrieve Configuration
 */
void Config_RetrieveSettings() {
  int i = EEPROM_OFFSET;
  char stored_ver[6];
  uint16_t stored_checksum;
  EEPROM_READ_VAR(i, stored_ver);
  EEPROM_READ_VAR(i, stored_checksum);

  if (DEBUGGING(INFO)) {
    ECHO_SMV(INFO, "Version: [", version);
    ECHO_MV("] Stored version: [", stored_ver);
    ECHO_EM("]");
  }

  if (strncmp(version, stored_ver, 5) != 0) {
    Config_ResetDefault();
  }
  else {
    float dummy = 0;

    eeprom_checksum = 0; // clear before reading first "real data"

    // version number match
    EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
    EEPROM_READ_VAR(i, planner.max_feedrate);
    EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);

    EEPROM_READ_VAR(i, planner.acceleration);
    EEPROM_READ_VAR(i, planner.retract_acceleration);
    EEPROM_READ_VAR(i, planner.travel_acceleration);
    EEPROM_READ_VAR(i, planner.min_feedrate);
    EEPROM_READ_VAR(i, planner.min_travel_feedrate);
    EEPROM_READ_VAR(i, planner.min_segment_time);
    EEPROM_READ_VAR(i, planner.max_xy_jerk);
    EEPROM_READ_VAR(i, planner.max_z_jerk);
    EEPROM_READ_VAR(i, planner.max_e_jerk);
    EEPROM_READ_VAR(i, home_offset);
    EEPROM_READ_VAR(i, hotend_offset);

    #if ENABLED(MESH_BED_LEVELING)
      uint8_t mesh_num_x = 0, mesh_num_y = 0;
      EEPROM_READ_VAR(i, mbl.status);
      EEPROM_READ_VAR(i, mbl.z_offset);
      EEPROM_READ_VAR(i, mesh_num_x);
      EEPROM_READ_VAR(i, mesh_num_y);
      EEPROM_READ_VAR(i, mbl.z_values);
    #endif

    #if HEATER_USES_AD595
      EEPROM_READ_VAR(i, ad595_offset);
      EEPROM_READ_VAR(i, ad595_gain);
      for (int8_t h = 0; h < HOTENDS; h++)
        if (ad595_gain[h] == 0) ad595_gain[h] == TEMP_SENSOR_AD595_GAIN;
    #endif

    #if MECH(DELTA)
      EEPROM_READ_VAR(i, endstop_adj);
      EEPROM_READ_VAR(i, delta_radius);
      EEPROM_READ_VAR(i, delta_diagonal_rod);
      EEPROM_READ_VAR(i, sw_endstop_max);
      EEPROM_READ_VAR(i, tower_adj);
      EEPROM_READ_VAR(i, diagrod_adj);
    #endif //DELTA

    #if HASNT(BED_PROBE)
      float zprobe_zoffset = 0;
    #endif
    EEPROM_READ_VAR(i, zprobe_zoffset);

    #if DISABLED(ULTIPANEL)
      int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
          absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed,
          gumPreheatHotendTemp, gumPreheatHPBTemp, gumPreheatFanSpeed;
    #endif

    EEPROM_READ_VAR(i, plaPreheatHotendTemp);
    EEPROM_READ_VAR(i, plaPreheatHPBTemp);
    EEPROM_READ_VAR(i, plaPreheatFanSpeed);
    EEPROM_READ_VAR(i, absPreheatHotendTemp);
    EEPROM_READ_VAR(i, absPreheatHPBTemp);
    EEPROM_READ_VAR(i, absPreheatFanSpeed);
    EEPROM_READ_VAR(i, gumPreheatHotendTemp);
    EEPROM_READ_VAR(i, gumPreheatHPBTemp);
    EEPROM_READ_VAR(i, gumPreheatFanSpeed);

    #if ENABLED(PIDTEMP)
      for (int8_t h = 0; h < HOTENDS; h++) {
        EEPROM_READ_VAR(i, PID_PARAM(Kp, h));
        EEPROM_READ_VAR(i, PID_PARAM(Ki, h));
        EEPROM_READ_VAR(i, PID_PARAM(Kd, h));
        EEPROM_READ_VAR(i, PID_PARAM(Kc, h));
      }
    #endif // PIDTEMP

    #if DISABLED(PID_ADD_EXTRUSION_RATE)
      int lpq_len;
    #endif
    EEPROM_READ_VAR(i, lpq_len);

    #if ENABLED(PIDTEMPBED)
      EEPROM_READ_VAR(i, bedKp);
      EEPROM_READ_VAR(i, bedKi);
      EEPROM_READ_VAR(i, bedKd);
    #endif

    #if ENABLED(PIDTEMPCHAMBER)
      EEPROM_READ_VAR(i, chamberKp);
      EEPROM_READ_VAR(i, chamberKi);
      EEPROM_READ_VAR(i, chamberKd);
    #endif

    #if ENABLED(PIDTEMPCOOLER)
      EEPROM_READ_VAR(i, coolerKp);
      EEPROM_READ_VAR(i, coolerKi);
      EEPROM_READ_VAR(i, coolerKd);
    #endif

    #if HASNT(LCD_CONTRAST)
      int lcd_contrast;
    #endif
    EEPROM_READ_VAR(i, lcd_contrast);

    #if MECH(SCARA)
      EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
    #endif

    #if ENABLED(FWRETRACT)
      EEPROM_READ_VAR(i, autoretract_enabled);
      EEPROM_READ_VAR(i, retract_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_feedrate);
      EEPROM_READ_VAR(i, retract_zlift);
      EEPROM_READ_VAR(i, retract_recover_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_recover_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_recover_feedrate);
    #endif // FWRETRACT

    EEPROM_READ_VAR(i, volumetric_enabled);

    for (int8_t e = 0; e < EXTRUDERS; e++)
      EEPROM_READ_VAR(i, filament_size[e]);

    #if ENABLED(IDLE_OOZING_PREVENT)
      EEPROM_READ_VAR(i, IDLE_OOZING_enabled);
    #endif

    #if MB(ALLIGATOR)
      EEPROM_READ_VAR(i, motor_current);
    #endif

    if (eeprom_checksum == stored_checksum) {
      Config_Postprocess();
      ECHO_SV(DB, version);
      ECHO_MV(" stored settings retrieved (", i);
      ECHO_EM(" bytes)");
    }
    else {
      ECHO_LM(ER, "EEPROM checksum mismatch");
      Config_ResetDefault();
    }
  }

  #if ENABLED(EEPROM_CHITCHAT)
    Config_PrintSettings();
  #endif
}
/**
 * M500 - Store Configuration
 */
void Config_StoreSettings() {
  float dummy = 0.0f;
  char ver[6] = "00000";
  int i = EEPROM_OFFSET;

  EEPROM_WRITE_VAR(i, ver);     // invalidate data first
  i += sizeof(eeprom_checksum); // Skip the checksum slot

  eeprom_checksum = 0; // clear before first "real data"

  EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
  EEPROM_WRITE_VAR(i, planner.max_feedrate);
  EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
  EEPROM_WRITE_VAR(i, planner.acceleration);
  EEPROM_WRITE_VAR(i, planner.retract_acceleration);
  EEPROM_WRITE_VAR(i, planner.travel_acceleration);
  EEPROM_WRITE_VAR(i, planner.min_feedrate);
  EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
  EEPROM_WRITE_VAR(i, planner.min_segment_time);
  EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
  EEPROM_WRITE_VAR(i, planner.max_z_jerk);
  EEPROM_WRITE_VAR(i, planner.max_e_jerk);
  EEPROM_WRITE_VAR(i, home_offset);
  EEPROM_WRITE_VAR(i, hotend_offset);

  #if ENABLED(MESH_BED_LEVELING)
    // Compile time test that sizeof(mbl.z_values) is as expected
    typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
    uint8_t mesh_num_x  = MESH_NUM_X_POINTS,
            mesh_num_y  = MESH_NUM_Y_POINTS,
            dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
    EEPROM_WRITE_VAR(i, dummy_uint8);
    EEPROM_WRITE_VAR(i, mbl.z_offset);
    EEPROM_WRITE_VAR(i, mesh_num_x);
    EEPROM_WRITE_VAR(i, mesh_num_y);
    EEPROM_WRITE_VAR(i, mbl.z_values);
  #endif

  #if HEATER_USES_AD595
    EEPROM_WRITE_VAR(i, ad595_offset);
    EEPROM_WRITE_VAR(i, ad595_gain);
  #endif

  #if MECH(DELTA)
    EEPROM_WRITE_VAR(i, endstop_adj);
    EEPROM_WRITE_VAR(i, delta_radius);
    EEPROM_WRITE_VAR(i, delta_diagonal_rod);
    EEPROM_WRITE_VAR(i, sw_endstop_max);
    EEPROM_WRITE_VAR(i, tower_adj);
    EEPROM_WRITE_VAR(i, diagrod_adj);
  #elif ENABLED(Z_DUAL_ENDSTOPS)
    EEPROM_WRITE_VAR(i, z_endstop_adj);
  #endif

  #if HASNT(BED_PROBE)
    float zprobe_zoffset = 0;
  #endif
  EEPROM_WRITE_VAR(i, zprobe_zoffset);

  #if DISABLED(ULTIPANEL)
    int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
        absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED,
        gumPreheatHotendTemp = GUM_PREHEAT_HOTEND_TEMP, gumPreheatHPBTemp = GUM_PREHEAT_HPB_TEMP, gumPreheatFanSpeed = GUM_PREHEAT_FAN_SPEED;
  #endif

  EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, gumPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, gumPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, gumPreheatFanSpeed);

  #if ENABLED(PIDTEMP)
    for (int h = 0; h < HOTENDS; h++) {
      EEPROM_WRITE_VAR(i, PID_PARAM(Kp, h));
      EEPROM_WRITE_VAR(i, PID_PARAM(Ki, h));
      EEPROM_WRITE_VAR(i, PID_PARAM(Kd, h));
      EEPROM_WRITE_VAR(i, PID_PARAM(Kc, h));
    }
  #endif

  #if DISABLED(PID_ADD_EXTRUSION_RATE)
    int lpq_len = 20;
  #endif
  EEPROM_WRITE_VAR(i, lpq_len);
  
  #if ENABLED(PIDTEMPBED)
    EEPROM_WRITE_VAR(i, bedKp);
    EEPROM_WRITE_VAR(i, bedKi);
    EEPROM_WRITE_VAR(i, bedKd);
  #endif

  #if ENABLED(PIDTEMPCHAMBER)
    EEPROM_WRITE_VAR(i, chamberKp);
    EEPROM_WRITE_VAR(i, chamberKi);
    EEPROM_WRITE_VAR(i, chamberKd);
  #endif

  #if ENABLED(PIDTEMPCOOLER)
    EEPROM_WRITE_VAR(i, coolerKp);
    EEPROM_WRITE_VAR(i, coolerKi);
    EEPROM_WRITE_VAR(i, coolerKd);
  #endif

  #if HASNT(LCD_CONTRAST)
    const int lcd_contrast = 32;
  #endif
  EEPROM_WRITE_VAR(i, lcd_contrast);

  #if MECH(SCARA)
    EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  #endif

  #if ENABLED(FWRETRACT)
    EEPROM_WRITE_VAR(i, autoretract_enabled);
    EEPROM_WRITE_VAR(i, retract_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_feedrate);
    EEPROM_WRITE_VAR(i, retract_zlift);
    EEPROM_WRITE_VAR(i, retract_recover_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_recover_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  #endif // FWRETRACT

  EEPROM_WRITE_VAR(i, volumetric_enabled);

  // Save filament sizes
  for (int e = 0; e < EXTRUDERS; e++)
    EEPROM_WRITE_VAR(i, filament_size[e]);

  #if ENABLED(IDLE_OOZING_PREVENT)
    EEPROM_WRITE_VAR(i, IDLE_OOZING_enabled);
  #endif

  #if MB(ALLIGATOR)
    EEPROM_WRITE_VAR(i, motor_current);
  #endif

  uint16_t final_checksum = eeprom_checksum;

  int j = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(j, version);
  EEPROM_WRITE_VAR(j, final_checksum);

  // Report storage size
  ECHO_SMV(DB, "Settings Stored (", i);
  ECHO_EM(" bytes)");
}
  /**
   * Print Configuration Settings - M503
   */
  void Config_PrintSettings(bool forReplay) {
    // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown

    if (!forReplay) {
      ECHO_LM(CFG, "Steps per unit:");
    }
    ECHO_SMV(CFG, "  M92 X", axis_steps_per_unit[X_AXIS]);
    ECHO_MV(" Y", axis_steps_per_unit[Y_AXIS]);
    ECHO_MV(" Z", axis_steps_per_unit[Z_AXIS]);
    ECHO_EMV(" E", axis_steps_per_unit[E_AXIS]);
    #if EXTRUDERS > 1
      for (short i = 1; i < EXTRUDERS; i++) {
        ECHO_SMV(CFG, "  M92 T", i);
        ECHO_EMV(" E", axis_steps_per_unit[E_AXIS + i]);
      }
    #endif //EXTRUDERS > 1

    #if MECH(SCARA)
      if (!forReplay) {
        ECHO_LM(CFG, "Scaling factors:");
      }
      ECHO_SMV(CFG, "  M365 X", axis_scaling[X_AXIS]);
      ECHO_MV(" Y", axis_scaling[Y_AXIS]);
      ECHO_EMV(" Z", axis_scaling[Z_AXIS]);
    #endif // SCARA

    if (!forReplay) {
      ECHO_LM(CFG, "Maximum feedrates (mm/s):");
    }
    ECHO_SMV(CFG, "  M203 X", max_feedrate[X_AXIS]);
    ECHO_MV(" Y", max_feedrate[Y_AXIS] ); 
    ECHO_MV(" Z", max_feedrate[Z_AXIS] ); 
    ECHO_EMV(" E", max_feedrate[E_AXIS]);
    #if EXTRUDERS > 1
      for (short i = 1; i < EXTRUDERS; i++) {
        ECHO_SMV(CFG, "  M203 T", i);
        ECHO_EMV(" E", max_feedrate[E_AXIS + i]);
      }
    #endif //EXTRUDERS > 1

    if (!forReplay) {
      ECHO_LM(CFG, "Maximum Acceleration (mm/s2):");
    }
    ECHO_SMV(CFG, "  M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
    ECHO_MV(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
    ECHO_MV(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
    ECHO_EMV(" E", max_acceleration_units_per_sq_second[E_AXIS]);
    #if EXTRUDERS > 1
      for (int8_t i = 1; i < EXTRUDERS; i++) {
        ECHO_SMV(CFG, "  M201 T", i);
        ECHO_EMV(" E", max_acceleration_units_per_sq_second[E_AXIS + i]);
      }
    #endif //EXTRUDERS > 1
    ECHO_E;
    
    if (!forReplay) {
      ECHO_LM(CFG, "Accelerations: P=printing, V=travel and T* R=retract");
    }
    ECHO_SMV(CFG,"  M204 P", acceleration);
    ECHO_EMV(" V", travel_acceleration);
    #if EXTRUDERS > 0
      for (int8_t i = 0; i < EXTRUDERS; i++) {
        ECHO_SMV(CFG, "  M204 T", i);
        ECHO_EMV(" R", retract_acceleration[i]);
      }
    #endif

    if (!forReplay) {
      ECHO_LM(CFG, "Advanced variables: S=Min feedrate (mm/s), V=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
    }
    ECHO_SMV(CFG, "  M205 S", minimumfeedrate );
    ECHO_MV(" V", mintravelfeedrate );
    ECHO_MV(" B", minsegmenttime );
    ECHO_MV(" X", max_xy_jerk );
    ECHO_MV(" Z", max_z_jerk);
    ECHO_EMV(" E", max_e_jerk[0]);
    #if (EXTRUDERS > 1)
      for(int8_t i = 1; i < EXTRUDERS; i++) {
        ECHO_SMV(CFG, "  M205 T", i);
        ECHO_EMV(" E" , max_e_jerk[i]);
      }
    #endif

    if (!forReplay) {
      ECHO_LM(CFG, "Home offset (mm):");
    }
    ECHO_SMV(CFG, "  M206 X", home_offset[X_AXIS] );
    ECHO_MV(" Y", home_offset[Y_AXIS] );
    ECHO_EMV(" Z", home_offset[Z_AXIS] );

    if (!forReplay) {
      ECHO_LM(CFG, "Hotend offset (mm):");
    }
    for (int8_t h = 0; h < HOTENDS; h++) {
      ECHO_SMV(CFG, "  M218 T", h);
      ECHO_MV(" X", hotend_offset[X_AXIS][h]);
      ECHO_MV(" Y", hotend_offset[Y_AXIS][h]);
      ECHO_EMV(" Z", hotend_offset[Z_AXIS][h]);
    }

    #if HEATER_USES_AD595
      if (!forReplay) {
        ECHO_LM(CFG, "AD595 Offset and Gain:");
      }
      for (int8_t h = 0; h < HOTENDS; h++) {
        ECHO_SMV(CFG, "  M595 T", h);
        ECHO_MV(" O", ad595_offset[h]);
        ECHO_EMV(", S", ad595_gain[h]);
      }
    #endif // HEATER_USES_AD595

    #if MECH(DELTA)
      if (!forReplay) {
        ECHO_LM(CFG, "Delta Geometry adjustment:");
      }
      ECHO_SMV(CFG, "  M666 A", tower_adj[0], 3);
      ECHO_MV(" B", tower_adj[1], 3);
      ECHO_MV(" C", tower_adj[2], 3);
      ECHO_MV(" I", tower_adj[3], 3);
      ECHO_MV(" J", tower_adj[4], 3);
      ECHO_MV(" K", tower_adj[5], 3);
      ECHO_MV(" U", diagrod_adj[0], 3);
      ECHO_MV(" V", diagrod_adj[1], 3);
      ECHO_MV(" W", diagrod_adj[2], 3);
      ECHO_MV(" R", delta_radius);
      ECHO_MV(" D", delta_diagonal_rod);
      ECHO_EMV(" H", sw_endstop_max[2]);

      if (!forReplay) {
        ECHO_LM(CFG, "Endstop Offsets:");
      }
      ECHO_SMV(CFG, "  M666 X", endstop_adj[X_AXIS]);
      ECHO_MV(" Y", endstop_adj[Y_AXIS]);
      ECHO_EMV(" Z", endstop_adj[Z_AXIS]);

      if (!forReplay) {
        ECHO_LM(CFG, "Z-Probe Offset:");
      }
      ECHO_SMV(CFG, "  M666 P X", z_probe_offset[0]);
      ECHO_MV(" Y", z_probe_offset[1]);
      ECHO_EMV(" Z", z_probe_offset[2]);

    #elif ENABLED(Z_DUAL_ENDSTOPS)
      if (!forReplay) {
        ECHO_LM(CFG, "Z2 Endstop adjustement (mm):");
      }
      ECHO_LMV(CFG, "  M666 Z", z_endstop_adj );
    #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
      if (!forReplay) {
        ECHO_LM(CFG, "Z Probe offset (mm)");
      }
      ECHO_LMV(CFG, "  M666 P", zprobe_zoffset);
    #endif

    #if ENABLED(ULTIPANEL)
      if (!forReplay) {
        ECHO_LM(CFG, "Material heatup parameters:");
      }
      ECHO_SMV(CFG, "  M145 S0 H", plaPreheatHotendTemp);
      ECHO_MV(" B", plaPreheatHPBTemp);
      ECHO_MV(" F", plaPreheatFanSpeed);
      ECHO_EM(" (Material PLA)");
      ECHO_SMV(CFG, "  M145 S1 H", absPreheatHotendTemp);
      ECHO_MV(" B", absPreheatHPBTemp);
      ECHO_MV(" F", absPreheatFanSpeed);
      ECHO_EM(" (Material ABS)");
      ECHO_SMV(CFG, "  M145 S2 H", gumPreheatHotendTemp);
      ECHO_MV(" B", gumPreheatHPBTemp);
      ECHO_MV(" F", gumPreheatFanSpeed);
      ECHO_EM(" (Material GUM)");
    #endif // ULTIPANEL

    #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
      if (!forReplay) {
        ECHO_LM(CFG, "PID settings:");
      }
      #if ENABLED(PIDTEMP)
        for (uint8_t h = 0; h < HOTENDS; h++) {
          ECHO_SMV(CFG, "  M301 H", h);
          ECHO_MV(" P", PID_PARAM(Kp, h));
          ECHO_MV(" I", unscalePID_i(PID_PARAM(Ki, h)));
          ECHO_MV(" D", unscalePID_d(PID_PARAM(Kd, h)));
          #if ENABLED(PID_ADD_EXTRUSION_RATE)
            ECHO_MV(" C", PID_PARAM(Kc, h));
          #endif
          ECHO_E;
        }
        #if ENABLED(PID_ADD_EXTRUSION_RATE)
          ECHO_SMV(CFG, "  M301 L", lpq_len);
        #endif
      #endif
      #if ENABLED(PIDTEMPBED)
        ECHO_SMV(CFG, "  M304 P", bedKp); // for compatibility with hosts, only echos values for E0
        ECHO_MV(" I", unscalePID_i(bedKi));
        ECHO_EMV(" D", unscalePID_d(bedKd));
      #endif
    #endif

    #if ENABLED(FWRETRACT)
      if (!forReplay) {
        ECHO_LM(CFG, "Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
      }
      ECHO_SMV(CFG, "  M207 S", retract_length);
      ECHO_MV(" F", retract_feedrate*60);
      ECHO_EMV(" Z", retract_zlift);
      
      if (!forReplay) {
        ECHO_LM(CFG, "Recover: S=Extra length (mm) F:Speed (mm/m)");
      }
      ECHO_SMV(CFG, "  M208 S", retract_recover_length);
      ECHO_MV(" F", retract_recover_feedrate*60);
      
      if (!forReplay) {
        ECHO_LM(CFG, "Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
      }
      ECHO_LMV(CFG, "  M209 S", autoretract_enabled);

      #if EXTRUDERS > 1
        if (!forReplay) {
          ECHO_LM(CFG, "Multi-extruder settings:");
          ECHO_LMV(CFG, "   Swap retract length (mm):    ", retract_length_swap);
          ECHO_LMV(CFG, "   Swap rec. addl. length (mm): ", retract_recover_length_swap);
        }
      #endif // EXTRUDERS > 1

    #endif // FWRETRACT

    if (volumetric_enabled) {
      if (!forReplay) {
        ECHO_LM(CFG, "Filament settings:");
      }
      ECHO_LMV(CFG, "  M200 D", filament_size[0]);

      #if EXTRUDERS > 1
        ECHO_LMV(CFG, "  M200 T1 D", filament_size[1]);
        #if EXTRUDERS > 2
          ECHO_LMV(CFG, "  M200 T2 D", filament_size[2]);
          #if EXTRUDERS > 3
            ECHO_LMV(CFG, "  M200 T3 D", filament_size[3]);
          #endif
        #endif
      #endif

    } else {
      if (!forReplay) {
        ECHO_LM(CFG, "Filament settings: Disabled");
      }
    }

    #if MB(ALLIGATOR)
      if (!forReplay) {
        ECHO_LM(CFG, "Current:");
      }
      ECHO_SMV(CFG, "  M906 X", motor_current[X_AXIS]);
      ECHO_MV(" Y", motor_current[Y_AXIS]);
      ECHO_MV(" Z", motor_current[Z_AXIS]);
      ECHO_EMV(" E", motor_current[E_AXIS]);
      #if DRIVER_EXTRUDERS > 1
        for (uint8_t i = 1; i < DRIVER_EXTRUDERS; i++) {
          ECHO_SMV(CFG, "  M906 T", i);
          ECHO_EMV(" E", motor_current[E_AXIS + i]);
        }
      #endif // DRIVER_EXTRUDERS > 1
    #endif // ALLIGATOR

    ConfigSD_PrintSettings(forReplay);

  }
/**
 * Retrieve Configuration Settings - M501
 */
void Config_RetrieveSettings() {

  int i = EEPROM_OFFSET;
  char stored_ver[7];
  char ver[7] = EEPROM_VERSION;
  EEPROM_READ_VAR(i, stored_ver); // read stored version
  //ECHO_EM("Version: [" << ver << "] Stored version: [" << stored_ver << "]");

  if (strncmp(ver, stored_ver, 6) != 0) {
    Config_ResetDefault();
  }
  else {
    float dummy = 0;

    // version number match
    EEPROM_READ_VAR(i, axis_steps_per_unit);
    EEPROM_READ_VAR(i, max_feedrate);
    EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);

    // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
    reset_acceleration_rates();

    EEPROM_READ_VAR(i, acceleration);
    EEPROM_READ_VAR(i, retract_acceleration);
    EEPROM_READ_VAR(i, travel_acceleration);
    EEPROM_READ_VAR(i, minimumfeedrate);
    EEPROM_READ_VAR(i, mintravelfeedrate);
    EEPROM_READ_VAR(i, minsegmenttime);
    EEPROM_READ_VAR(i, max_xy_jerk);
    EEPROM_READ_VAR(i, max_z_jerk);
    EEPROM_READ_VAR(i, max_e_jerk);
    EEPROM_READ_VAR(i, home_offset);
    EEPROM_READ_VAR(i, hotend_offset);

    #if !MECH(DELTA)
      EEPROM_READ_VAR(i, zprobe_zoffset);
    #endif

    #if HEATER_USES_AD595
      EEPROM_READ_VAR(i, ad595_offset);
      EEPROM_READ_VAR(i, ad595_gain);
      for (int8_t h = 0; h < HOTENDS; h++)
        if (ad595_gain[h] == 0) ad595_gain[h] == TEMP_SENSOR_AD595_GAIN;
    #endif

    #if MECH(DELTA)
      EEPROM_READ_VAR(i, endstop_adj);
      EEPROM_READ_VAR(i, delta_radius);
      EEPROM_READ_VAR(i, delta_diagonal_rod);
      EEPROM_READ_VAR(i, sw_endstop_max);
      EEPROM_READ_VAR(i, tower_adj);
      EEPROM_READ_VAR(i, diagrod_adj);
      EEPROM_READ_VAR(i, z_probe_offset);
      // Update delta constants for updated delta_radius & tower_adj values
      set_delta_constants();
    #endif //DELTA

    #if DISABLED(ULTIPANEL)
      int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
          absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed,
          gumPreheatHotendTemp, gumPreheatHPBTemp, gumPreheatFanSpeed;
    #endif

    EEPROM_READ_VAR(i, plaPreheatHotendTemp);
    EEPROM_READ_VAR(i, plaPreheatHPBTemp);
    EEPROM_READ_VAR(i, plaPreheatFanSpeed);
    EEPROM_READ_VAR(i, absPreheatHotendTemp);
    EEPROM_READ_VAR(i, absPreheatHPBTemp);
    EEPROM_READ_VAR(i, absPreheatFanSpeed);
    EEPROM_READ_VAR(i, gumPreheatHotendTemp);
    EEPROM_READ_VAR(i, gumPreheatHPBTemp);
    EEPROM_READ_VAR(i, gumPreheatFanSpeed);

    #if ENABLED(PIDTEMP)
      for (int8_t h = 0; h < HOTENDS; h++) {
        EEPROM_READ_VAR(i, PID_PARAM(Kp, h));
        EEPROM_READ_VAR(i, PID_PARAM(Ki, h));
        EEPROM_READ_VAR(i, PID_PARAM(Kd, h));
        EEPROM_READ_VAR(i, PID_PARAM(Kc, h));
      }
    #endif // PIDTEMP

    #if DISABLED(PID_ADD_EXTRUSION_RATE)
      int lpq_len;
    #endif
    EEPROM_READ_VAR(i, lpq_len);

    #if ENABLED(PIDTEMPBED)
      EEPROM_READ_VAR(i, bedKp);
      EEPROM_READ_VAR(i, bedKi);
      EEPROM_READ_VAR(i, bedKd);
    #endif

    #if HASNT(LCD_CONTRAST)
      int lcd_contrast;
    #endif

    EEPROM_READ_VAR(i, lcd_contrast);

    #if MECH(SCARA)
      EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
    #endif

    #if ENABLED(FWRETRACT)
      EEPROM_READ_VAR(i, autoretract_enabled);
      EEPROM_READ_VAR(i, retract_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_feedrate);
      EEPROM_READ_VAR(i, retract_zlift);
      EEPROM_READ_VAR(i, retract_recover_length);
      #if EXTRUDERS > 1
        EEPROM_READ_VAR(i, retract_recover_length_swap);
      #else
        EEPROM_READ_VAR(i, dummy);
      #endif
      EEPROM_READ_VAR(i, retract_recover_feedrate);
    #endif // FWRETRACT

    EEPROM_READ_VAR(i, volumetric_enabled);

    for (int8_t e = 0; e < EXTRUDERS; e++)
      EEPROM_READ_VAR(i, filament_size[e]);

    calculate_volumetric_multipliers();

    #if ENABLED(IDLE_OOZING_PREVENT)
      EEPROM_READ_VAR(i, IDLE_OOZING_enabled);
    #endif

    #if MB(ALLIGATOR)
      EEPROM_READ_VAR(i, motor_current);
    #endif

    // Call updatePID (similar to when we have processed M301)
    updatePID();

    // Report settings retrieved and length
    ECHO_SV(DB, ver);
    ECHO_MV(" stored settings retrieved (", (unsigned long)i);
    ECHO_EM(" bytes)");
  }

  #if ENABLED(EEPROM_CHITCHAT)
    Config_PrintSettings();
  #endif
}
void Config_StoreSettings() {
  float dummy = 0.0f;
  char ver[7] = "000000";
  int i = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(i, ver); // invalidate data first
  EEPROM_WRITE_VAR(i, axis_steps_per_unit);
  EEPROM_WRITE_VAR(i, max_feedrate);
  EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
  EEPROM_WRITE_VAR(i, acceleration);
  EEPROM_WRITE_VAR(i, retract_acceleration);
  EEPROM_WRITE_VAR(i, travel_acceleration);
  EEPROM_WRITE_VAR(i, minimumfeedrate);
  EEPROM_WRITE_VAR(i, mintravelfeedrate);
  EEPROM_WRITE_VAR(i, minsegmenttime);
  EEPROM_WRITE_VAR(i, max_xy_jerk);
  EEPROM_WRITE_VAR(i, max_z_jerk);
  EEPROM_WRITE_VAR(i, max_e_jerk);
  EEPROM_WRITE_VAR(i, home_offset);
  EEPROM_WRITE_VAR(i, hotend_offset);

  #if !MECH(DELTA)
    EEPROM_WRITE_VAR(i, zprobe_zoffset);
  #endif

  #if HEATER_USES_AD595
    EEPROM_WRITE_VAR(i, ad595_offset);
    EEPROM_WRITE_VAR(i, ad595_gain);
  #endif

  #if MECH(DELTA)
    EEPROM_WRITE_VAR(i, endstop_adj);
    EEPROM_WRITE_VAR(i, delta_radius);
    EEPROM_WRITE_VAR(i, delta_diagonal_rod);
    EEPROM_WRITE_VAR(i, sw_endstop_max);
    EEPROM_WRITE_VAR(i, tower_adj);
    EEPROM_WRITE_VAR(i, diagrod_adj);
    EEPROM_WRITE_VAR(i, z_probe_offset);
  #elif ENABLED(Z_DUAL_ENDSTOPS)
    EEPROM_WRITE_VAR(i, z_endstop_adj);            // 1 floats
  #endif

  #if DISABLED(ULTIPANEL)
    int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
        absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED,
        gumPreheatHotendTemp = GUM_PREHEAT_HOTEND_TEMP, gumPreheatHPBTemp = GUM_PREHEAT_HPB_TEMP, gumPreheatFanSpeed = GUM_PREHEAT_FAN_SPEED;
  #endif

  EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  EEPROM_WRITE_VAR(i, gumPreheatHotendTemp);
  EEPROM_WRITE_VAR(i, gumPreheatHPBTemp);
  EEPROM_WRITE_VAR(i, gumPreheatFanSpeed);

  #if ENABLED(PIDTEMP)
    for (int h = 0; h < HOTENDS; h++) {
      EEPROM_WRITE_VAR(i, PID_PARAM(Kp, h));
      EEPROM_WRITE_VAR(i, PID_PARAM(Ki, h));
      EEPROM_WRITE_VAR(i, PID_PARAM(Kd, h));
      EEPROM_WRITE_VAR(i, PID_PARAM(Kc, h));
    }
  #endif

  #if DISABLED(PID_ADD_EXTRUSION_RATE)
    int lpq_len = 20;
  #endif
  EEPROM_WRITE_VAR(i, lpq_len);
  
  #if ENABLED(PIDTEMPBED)
    EEPROM_WRITE_VAR(i, bedKp);
    EEPROM_WRITE_VAR(i, bedKi);
    EEPROM_WRITE_VAR(i, bedKd);
  #endif

  #if HASNT(LCD_CONTRAST)
    const int lcd_contrast = 32;
  #endif
  EEPROM_WRITE_VAR(i, lcd_contrast);

  #if MECH(SCARA)
    EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  #endif

  #if ENABLED(FWRETRACT)
    EEPROM_WRITE_VAR(i, autoretract_enabled);
    EEPROM_WRITE_VAR(i, retract_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_feedrate);
    EEPROM_WRITE_VAR(i, retract_zlift);
    EEPROM_WRITE_VAR(i, retract_recover_length);
    #if EXTRUDERS > 1
      EEPROM_WRITE_VAR(i, retract_recover_length_swap);
    #else
      dummy = 0.0f;
      EEPROM_WRITE_VAR(i, dummy);
    #endif
    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  #endif // FWRETRACT

  EEPROM_WRITE_VAR(i, volumetric_enabled);

  // Save filament sizes
  for (int e = 0; e < EXTRUDERS; e++)
    EEPROM_WRITE_VAR(i, filament_size[e]);

  #if ENABLED(IDLE_OOZING_PREVENT)
    EEPROM_WRITE_VAR(i, IDLE_OOZING_enabled);
  #endif

  #if MB(ALLIGATOR)
    EEPROM_WRITE_VAR(i, motor_current);
  #endif

  char ver2[7] = EEPROM_VERSION;
  int j = EEPROM_OFFSET;
  EEPROM_WRITE_VAR(j, ver2); // validate data

  // Report storage size
  ECHO_SMV(DB, "Settings Stored (", (unsigned long)i);
  ECHO_EM(" bytes)");
}