Example #1
0
/**
 * Verify that the magnetometer can be initialised and that it is returning samples
 * at approximately the expected rate.
 */
static void
testMag(void)
{
	struct pios_hmc5883_data sample;
	int				samples;

	puts("HMC5883...");
	PIOS_HMC5883_Init();
	puts(" init OK");
#if 0
	/* don't do this for now - it makes the I2C bus sad */
	if (!PIOS_HMC5883_Test()) {
		putln(" FAIL: selftest");
		return;
	}
	puts(" selftest OK");
#endif

	samples = 0;
	for (int i = 0; i < 100; i++) {
		if (PIOS_HMC5883_NewDataAvailable()) {
			PIOS_HMC5883_ReadMag(&sample);
			samples++;
		}
		PIOS_DELAY_WaitmS(10);
	}
	puts(" sampling");
	if (samples < 10) {
		println(" FAIL: undersample(%d)", samples);
	} else if (samples > 20) {
		println(" FAIL: oversample(%d)", samples);
	} else {
		println(" OK", samples);
	}
}
Example #2
0
static void SensorsTask(void *parameters)
{
	portTickType lastSysTime;
	uint32_t accel_samples = 0;
	uint32_t gyro_samples = 0;
	int32_t accel_accum[3] = {0, 0, 0};
	int32_t gyro_accum[3] = {0,0,0};
	float gyro_scaling = 0;
	float accel_scaling = 0;
	static int32_t timeval;

	AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);

	UAVObjEvent ev;
	settingsUpdatedCb(&ev);

	const struct pios_board_info * bdinfo = &pios_board_info_blob;	

	switch(bdinfo->board_rev) {
		case 0x01:
#if defined(PIOS_INCLUDE_L3GD20)
			gyro_test = PIOS_L3GD20_Test();
#endif
#if defined(PIOS_INCLUDE_BMA180)
			accel_test = PIOS_BMA180_Test();
#endif
			break;
		case 0x02:
#if defined(PIOS_INCLUDE_MPU6000)
			gyro_test = PIOS_MPU6000_Test();
			accel_test = gyro_test;
#endif
			break;
		default:
			PIOS_DEBUG_Assert(0);
	}

#if defined(PIOS_INCLUDE_HMC5883)
	mag_test = PIOS_HMC5883_Test();
#else
	mag_test = 0;
#endif

	if(accel_test < 0 || gyro_test < 0 || mag_test < 0) {
		AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
		while(1) {
			PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
			vTaskDelay(10);
		}
	}
	
	// Main task loop
	lastSysTime = xTaskGetTickCount();
	bool error = false;
	uint32_t mag_update_time = PIOS_DELAY_GetRaw();
	while (1) {
		// TODO: add timeouts to the sensor reads and set an error if the fail
		sensor_dt_us = PIOS_DELAY_DiffuS(timeval);
		timeval = PIOS_DELAY_GetRaw();

		if (error) {
			PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
			lastSysTime = xTaskGetTickCount();
			vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
			AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
			error = false;
		} else {
			AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
		}


		for (int i = 0; i < 3; i++) {
			accel_accum[i] = 0;
			gyro_accum[i] = 0;
		}
		accel_samples = 0;
		gyro_samples = 0;

		AccelsData accelsData;
		GyrosData gyrosData;

		switch(bdinfo->board_rev) {
			case 0x01:  // L3GD20 + BMA180 board
#if defined(PIOS_INCLUDE_BMA180)
			{
				struct pios_bma180_data accel;
				
				int32_t read_good;
				int32_t count;
				
				count = 0;
				while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0 && !error)
					error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
				if (error) {
					// Unfortunately if the BMA180 ever misses getting read, then it will not
					// trigger more interrupts.  In this case we must force a read to kickstarts
					// it.
					struct pios_bma180_data data;
					PIOS_BMA180_ReadAccels(&data);
					continue;
				}
				while(read_good == 0) {	
					count++;
					
					accel_accum[1] += accel.x;
					accel_accum[0] += accel.y;
					accel_accum[2] -= accel.z;
					
					read_good = PIOS_BMA180_ReadFifo(&accel);
				}
				accel_samples = count;
				accel_scaling = PIOS_BMA180_GetScale();
				
				// Get temp from last reading
				accelsData.temperature = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
			}
#endif
#if defined(PIOS_INCLUDE_L3GD20)
			{
				struct pios_l3gd20_data gyro;
				gyro_samples = 0;
				xQueueHandle gyro_queue = PIOS_L3GD20_GetQueue();
				
				if(xQueueReceive(gyro_queue, (void *) &gyro, 4) == errQUEUE_EMPTY) {
					error = true;
					continue;
				}
				
				gyro_samples = 1;
				gyro_accum[1] += gyro.gyro_x;
				gyro_accum[0] += gyro.gyro_y;
				gyro_accum[2] -= gyro.gyro_z;
				
				gyro_scaling = PIOS_L3GD20_GetScale();

				// Get temp from last reading
				gyrosData.temperature = gyro.temperature;
			}
#endif
				break;
			case 0x02:  // MPU6000 board
			case 0x03:  // MPU6000 board
#if defined(PIOS_INCLUDE_MPU6000)
			{
				struct pios_mpu6000_data mpu6000_data;
				xQueueHandle queue = PIOS_MPU6000_GetQueue();
				
				while(xQueueReceive(queue, (void *) &mpu6000_data, gyro_samples == 0 ? 10 : 0) != errQUEUE_EMPTY)
				{
					gyro_accum[0] += mpu6000_data.gyro_x;
					gyro_accum[1] += mpu6000_data.gyro_y;
					gyro_accum[2] += mpu6000_data.gyro_z;

					accel_accum[0] += mpu6000_data.accel_x;
					accel_accum[1] += mpu6000_data.accel_y;
					accel_accum[2] += mpu6000_data.accel_z;

					gyro_samples ++;
					accel_samples ++;
				}
				
				if (gyro_samples == 0) {
					PIOS_MPU6000_ReadGyros(&mpu6000_data);
					error = true;
					continue;
				}

				gyro_scaling = PIOS_MPU6000_GetScale();
				accel_scaling = PIOS_MPU6000_GetAccelScale();

				gyrosData.temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
				accelsData.temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
			}
#endif /* PIOS_INCLUDE_MPU6000 */
				break;
			default:
				PIOS_DEBUG_Assert(0);
		}

		// Scale the accels
		float accels[3] = {(float) accel_accum[0] / accel_samples, 
		                   (float) accel_accum[1] / accel_samples,
		                   (float) accel_accum[2] / accel_samples};
		float accels_out[3] = {accels[0] * accel_scaling * accel_scale[0] - accel_bias[0],
		                       accels[1] * accel_scaling * accel_scale[1] - accel_bias[1],
		                       accels[2] * accel_scaling * accel_scale[2] - accel_bias[2]};
		if (rotate) {
			rot_mult(R, accels_out, accels);
			accelsData.x = accels[0];
			accelsData.y = accels[1];
			accelsData.z = accels[2];
		} else {
			accelsData.x = accels_out[0];
			accelsData.y = accels_out[1];
			accelsData.z = accels_out[2];
		}
		AccelsSet(&accelsData);

		// Scale the gyros
		float gyros[3] = {(float) gyro_accum[0] / gyro_samples,
		                  (float) gyro_accum[1] / gyro_samples,
		                  (float) gyro_accum[2] / gyro_samples};
		float gyros_out[3] = {gyros[0] * gyro_scaling,
		                      gyros[1] * gyro_scaling,
		                      gyros[2] * gyro_scaling};
		if (rotate) {
			rot_mult(R, gyros_out, gyros);
			gyrosData.x = gyros[0];
			gyrosData.y = gyros[1];
			gyrosData.z = gyros[2];
		} else {
			gyrosData.x = gyros_out[0];
			gyrosData.y = gyros_out[1];
			gyrosData.z = gyros_out[2];
		}
		
		if (bias_correct_gyro) {
			// Apply bias correction to the gyros from the state estimator
			GyrosBiasData gyrosBias;
			GyrosBiasGet(&gyrosBias);
			gyrosData.x -= gyrosBias.x;
			gyrosData.y -= gyrosBias.y;
			gyrosData.z -= gyrosBias.z;
		}
		GyrosSet(&gyrosData);
		
		// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
		// and make it average zero (weakly)

#if defined(PIOS_INCLUDE_HMC5883)
		MagnetometerData mag;
		if (PIOS_HMC5883_NewDataAvailable() || PIOS_DELAY_DiffuS(mag_update_time) > 150000) {
			int16_t values[3];
			PIOS_HMC5883_ReadMag(values);
			float mags[3] = {-(float) values[1] * mag_scale[0] - mag_bias[0],
			                 -(float) values[0] * mag_scale[1] - mag_bias[1],
			                 -(float) values[2] * mag_scale[2] - mag_bias[2]};
			if (rotate) {
				float mag_out[3];
				rot_mult(R, mags, mag_out);
				mag.x = mag_out[0];
				mag.y = mag_out[1];
				mag.z = mag_out[2];
			} else {
				mag.x = mags[0];
				mag.y = mags[1];
				mag.z = mags[2];
			}
			
			// Correct for mag bias and update if the rate is non zero
			if(cal.MagBiasNullingRate > 0)
				magOffsetEstimation(&mag);

			MagnetometerSet(&mag);
			mag_update_time = PIOS_DELAY_GetRaw();
		}
#endif

		PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);

		lastSysTime = xTaskGetTickCount();
	}
}