Example #1
0
static void uavoRelayTask(void *parameters)
{
	UAVObjEvent ev;

	// Loop forever
	while (1) {

		PIOS_Thread_Sleep(50);

		// Wait for queue message
		if (PIOS_Queue_Receive(queue, &ev, 2) == true) {
			// Process event.  This calls transmitData
			UAVTalkSendObject(uavTalkCon, ev.obj, ev.instId, false, 0);
		}

		// Process incoming data in sufficient chunks that we keep up
		uint8_t serial_data[8];
		uint16_t bytes_to_process;

		bytes_to_process = PIOS_COM_ReceiveBuffer(uavorelay_com_id, serial_data, sizeof(serial_data), 0);
		do {
			bytes_to_process = PIOS_COM_ReceiveBuffer(uavorelay_com_id, serial_data, sizeof(serial_data), 0);
			for (uint8_t i = 0; i < bytes_to_process; i++)
				UAVTalkProcessInputStream(uavTalkCon,serial_data[i]);
		} while (bytes_to_process > 0);

	}
}
Example #2
0
/**
 * @brief Gimbal output control task
 */
static void brushlessGimbalTask(void* parameters)
{
	UAVObjEvent ev;

	TIM2->CNT = 0;
	TIM3->CNT = 0;
	TIM15->CNT = 0;
	TIM17->CNT = 0;

	bool armed = false;
	bool previous_armed = false;
	while (1) {
		PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR);

		// Wait until the ActuatorDesired object is updated
		PIOS_Queue_Receive(queue, &ev, 1);

		previous_armed = armed;
		armed |= PIOS_Thread_Systime() > 10000;

		if (armed && !previous_armed) {
			PIOS_Brushless_SetUpdateRate(60000);
		}

		if (!armed)
			continue;

		ActuatorDesiredData actuatorDesired;
		ActuatorDesiredGet(&actuatorDesired);

		// Set the rotation in electrical degrees per second.  Note these
		// will be divided by the number of physical poles to get real
		// mechanical degrees per second
		BrushlessGimbalSettingsData settings;
		BrushlessGimbalSettingsGet(&settings);

		PIOS_Brushless_SetScale(settings.PowerScale[0], settings.PowerScale[1], settings.PowerScale[2]);
		PIOS_Brushless_SetMaxAcceleration(settings.SlewLimit[0], settings.SlewLimit[1], settings.SlewLimit[2]);

		PIOS_Brushless_SetSpeed(0, actuatorDesired.Roll * settings.MaxDPS[BRUSHLESSGIMBALSETTINGS_MAXDPS_ROLL], 0.001f);
		PIOS_Brushless_SetSpeed(1, actuatorDesired.Pitch  * settings.MaxDPS[BRUSHLESSGIMBALSETTINGS_MAXDPS_PITCH], 0.001f);

		// Use the gyros to set a damping term.  This creates a phase offset of the integrated
		// driving position to make the control pull against any momentum.  Essentially the main
		// output to the driver (above) is a velocity signal which the driver takes care of
		// integrating to create a position.  The current rate of roll creates a shift in that
		// position (without changing the integrated position).
		// This idea was taken from https://code.google.com/p/brushless-gimbal/
		GyrosData gyros;
		GyrosGet(&gyros);
		PIOS_Brushless_SetPhaseLag(0, -gyros.x * settings.Damping[BRUSHLESSGIMBALSETTINGS_DAMPING_ROLL]);
		PIOS_Brushless_SetPhaseLag(1, -gyros.y * settings.Damping[BRUSHLESSGIMBALSETTINGS_DAMPING_PITCH]);
	}
}
Example #3
0
/**
 * Telemetry transmit task, regular priority
 *
 * Logic: We need to double buffer the DMA transfers.  Pack the buffer until either
 * 1) it is full (and then we should record the number of missed events then)
 * 2) the current transaction is done (we should immediately schedule since we are slave)
 * when done packing the buffer we should call PIOS_SPI_TransferBlock, change the active buffer
 * and then take the semaphrore
 */
static void overoSyncTask(void *parameters)
{
	UAVObjEvent ev;

	// Kick off SPI transfers (once one is completed another will automatically transmit)
	overosync->transaction_done = true;
	overosync->sent_objects = 0;
	overosync->failed_objects = 0;
	overosync->received_objects = 0;
	
	uint32_t lastUpdateTime = PIOS_Thread_Systime();
	uint32_t updateTime;
	
	fid = fopen("sim_log.opl", "w");

	// Loop forever
	while (1) {
		// Wait for queue message
		if (PIOS_Queue_Receive(queue, &ev, PIOS_QUEUE_TIMEOUT_MAX) == true) {
		
			// Check it will fit before packetizing
			if ((overosync->write_pointer + UAVObjGetNumBytes(ev.obj) + 12) >=
				sizeof(overosync->transactions[overosync->loading_transaction_id].tx_buffer)) {
				overosync->failed_objects ++;
			} else {
				// Process event.  This calls transmitData
				UAVTalkSendObject(uavTalkCon, ev.obj, ev.instId, false, 0);
			}

			updateTime = PIOS_Thread_Systime();
			if(((uint32_t) (updateTime - lastUpdateTime)) > 1000) {
				// Update stats.  This will trigger a local send event too
				OveroSyncStatsData syncStats;
				syncStats.Send = overosync->sent_bytes;
				syncStats.Received = 0;
				syncStats.Connected = syncStats.Send > 500 ? OVEROSYNCSTATS_CONNECTED_TRUE : OVEROSYNCSTATS_CONNECTED_FALSE;
				syncStats.DroppedUpdates = overosync->failed_objects;
				OveroSyncStatsSet(&syncStats);
				overosync->failed_objects = 0;
				overosync->sent_bytes = 0;
				lastUpdateTime = updateTime;
			}
		}
	}
}
Example #4
0
static void gimbalControlTask(void *parameters)
{

	// Loop forever
	while (1) {

		struct pios_can_gimbal_message bgc_message;

		// Wait for queue message
		if (PIOS_Queue_Receive(queue, &bgc_message, 5) == true) {
			CameraDesiredData cameraDesired;
			CameraDesiredGet(&cameraDesired);

			cameraDesired.Declination = bgc_message.setpoint_pitch;
			cameraDesired.Bearing = bgc_message.setpoint_yaw;
			cameraDesired.Roll = bgc_message.fc_roll;
			cameraDesired.Pitch = bgc_message.fc_pitch;
			cameraDesired.Yaw = bgc_message.fc_yaw;
			CameraDesiredSet(&cameraDesired);
		}

	}
}
Example #5
0
static void loggingTask(void *parameters)
{
	UAVObjEvent ev;

	bool armed = false;
	uint32_t now = PIOS_Thread_Systime();

#if defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC)
	bool write_open = false;
	bool read_open = false;
	int32_t read_sector = 0;
	uint8_t read_data[LOGGINGSTATS_FILESECTOR_NUMELEM];
#endif

	// Get settings automatically for now on
	LoggingSettingsConnectCopy(&settings);


	LoggingStatsGet(&loggingData);
	loggingData.BytesLogged = 0;
	
#if defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC)
	if (destination_spi_flash)
	{
		loggingData.MinFileId = PIOS_STREAMFS_MinFileId(streamfs_id);
		loggingData.MaxFileId = PIOS_STREAMFS_MaxFileId(streamfs_id);
	}
#endif

	if (settings.LogBehavior == LOGGINGSETTINGS_LOGBEHAVIOR_LOGONSTART) {
		loggingData.Operation = LOGGINGSTATS_OPERATION_INITIALIZING;
	} else {
		loggingData.Operation = LOGGINGSTATS_OPERATION_IDLE;
	}

	LoggingStatsSet(&loggingData);

	// Loop forever
	while (1) 
	{
		LoggingStatsGet(&loggingData);

		// Check for change in armed state if logging on armed

		if (settings.LogBehavior == LOGGINGSETTINGS_LOGBEHAVIOR_LOGONARM) {
			FlightStatusData flightStatus;
			FlightStatusGet(&flightStatus);

			if (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED && !armed) {
				// Start logging because just armed
				loggingData.Operation = LOGGINGSTATS_OPERATION_INITIALIZING;
				armed = true;
				LoggingStatsSet(&loggingData);
			} else if (flightStatus.Armed == FLIGHTSTATUS_ARMED_DISARMED && armed) {
				loggingData.Operation = LOGGINGSTATS_OPERATION_IDLE;
				armed = false;
				LoggingStatsSet(&loggingData);
			}
		}

		switch (loggingData.Operation) {
		case LOGGINGSTATS_OPERATION_FORMAT:
			// Format the file system
#if defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC)
			if (destination_spi_flash){
				if (read_open || write_open) {
					PIOS_STREAMFS_Close(streamfs_id);
					read_open = false;
					write_open = false;
				}

				PIOS_STREAMFS_Format(streamfs_id);
				loggingData.MinFileId = PIOS_STREAMFS_MinFileId(streamfs_id);
				loggingData.MaxFileId = PIOS_STREAMFS_MaxFileId(streamfs_id);
			}
#endif /* defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC) */
			loggingData.Operation = LOGGINGSTATS_OPERATION_IDLE;
			LoggingStatsSet(&loggingData);
			break;
		case LOGGINGSTATS_OPERATION_INITIALIZING:
			// Unregister all objects
			UAVObjIterate(&unregister_object);
			// Register objects to be logged
			switch (settings.Profile) {
				case LOGGINGSETTINGS_PROFILE_DEFAULT:
					register_default_profile();
					break;
				case LOGGINGSETTINGS_PROFILE_CUSTOM:
					UAVObjIterate(&register_object);
					break;
			}
#if defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC)
			if (destination_spi_flash){
				// Close the file if it is open for reading
				if (read_open) {
					PIOS_STREAMFS_Close(streamfs_id);
					read_open = false;
				}
				// Open the file if it is not open for writing
				if (!write_open) {
					if (PIOS_STREAMFS_OpenWrite(streamfs_id) != 0) {
						loggingData.Operation = LOGGINGSTATS_OPERATION_ERROR;
						continue;
					} else {
						write_open = true;
					}
					loggingData.MinFileId = PIOS_STREAMFS_MinFileId(streamfs_id);
					loggingData.MaxFileId = PIOS_STREAMFS_MaxFileId(streamfs_id);
					LoggingStatsSet(&loggingData);
				}
			}
			else {
				read_open = false;
				write_open = true;
			}
#endif /* defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC) */

			// Write information at start of the log file
			writeHeader();

			// Log settings
			if (settings.LogSettingsOnStart == LOGGINGSETTINGS_LOGSETTINGSONSTART_TRUE){
				UAVObjIterate(&logSettings);
			}

			// Empty the queue
			while(PIOS_Queue_Receive(logging_queue, &ev, 0))

			LoggingStatsBytesLoggedSet(&written_bytes);
			loggingData.Operation = LOGGINGSTATS_OPERATION_LOGGING;
			LoggingStatsSet(&loggingData);
			break;
		case LOGGINGSTATS_OPERATION_LOGGING:
			{
				// Sleep between writing
				PIOS_Thread_Sleep_Until(&now, LOGGING_PERIOD_MS);

				// Log the objects registred to the shared queue
				for (int i=0; i<LOGGING_QUEUE_SIZE; i++) {
					if (PIOS_Queue_Receive(logging_queue, &ev, 0) == true) {
						UAVTalkSendObjectTimestamped(uavTalkCon, ev.obj, ev.instId, false, 0);
					}
					else {
						break;
					}
				}

				LoggingStatsBytesLoggedSet(&written_bytes);

				now = PIOS_Thread_Systime();
			}
			break;
		case LOGGINGSTATS_OPERATION_DOWNLOAD:
#if defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC)
			if (destination_spi_flash) {
				if (!read_open) {
					// Start reading
					if (PIOS_STREAMFS_OpenRead(streamfs_id, loggingData.FileRequest) != 0) {
						loggingData.Operation = LOGGINGSTATS_OPERATION_ERROR;
					} else {
						read_open = true;
						read_sector = -1;
					}
				}
				if (read_open && read_sector == loggingData.FileSectorNum) {
					// Request received for same sector. Reupdate.
					memcpy(loggingData.FileSector, read_data, LOGGINGSTATS_FILESECTOR_NUMELEM);
					loggingData.Operation = LOGGINGSTATS_OPERATION_IDLE;
				} else if (read_open && (read_sector + 1) == loggingData.FileSectorNum) {
					int32_t bytes_read = PIOS_COM_ReceiveBuffer(logging_com_id, read_data, LOGGINGSTATS_FILESECTOR_NUMELEM, 1);
					if (bytes_read < 0 || bytes_read > LOGGINGSTATS_FILESECTOR_NUMELEM) {
						// close on error
						loggingData.Operation = LOGGINGSTATS_OPERATION_ERROR;
						PIOS_STREAMFS_Close(streamfs_id);
						read_open = false;
					} else if (bytes_read < LOGGINGSTATS_FILESECTOR_NUMELEM) {
						// Check it has really run out of bytes by reading again
						int32_t bytes_read2 = PIOS_COM_ReceiveBuffer(logging_com_id, &read_data[bytes_read], LOGGINGSTATS_FILESECTOR_NUMELEM - bytes_read, 1);
						memcpy(loggingData.FileSector, read_data, LOGGINGSTATS_FILESECTOR_NUMELEM);
						if ((bytes_read + bytes_read2) < LOGGINGSTATS_FILESECTOR_NUMELEM) {
							// indicate end of file
							loggingData.Operation = LOGGINGSTATS_OPERATION_COMPLETE;
							PIOS_STREAMFS_Close(streamfs_id);
							read_open = false;
						} else {
							// Indicate sent
							loggingData.Operation = LOGGINGSTATS_OPERATION_IDLE;
						}
					} else {
						// Indicate sent
						loggingData.Operation = LOGGINGSTATS_OPERATION_IDLE;
						memcpy(loggingData.FileSector, read_data, LOGGINGSTATS_FILESECTOR_NUMELEM);
					}
					read_sector = loggingData.FileSectorNum;
				}
				LoggingStatsSet(&loggingData);
			}
#endif /* defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC) */

			// fall-through to default case
		default:
			//  Makes sure that we are not hogging the processor
			PIOS_Thread_Sleep(10);
#if defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC)
			if (destination_spi_flash) {
				// Close the file if necessary
				if (write_open) {
					PIOS_STREAMFS_Close(streamfs_id);
					loggingData.MinFileId = PIOS_STREAMFS_MinFileId(streamfs_id);
					loggingData.MaxFileId = PIOS_STREAMFS_MaxFileId(streamfs_id);
					LoggingStatsSet(&loggingData);
					write_open = false;
				}
			}
#endif /* defined(PIOS_INCLUDE_FLASH) && defined(PIOS_INCLUDE_FLASH_JEDEC) */
		}
	}
}
Example #6
0
/**
 * System task, periodically executes every SYSTEM_UPDATE_PERIOD_MS
 */
static void systemTask(void *parameters)
{
	/* create all modules thread */
	MODULE_TASKCREATE_ALL;

	if (PIOS_heap_malloc_failed_p()) {
		/* We failed to malloc during task creation,
		 * system behaviour is undefined.  Reset and let
		 * the BootFault code recover for us.
		 */
		PIOS_SYS_Reset();
	}

#if defined(PIOS_INCLUDE_IAP)
	/* Record a successful boot */
	PIOS_IAP_WriteBootCount(0);
#endif

	// Initialize vars
	idleCounter = 0;
	idleCounterClear = 0;

	// Listen for SettingPersistance object updates, connect a callback function
	ObjectPersistenceConnectQueue(objectPersistenceQueue);

#if (defined(COPTERCONTROL) || defined(REVOLUTION) || defined(SIM_OSX)) && ! (defined(SIM_POSIX))
	// Run this initially to make sure the configuration is checked
	configuration_check();

	// Whenever the configuration changes, make sure it is safe to fly
	if (StabilizationSettingsHandle())
		StabilizationSettingsConnectCallback(configurationUpdatedCb);
	if (SystemSettingsHandle())
		SystemSettingsConnectCallback(configurationUpdatedCb);
	if (ManualControlSettingsHandle())
		ManualControlSettingsConnectCallback(configurationUpdatedCb);
	if (FlightStatusHandle())
		FlightStatusConnectCallback(configurationUpdatedCb);
#endif
#if (defined(REVOLUTION) || defined(SIM_OSX)) && ! (defined(SIM_POSIX))
	if (StateEstimationHandle())
		StateEstimationConnectCallback(configurationUpdatedCb);
#endif

	// Main system loop
	while (1) {
		// Update the system statistics
		updateStats();

		// Update the system alarms
		updateSystemAlarms();
#if defined(WDG_STATS_DIAGNOSTICS)
		updateWDGstats();
#endif

#if defined(DIAG_TASKS)
		// Update the task status object
		TaskMonitorUpdateAll();
#endif

		// Flash the heartbeat LED
#if defined(PIOS_LED_HEARTBEAT)
		PIOS_LED_Toggle(PIOS_LED_HEARTBEAT);
		DEBUG_MSG("+ 0x%08x\r\n", 0xDEADBEEF);
#endif	/* PIOS_LED_HEARTBEAT */

		// Turn on the error LED if an alarm is set
		if (indicateError()) {
#if defined (PIOS_LED_ALARM)
			PIOS_LED_On(PIOS_LED_ALARM);
#endif	/* PIOS_LED_ALARM */
		} else {
#if defined (PIOS_LED_ALARM)
			PIOS_LED_Off(PIOS_LED_ALARM);
#endif	/* PIOS_LED_ALARM */
		}

		FlightStatusData flightStatus;
		FlightStatusGet(&flightStatus);

		UAVObjEvent ev;
		int delayTime = flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED ?
			SYSTEM_UPDATE_PERIOD_MS / (LED_BLINK_RATE_HZ * 2) :
			SYSTEM_UPDATE_PERIOD_MS;

		if (PIOS_Queue_Receive(objectPersistenceQueue, &ev, delayTime) == true) {
			// If object persistence is updated call the callback
			objectUpdatedCb(&ev);
		}
	}
}
Example #7
0
/**
 * Module thread, should not return.
 */
static void altitudeHoldTask(void *parameters)
{
	bool engaged = false;

	AltitudeHoldDesiredData altitudeHoldDesired;
	StabilizationDesiredData stabilizationDesired;
	AltitudeHoldSettingsData altitudeHoldSettings;

	UAVObjEvent ev;
	struct pid velocity_pid;

	// Listen for object updates.
	AltitudeHoldDesiredConnectQueue(queue);
	AltitudeHoldSettingsConnectQueue(queue);
	FlightStatusConnectQueue(queue);

	AltitudeHoldSettingsGet(&altitudeHoldSettings);
	pid_configure(&velocity_pid, altitudeHoldSettings.VelocityKp,
		          altitudeHoldSettings.VelocityKi, 0.0f, 1.0f);

	AlarmsSet(SYSTEMALARMS_ALARM_ALTITUDEHOLD, SYSTEMALARMS_ALARM_OK);

	// Main task loop
	const uint32_t dt_ms = 5;
	const float dt_s = dt_ms * 0.001f;
	uint32_t timeout = dt_ms;

	while (1) {
		if (PIOS_Queue_Receive(queue, &ev, timeout) != true) {

		} else if (ev.obj == FlightStatusHandle()) {

			uint8_t flight_mode;
			FlightStatusFlightModeGet(&flight_mode);

			if (flight_mode == FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD && !engaged) {
				// Copy the current throttle as a starting point for integral
				StabilizationDesiredThrottleGet(&velocity_pid.iAccumulator);
				velocity_pid.iAccumulator *= 1000.0f; // pid library scales up accumulator by 1000
				engaged = true;
			} else if (flight_mode != FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD)
				engaged = false;

			// Run loop at 20 Hz when engaged otherwise just slowly wait for it to be engaged
			timeout = engaged ? dt_ms : 100;

		} else if (ev.obj == AltitudeHoldDesiredHandle()) {
			AltitudeHoldDesiredGet(&altitudeHoldDesired);
		} else if (ev.obj == AltitudeHoldSettingsHandle()) {
			AltitudeHoldSettingsGet(&altitudeHoldSettings);

			pid_configure(&velocity_pid, altitudeHoldSettings.VelocityKp,
				          altitudeHoldSettings.VelocityKi, 0.0f, 1.0f);
		}

		bool landing = altitudeHoldDesired.Land == ALTITUDEHOLDDESIRED_LAND_TRUE;

		// For landing mode allow throttle to go negative to allow the integrals
		// to stop winding up
		const float min_throttle = landing ? -0.1f : 0.0f;

		// When engaged compute altitude controller output
		if (engaged) {
			float position_z, velocity_z, altitude_error;

			PositionActualDownGet(&position_z);
			VelocityActualDownGet(&velocity_z);
			position_z = -position_z; // Use positive up convention
			velocity_z = -velocity_z; // Use positive up convention

			// Compute the altitude error
			altitude_error = altitudeHoldDesired.Altitude - position_z;

			// Velocity desired is from the outer controller plus the set point
			float velocity_desired = altitude_error * altitudeHoldSettings.PositionKp + altitudeHoldDesired.ClimbRate;
			float throttle_desired = pid_apply_antiwindup(&velocity_pid, 
			                    velocity_desired - velocity_z,
			                    min_throttle, 1.0f, // positive limits since this is throttle
			                    dt_s);

			if (altitudeHoldSettings.AttitudeComp > 0) {
				// Throttle desired is at this point the mount desired in the up direction, we can
				// account for the attitude if desired
				AttitudeActualData attitudeActual;
				AttitudeActualGet(&attitudeActual);

				// Project a unit vector pointing up into the body frame and
				// get the z component
				float fraction = attitudeActual.q1 * attitudeActual.q1 -
				                 attitudeActual.q2 * attitudeActual.q2 -
				                 attitudeActual.q3 * attitudeActual.q3 +
				                 attitudeActual.q4 * attitudeActual.q4;

				// Add ability to scale up the amount of compensation to achieve
				// level forward flight
				fraction = powf(fraction, (float) altitudeHoldSettings.AttitudeComp / 100.0f);

				// Dividing by the fraction remaining in the vertical projection will
				// attempt to compensate for tilt. This acts like the thrust is linear
				// with the output which isn't really true. If the fraction is starting
				// to go negative we are inverted and should shut off throttle
				throttle_desired = (fraction > 0.1f) ? (throttle_desired / fraction) : 0.0f;
			}

			StabilizationDesiredGet(&stabilizationDesired);
			stabilizationDesired.Throttle = bound_min_max(throttle_desired, min_throttle, 1.0f);

			if (landing) {
				stabilizationDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
				stabilizationDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
				stabilizationDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
				stabilizationDesired.Roll = 0;
				stabilizationDesired.Pitch = 0;
				stabilizationDesired.Yaw = 0;
			} else {
				stabilizationDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
				stabilizationDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
				stabilizationDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
				stabilizationDesired.Roll = altitudeHoldDesired.Roll;
				stabilizationDesired.Pitch = altitudeHoldDesired.Pitch;
				stabilizationDesired.Yaw = altitudeHoldDesired.Yaw;
			}
			StabilizationDesiredSet(&stabilizationDesired);
		}

	}
}
Example #8
0
/**
 * Module task
 */
static void stabilizationTask(void* parameters)
{
	UAVObjEvent ev;
	
	uint32_t timeval = PIOS_DELAY_GetRaw();
	
	ActuatorDesiredData actuatorDesired;
	StabilizationDesiredData stabDesired;
	RateDesiredData rateDesired;
	AttitudeActualData attitudeActual;
	GyrosData gyrosData;
	FlightStatusData flightStatus;

	float *stabDesiredAxis = &stabDesired.Roll;
	float *actuatorDesiredAxis = &actuatorDesired.Roll;
	float *rateDesiredAxis = &rateDesired.Roll;
	float horizonRateFraction = 0.0f;

	// Force refresh of all settings immediately before entering main task loop
	SettingsUpdatedCb((UAVObjEvent *) NULL);
	
	// Settings for system identification
	uint32_t iteration = 0;
	const uint32_t SYSTEM_IDENT_PERIOD = 75;
	uint32_t system_ident_timeval = PIOS_DELAY_GetRaw();

	float dT_filtered = 0;

	// Main task loop
	zero_pids();
	while(1) {
		iteration++;

		PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
		
		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if (PIOS_Queue_Receive(queue, &ev, FAILSAFE_TIMEOUT_MS) != true)
		{
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
			continue;
		}
		
		calculate_pids();

		float dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f;
		timeval = PIOS_DELAY_GetRaw();
		
		// exponential moving averaging (EMA) of dT to reduce jitter; ~200points
		// to have more or less equivalent noise reduction to a normal N point moving averaging:  alpha = 2 / (N + 1)
		// run it only at the beginning for the first samples, to reduce CPU load, and the value should converge to a constant value

		if (iteration < 100) {
			dT_filtered = dT;
		} else if (iteration < 2000) {
			dT_filtered = 0.01f * dT + (1.0f - 0.01f) * dT_filtered;
		} else if (iteration == 2000) {
			gyro_filter_updated = true;
		}

		if (gyro_filter_updated) {
			if (settings.GyroCutoff < 1.0f) {
				gyro_alpha = 0;
			} else {
				gyro_alpha = expf(-2.0f * (float)(M_PI) *
						settings.GyroCutoff * dT_filtered);
			}

			// Compute time constant for vbar decay term
			if (settings.VbarTau < 0.001f) {
				vbar_decay = 0;
			} else {
				vbar_decay = expf(-dT_filtered / settings.VbarTau);
			}

			gyro_filter_updated = false;
		}

		FlightStatusGet(&flightStatus);
		StabilizationDesiredGet(&stabDesired);
		AttitudeActualGet(&attitudeActual);
		GyrosGet(&gyrosData);
		ActuatorDesiredGet(&actuatorDesired);
#if defined(RATEDESIRED_DIAGNOSTICS)
		RateDesiredGet(&rateDesired);
#endif

		struct TrimmedAttitudeSetpoint {
			float Roll;
			float Pitch;
			float Yaw;
		} trimmedAttitudeSetpoint;
		
		// Mux in level trim values, and saturate the trimmed attitude setpoint.
		trimmedAttitudeSetpoint.Roll = bound_min_max(
			stabDesired.Roll + trimAngles.Roll,
			-settings.RollMax + trimAngles.Roll,
			 settings.RollMax + trimAngles.Roll);
		trimmedAttitudeSetpoint.Pitch = bound_min_max(
			stabDesired.Pitch + trimAngles.Pitch,
			-settings.PitchMax + trimAngles.Pitch,
			 settings.PitchMax + trimAngles.Pitch);
		trimmedAttitudeSetpoint.Yaw = stabDesired.Yaw;

		// For horizon mode we need to compute the desire attitude from an unscaled value and apply the
		// trim offset. Also track the stick with the most deflection to choose rate blending.
		horizonRateFraction = 0.0f;
		if (stabDesired.StabilizationMode[ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Roll = bound_min_max(
				stabDesired.Roll * settings.RollMax + trimAngles.Roll,
				-settings.RollMax + trimAngles.Roll,
				 settings.RollMax + trimAngles.Roll);
			horizonRateFraction = fabsf(stabDesired.Roll);
		}
		if (stabDesired.StabilizationMode[PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Pitch = bound_min_max(
				stabDesired.Pitch * settings.PitchMax + trimAngles.Pitch,
				-settings.PitchMax + trimAngles.Pitch,
				 settings.PitchMax + trimAngles.Pitch);
			horizonRateFraction = MAX(horizonRateFraction, fabsf(stabDesired.Pitch));
		}
		if (stabDesired.StabilizationMode[YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Yaw = stabDesired.Yaw * settings.YawMax;
			horizonRateFraction = MAX(horizonRateFraction, fabsf(stabDesired.Yaw));
		}

		// For weak leveling mode the attitude setpoint is the trim value (drifts back towards "0")
		if (stabDesired.StabilizationMode[ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Roll = trimAngles.Roll;
		}
		if (stabDesired.StabilizationMode[PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Pitch = trimAngles.Pitch;
		}
		if (stabDesired.StabilizationMode[YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Yaw = 0;
		}

		// Note we divide by the maximum limit here so the fraction ranges from 0 to 1 depending on
		// how much is requested.
		horizonRateFraction = bound_sym(horizonRateFraction, HORIZON_MODE_MAX_BLEND) / HORIZON_MODE_MAX_BLEND;

		// Calculate the errors in each axis. The local error is used in the following modes:
		//  ATTITUDE, HORIZON, WEAKLEVELING
		float local_attitude_error[3];
		local_attitude_error[0] = trimmedAttitudeSetpoint.Roll - attitudeActual.Roll;
		local_attitude_error[1] = trimmedAttitudeSetpoint.Pitch - attitudeActual.Pitch;
		local_attitude_error[2] = trimmedAttitudeSetpoint.Yaw - attitudeActual.Yaw;
		
		// Wrap yaw error to [-180,180]
		local_attitude_error[2] = circular_modulus_deg(local_attitude_error[2]);

		static float gyro_filtered[3];
		gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha);
		gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha);
		gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha);

		// A flag to track which stabilization mode each axis is in
		static uint8_t previous_mode[MAX_AXES] = {255,255,255};
		bool error = false;

		//Run the selected stabilization algorithm on each axis:
		for(uint8_t i=0; i< MAX_AXES; i++)
		{
			// Check whether this axis mode needs to be reinitialized
			bool reinit = (stabDesired.StabilizationMode[i] != previous_mode[i]);
			// The unscaled input (-1,1)
			float *raw_input = &stabDesired.Roll;
			previous_mode[i] = stabDesired.StabilizationMode[i];
			// Apply the selected control law
			switch(stabDesired.StabilizationMode[i])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
					if(reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					// Store to rate desired variable for storing to UAVO
					rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

			case STABILIZATIONDESIRED_STABILIZATIONMODE_ACROPLUS:
					// this implementation is based on the Openpilot/Librepilot Acro+ flightmode
					// and our existing rate & MWRate flightmodes
					if(reinit)
							pids[PID_GROUP_RATE + i].iAccumulator = 0;

					// The factor for gyro suppression / mixing raw stick input into the output; scaled by raw stick input
					float factor = fabsf(raw_input[i]) * settings.AcroInsanityFactor / 100;

					// Store to rate desired variable for storing to UAVO
					rateDesiredAxis[i] = bound_sym(raw_input[i] * settings.ManualRate[i], settings.ManualRate[i]);

					// Zero integral for aggressive maneuvers, like it is done for MWRate
					if ((i < 2 && fabsf(gyro_filtered[i]) > 150.0f) ||
											(i == 0 && fabsf(raw_input[i]) > 0.2f)) {
							pids[PID_GROUP_RATE + i].iAccumulator = 0;
							pids[PID_GROUP_RATE + i].i = 0;
							}

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i], rateDesiredAxis[i], gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = factor * raw_input[i] + (1.0f - factor) * actuatorDesiredAxis[i];
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i], 1.0f);

					break;
			case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					// Compute the outer loop
					rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.MaximumRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
					// Store for debugging output
					rateDesiredAxis[i] = stabDesiredAxis[i];

					// Run a virtual flybar stabilization algorithm on this axis
					stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &pids[PID_GROUP_VBAR + i], &settings);

					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					if (reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					float weak_leveling = local_attitude_error[i] * weak_leveling_kp;
					weak_leveling = bound_sym(weak_leveling, weak_leveling_max);

					// Compute desired rate as input biased towards leveling
					rateDesiredAxis[i] = stabDesiredAxis[i] + weak_leveling;
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
					if (reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					if (fabsf(stabDesiredAxis[i]) > max_axislock_rate) {
						// While getting strong commands act like rate mode
						rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

						// Reset accumulator
						axis_lock_accum[i] = 0;
					} else {
						// For weaker commands or no command simply lock (almost) on no gyro change
						axis_lock_accum[i] += (stabDesiredAxis[i] - gyro_filtered[i]) * dT;
						axis_lock_accum[i] = bound_sym(axis_lock_accum[i], max_axis_lock);

						// Compute the inner loop
						float tmpRateDesired = pid_apply(&pids[PID_GROUP_ATT + i], axis_lock_accum[i], dT);
						rateDesiredAxis[i] = bound_sym(tmpRateDesired, settings.MaximumRate[i]);
					}

					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON:
					if(reinit) {
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					// Do not allow outer loop integral to wind up in this mode since the controller
					// is often disengaged.
					pids[PID_GROUP_ATT + i].iAccumulator = 0;

					// Compute the outer loop for the attitude control
					float rateDesiredAttitude = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
					// Compute the desire rate for a rate control
					float rateDesiredRate = raw_input[i] * settings.ManualRate[i];

					// Blend from one rate to another. The maximum of all stick positions is used for the
					// amount so that when one axis goes completely to rate the other one does too. This
					// prevents doing flips while one axis tries to stay in attitude mode.
					rateDesiredAxis[i] = rateDesiredAttitude * (1.0f-horizonRateFraction) + rateDesiredRate * horizonRateFraction;
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.ManualRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_MWRATE:
				{
					if(reinit) {
						pids[PID_GROUP_MWR + i].iAccumulator = 0;
					}

					/*
					 Conversion from MultiWii PID settings to our units.
						Kp = Kp_mw * 4 / 80 / 500
						Kd = Kd_mw * looptime * 1e-6 * 4 * 3 / 32 / 500
						Ki = Ki_mw * 4 / 125 / 64 / (looptime * 1e-6) / 500

						These values will just be approximate and should help
						you get started.
					*/

					// The unscaled input (-1,1) - note in MW this is from (-500,500)
					float *raw_input = &stabDesired.Roll;

					// dynamic PIDs are scaled both by throttle and stick position
					float scale = (i == 0 || i == 1) ? mwrate_settings.RollPitchRate : mwrate_settings.YawRate;
					float pid_scale = (100.0f - scale * fabsf(raw_input[i])) / 100.0f;
					float dynP8 = pids[PID_GROUP_MWR + i].p * pid_scale;
					float dynD8 = pids[PID_GROUP_MWR + i].d * pid_scale;
					// these terms are used by the integral loop this proportional term is scaled by throttle (this is different than MW
					// that does not apply scale 
					float cfgP8 = pids[PID_GROUP_MWR + i].p;
					float cfgI8 = pids[PID_GROUP_MWR + i].i;

					// Dynamically adjust PID settings
					struct pid mw_pid;
					mw_pid.p = 0;      // use zero Kp here because of strange setpoint. applied later.
					mw_pid.d = dynD8;
					mw_pid.i = cfgI8;
					mw_pid.iLim = pids[PID_GROUP_MWR + i].iLim;
					mw_pid.iAccumulator = pids[PID_GROUP_MWR + i].iAccumulator;
					mw_pid.lastErr = pids[PID_GROUP_MWR + i].lastErr;
					mw_pid.lastDer = pids[PID_GROUP_MWR + i].lastDer;

					// Zero integral for aggressive maneuvers
 					if ((i < 2 && fabsf(gyro_filtered[i]) > 150.0f) ||
 					    (i == 0 && fabsf(raw_input[i]) > 0.2f)) {
						mw_pid.iAccumulator = 0;
						mw_pid.i = 0;
					}

					// Apply controller as if we want zero change, then add stick input afterwards
					actuatorDesiredAxis[i] = pid_apply_setpoint(&mw_pid,  raw_input[i] / cfgP8,  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] += raw_input[i];             // apply input
					actuatorDesiredAxis[i] -= dynP8 * gyro_filtered[i]; // apply Kp term
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					// Store PID accumulators for next cycle
					pids[PID_GROUP_MWR + i].iAccumulator = mw_pid.iAccumulator;
					pids[PID_GROUP_MWR + i].lastErr = mw_pid.lastErr;
					pids[PID_GROUP_MWR + i].lastDer = mw_pid.lastDer;
				}
					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT:
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					static uint32_t ident_iteration = 0;
					static float ident_offsets[3] = {0};

					if (PIOS_DELAY_DiffuS(system_ident_timeval) / 1000.0f > SYSTEM_IDENT_PERIOD && SystemIdentHandle()) {
						ident_iteration++;
						system_ident_timeval = PIOS_DELAY_GetRaw();

						SystemIdentData systemIdent;
						SystemIdentGet(&systemIdent);

						const float SCALE_BIAS = 7.1f;
						float roll_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_ROLL]);
						float pitch_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_PITCH]);
						float yaw_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_YAW]);

						if (roll_scale > 0.25f)
							roll_scale = 0.25f;
						if (pitch_scale > 0.25f)
							pitch_scale = 0.25f;
						if (yaw_scale > 0.25f)
							yaw_scale = 0.2f;

						switch(ident_iteration & 0x07) {
							case 0:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = yaw_scale;
								break;
							case 1:
								ident_offsets[0] = roll_scale;
								ident_offsets[1] = 0;
								ident_offsets[2] = 0;
								break;
							case 2:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = -yaw_scale;
								break;
							case 3:
								ident_offsets[0] = -roll_scale;
								ident_offsets[1] = 0;
								ident_offsets[2] = 0;
								break;
							case 4:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = yaw_scale;
								break;
							case 5:
								ident_offsets[0] = 0;
								ident_offsets[1] = pitch_scale;
								ident_offsets[2] = 0;
								break;
							case 6:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = -yaw_scale;
								break;
							case 7:
								ident_offsets[0] = 0;
								ident_offsets[1] = -pitch_scale;
								ident_offsets[2] = 0;
								break;
						}
					}

					if (i == ROLL || i == PITCH) {
						// Compute the outer loop
						rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
						rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.MaximumRate[i]);

						// Compute the inner loop
						actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
						actuatorDesiredAxis[i] += ident_offsets[i];
						actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);
					} else {
						// Get the desired rate. yaw is always in rate mode in system ident.
						rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

						// Compute the inner loop only for yaw
						actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
						actuatorDesiredAxis[i] += ident_offsets[i];
						actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);						
					}

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_COORDINATEDFLIGHT:
					switch (i) {
						case YAW:
							if (reinit) {
								pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								pids[PID_RATE_YAW].iAccumulator = 0;
								axis_lock_accum[YAW] = 0;
							}

							//If we are not in roll attitude mode, trigger an error
							if (stabDesired.StabilizationMode[ROLL] != STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
							{
								error = true;
								break ;
							}

							if (fabsf(stabDesired.Yaw) < COORDINATED_FLIGHT_MAX_YAW_THRESHOLD) { //If yaw is within the deadband...
								if (fabsf(stabDesired.Roll) > COORDINATED_FLIGHT_MIN_ROLL_THRESHOLD) { // We're requesting more roll than the threshold
									float accelsDataY;
									AccelsyGet(&accelsDataY);

									//Reset integral if we have changed roll to opposite direction from rudder. This implies that we have changed desired turning direction.
									if ((stabDesired.Roll > 0 && actuatorDesiredAxis[YAW] < 0) ||
											(stabDesired.Roll < 0 && actuatorDesiredAxis[YAW] > 0)){
										pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
									}

									// Coordinate flight can simply be seen as ensuring that there is no lateral acceleration in the
									// body frame. As such, we use the (noisy) accelerometer data as our measurement. Ideally, at
									// some point in the future we will estimate acceleration and then we can use the estimated value
									// instead of the measured value.
									float errorSlip = -accelsDataY;

									float command = pid_apply(&pids[PID_COORDINATED_FLIGHT_YAW], errorSlip, dT);
									actuatorDesiredAxis[YAW] = bound_sym(command ,1.0);

									// Reset axis-lock integrals
									pids[PID_RATE_YAW].iAccumulator = 0;
									axis_lock_accum[YAW] = 0;
								} else if (fabsf(stabDesired.Roll) <= COORDINATED_FLIGHT_MIN_ROLL_THRESHOLD) { // We're requesting less roll than the threshold
									// Axis lock on no gyro change
									axis_lock_accum[YAW] += (0 - gyro_filtered[YAW]) * dT;

									rateDesiredAxis[YAW] = pid_apply(&pids[PID_ATT_YAW], axis_lock_accum[YAW], dT);
									rateDesiredAxis[YAW] = bound_sym(rateDesiredAxis[YAW], settings.MaximumRate[YAW]);

									actuatorDesiredAxis[YAW] = pid_apply_setpoint(&pids[PID_RATE_YAW],  rateDesiredAxis[YAW],  gyro_filtered[YAW], dT);
									actuatorDesiredAxis[YAW] = bound_sym(actuatorDesiredAxis[YAW],1.0f);

									// Reset coordinated-flight integral
									pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								}
							} else { //... yaw is outside the deadband. Pass the manual input directly to the actuator.
								actuatorDesiredAxis[YAW] = bound_sym(stabDesiredAxis[YAW], 1.0);

								// Reset all integrals
								pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								pids[PID_RATE_YAW].iAccumulator = 0;
								axis_lock_accum[YAW] = 0;
							}
							break;
						case ROLL:
						case PITCH:
						default:
							//Coordinated Flight has no effect in these modes. Trigger a configuration error.
							error = true;
							break;
					}

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_POI:
					// The sanity check enforces this is only selectable for Yaw
					// for a gimbal you can select pitch too.
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					float error;
					float angle;
					if (CameraDesiredHandle()) {
						switch(i) {
						case PITCH:
							CameraDesiredDeclinationGet(&angle);
							error = circular_modulus_deg(angle - attitudeActual.Pitch);
							break;
						case ROLL:
						{
							uint8_t roll_fraction = 0;
#ifdef GIMBAL
							if (BrushlessGimbalSettingsHandle()) {
								BrushlessGimbalSettingsRollFractionGet(&roll_fraction);
							}
#endif /* GIMBAL */

							// For ROLL POI mode we track the FC roll angle (scaled) to
							// allow keeping some motion
							CameraDesiredRollGet(&angle);
							angle *= roll_fraction / 100.0f;
							error = circular_modulus_deg(angle - attitudeActual.Roll);
						}
							break;
						case YAW:
							CameraDesiredBearingGet(&angle);
							error = circular_modulus_deg(angle - attitudeActual.Yaw);
							break;
						default:
							error = true;
						}
					} else
						error = true;

					// Compute the outer loop
					rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], error, dT);
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.PoiMaximumRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
					actuatorDesiredAxis[i] = bound_sym(stabDesiredAxis[i],1.0f);
					break;
				default:
					error = true;
					break;
			}
		}

		if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE)
			stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT);

#if defined(RATEDESIRED_DIAGNOSTICS)
		RateDesiredSet(&rateDesired);
#endif

		// Save dT
		actuatorDesired.UpdateTime = dT * 1000;
		actuatorDesired.Throttle = stabDesired.Throttle;

		if(flightStatus.FlightMode != FLIGHTSTATUS_FLIGHTMODE_MANUAL) {
			ActuatorDesiredSet(&actuatorDesired);
		} else {
			// Force all axes to reinitialize when engaged
			for(uint8_t i=0; i< MAX_AXES; i++)
				previous_mode[i] = 255;
		}

		if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
		   (lowThrottleZeroIntegral && stabDesired.Throttle < 0))
		{
			// Force all axes to reinitialize when engaged
			for(uint8_t i=0; i< MAX_AXES; i++)
				previous_mode[i] = 255;
		}

		// Clear or set alarms.  Done like this to prevent toggling each cycle
		// and hammering system alarms
		if (error)
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_ERROR);
		else
			AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
	}
}
Example #9
0
/**
 * Telemetry transmit task, regular priority
 *
 * Logic: We need to double buffer the DMA transfers.  Pack the buffer until either
 * 1) it is full (and then we should record the number of missed events then)
 * 2) the current transaction is done (we should immediately schedule since we are slave)
 * when done packing the buffer we should call PIOS_SPI_TransferBlock, change the active buffer
 * and then take the semaphrore
 */
static void overoSyncTask(void *parameters)
{
	UAVObjEvent ev;

	// Kick off SPI transfers (once one is completed another will automatically transmit)
	overosync->sent_objects = 0;
	overosync->failed_objects = 0;
	overosync->received_objects = 0;
	
	uint32_t lastUpdateTime = PIOS_Thread_Systime();
	uint32_t updateTime;

	bool initialized = false;
	uint8_t last_connected = OVEROSYNCSTATS_CONNECTED_FALSE;

	// Loop forever
	while (1) {
		// Wait for queue message
		if (PIOS_Queue_Receive(queue, &ev, PIOS_QUEUE_TIMEOUT_MAX) == true) {

			// For the first seconds do not send updates to allow the
			// overo to boot.  Then enable it and act normally.
			if (!initialized && PIOS_Thread_Systime() < 5000) {
				continue;
			} else if (!initialized) {
				initialized = true;
				PIOS_OVERO_Enable(pios_overo_id);
			}

			// Process event.  This calls transmitData
			UAVTalkSendObjectTimestamped(uavTalkCon, ev.obj, ev.instId, false, 0);
			
			updateTime = PIOS_Thread_Systime();
			if(((uint32_t) (updateTime - lastUpdateTime)) > 1000) {
				// Update stats.  This will trigger a local send event too
				OveroSyncStatsData syncStats;
				syncStats.Send = overosync->sent_bytes;
				syncStats.Connected = syncStats.Send > 500 ? OVEROSYNCSTATS_CONNECTED_TRUE : OVEROSYNCSTATS_CONNECTED_FALSE;
				syncStats.DroppedUpdates = overosync->failed_objects;
				syncStats.Packets = PIOS_OVERO_GetPacketCount(pios_overo_id);
				OveroSyncStatsSet(&syncStats);
				overosync->failed_objects = 0;
				overosync->sent_bytes = 0;
				lastUpdateTime = updateTime;

				// When first connected, send all the settings.  Right now this
				// will fail since all the settings will overfill the buffer and
				if (last_connected == OVEROSYNCSTATS_CONNECTED_FALSE &&
					syncStats.Connected == OVEROSYNCSTATS_CONNECTED_TRUE) {
					UAVObjIterate(&send_settings);
				}

				// Because the previous code only happens on connection and the
				// remote logging program doesn't send the settings to the log
				// when arming starts we send all settings every thirty seconds
				static uint32_t second_count = 0;
				if (second_count ++ > 30) {
					UAVObjIterate(&send_settings);
					second_count = 0;
				}
				last_connected = syncStats.Connected;
			}

			// TODO: Check the receive buffer
		}
	}
}