Example #1
0
/*
 * Create a condition variable
 */
int
lthread_cond_init(char *name, struct lthread_cond **cond,
		  __rte_unused const struct lthread_condattr *attr)
{
	struct lthread_cond *c;

	if (cond == NULL)
		return POSIX_ERRNO(EINVAL);

	/* allocate a condition variable from cache */
	c = _lthread_objcache_alloc((THIS_SCHED)->cond_cache);

	if (c == NULL)
		return POSIX_ERRNO(EAGAIN);

	c->blocked = _lthread_queue_create("blocked");
	if (c->blocked == NULL) {
		_lthread_objcache_free((THIS_SCHED)->cond_cache, (void *)c);
		return POSIX_ERRNO(EAGAIN);
	}

	if (name == NULL)
		strncpy(c->name, "no name", sizeof(c->name));
	else
		strncpy(c->name, name, sizeof(c->name));
	c->name[sizeof(c->name)-1] = 0;

	c->root_sched = THIS_SCHED;

	(*cond) = c;
	DIAG_CREATE_EVENT((*cond), LT_DIAG_COND_CREATE);
	return 0;
}
Example #2
0
/*
 * Unlock a mutex
 */
int lthread_mutex_unlock(struct lthread_mutex *m)
{
	struct lthread *lt = THIS_LTHREAD;
	struct lthread *unblocked;

	if ((m == NULL) || (m->blocked == NULL)) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_UNLOCKED, m, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	/* fail if its owned */
	if (m->owner != lt || m->owner == NULL) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_UNLOCKED, m, POSIX_ERRNO(EPERM));
		return POSIX_ERRNO(EPERM);
	}

	rte_atomic64_dec(&m->count);
	/* if there are blocked threads then make one ready */
	while (rte_atomic64_read(&m->count) > 0) {
		unblocked = _lthread_queue_remove(m->blocked);

		if (unblocked != NULL) {
			rte_atomic64_dec(&m->count);
			DIAG_EVENT(m, LT_DIAG_MUTEX_UNLOCKED, m, unblocked);
			RTE_ASSERT(unblocked->sched != NULL);
			_ready_queue_insert((struct lthread_sched *)
					    unblocked->sched, unblocked);
			break;
		}
	}
	/* release the lock */
	m->owner = NULL;
	return 0;
}
Example #3
0
/*
 * Broadcast a condition variable
 */
int lthread_cond_broadcast(struct lthread_cond *c)
{
	struct lthread *lt;

	if (c == NULL) {
		DIAG_EVENT(c, LT_DIAG_COND_BROADCAST, c, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	DIAG_EVENT(c, LT_DIAG_COND_BROADCAST, c, 0);
	do {
		/* drain the queue waking everybody */
		lt = _lthread_queue_remove(c->blocked);

		if (lt != NULL) {
			DIAG_EVENT(c, LT_DIAG_COND_BROADCAST, c, lt);
			/* wake up */
			_ready_queue_insert((struct lthread_sched *)lt->sched,
					    lt);
		}
	} while (!_lthread_queue_empty(c->blocked));
	_reschedule();
	DIAG_EVENT(c, LT_DIAG_COND_BROADCAST, c, 0);
	return 0;
}
Example #4
0
/*
 * Create a key
 * this means getting a key from the the pool
 */
int lthread_key_create(unsigned int *key, tls_destructor_func destructor)
{
	if (key == NULL)
		return POSIX_ERRNO(EINVAL);

	struct lthread_key *new_key;

	if (rte_ring_mc_dequeue((struct rte_ring *)key_pool, (void **)&new_key)
	    == 0) {
		new_key->destructor = destructor;
		*key = (new_key - key_table);

		return 0;
	}
	return POSIX_ERRNO(EAGAIN);
}
Example #5
0
/*
 * Signal a condition variable
 * attempt to resume any blocked thread
 */
int lthread_cond_signal(struct lthread_cond *c)
{
	struct lthread *lt;

	if (c == NULL) {
		DIAG_EVENT(c, LT_DIAG_COND_SIGNAL, c, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	lt = _lthread_queue_remove(c->blocked);

	if (lt != NULL) {
		/* okay wake up this thread */
		DIAG_EVENT(c, LT_DIAG_COND_SIGNAL, c, lt);
		_ready_queue_insert((struct lthread_sched *)lt->sched, lt);
	}
	return 0;
}
Example #6
0
/*
 * Try to obtain a mutex
 */
int lthread_mutex_lock(struct lthread_mutex *m)
{
	struct lthread *lt = THIS_LTHREAD;

	if ((m == NULL) || (m->blocked == NULL)) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_LOCK, m, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	/* allow no recursion */
	if (m->owner == lt) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_LOCK, m, POSIX_ERRNO(EDEADLK));
		return POSIX_ERRNO(EDEADLK);
	}

	for (;;) {
		rte_atomic64_inc(&m->count);
		do {
			if (rte_atomic64_cmpset
			    ((uint64_t *) &m->owner, 0, (uint64_t) lt)) {
				/* happy days, we got the lock */
				DIAG_EVENT(m, LT_DIAG_MUTEX_LOCK, m, 0);
				return 0;
			}
			/* spin due to race with unlock when
			* nothing was blocked
			*/
		} while ((rte_atomic64_read(&m->count) == 1) &&
				(m->owner == NULL));

		/* queue the current thread in the blocked queue
		 * we defer this to after we return to the scheduler
		 * to ensure that the current thread context is saved
		 * before unlock could result in it being dequeued and
		 * resumed
		 */
		DIAG_EVENT(m, LT_DIAG_MUTEX_BLOCKED, m, lt);
		lt->pending_wr_queue = m->blocked;
		/* now relinquish cpu */
		_suspend();
		/* resumed, must loop and compete for the lock again */
	}
	return 0;
}
Example #7
0
/*
 * Destroy a condition variable
 */
int lthread_cond_destroy(struct lthread_cond *c)
{
	if (c == NULL) {
		DIAG_EVENT(c, LT_DIAG_COND_DESTROY, c, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	/* try to free it */
	if (_lthread_queue_destroy(c->blocked) < 0) {
		/* queue in use */
		DIAG_EVENT(c, LT_DIAG_COND_DESTROY, c, POSIX_ERRNO(EBUSY));
		return POSIX_ERRNO(EBUSY);
	}

	/* okay free it */
	_lthread_objcache_free(c->root_sched->cond_cache, c);
	DIAG_EVENT(c, LT_DIAG_COND_DESTROY, c, 0);
	return 0;
}
Example #8
0
/* try to lock a mutex but don't block */
int lthread_mutex_trylock(struct lthread_mutex *m)
{
	struct lthread *lt = THIS_LTHREAD;

	if ((m == NULL) || (m->blocked == NULL)) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	if (m->owner == lt) {
		/* no recursion */
		DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, POSIX_ERRNO(EDEADLK));
		return POSIX_ERRNO(EDEADLK);
	}

	rte_atomic64_inc(&m->count);
	if (rte_atomic64_cmpset
	    ((uint64_t *) &m->owner, (uint64_t) NULL, (uint64_t) lt)) {
		/* got the lock */
		DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, 0);
		return 0;
	}

	/* failed so return busy */
	rte_atomic64_dec(&m->count);
	DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, POSIX_ERRNO(EBUSY));
	return POSIX_ERRNO(EBUSY);
}
Example #9
0
/*
 * migrate the current thread to another scheduler running
 * on the specified lcore.
 */
int lthread_set_affinity(unsigned lcoreid)
{
	struct lthread *lt = THIS_LTHREAD;
	struct lthread_sched *dest_sched;

	if (unlikely(lcoreid >= LTHREAD_MAX_LCORES))
		return POSIX_ERRNO(EINVAL);

	DIAG_EVENT(lt, LT_DIAG_LTHREAD_AFFINITY, lcoreid, 0);

	dest_sched = schedcore[lcoreid];

	if (unlikely(dest_sched == NULL))
		return POSIX_ERRNO(EINVAL);

	if (likely(dest_sched != THIS_SCHED)) {
		lt->sched = dest_sched;
		lt->pending_wr_queue = dest_sched->pready;
		_affinitize();
		return 0;
	}
	return 0;
}
Example #10
0
/*
 * Delete a key
 */
int lthread_key_delete(unsigned int k)
{
	struct lthread_key *key;

	key = (struct lthread_key *) &key_table[k];

	if (k > LTHREAD_MAX_KEYS)
		return POSIX_ERRNO(EINVAL);

	key->destructor = NULL;
	rte_ring_mp_enqueue((struct rte_ring *)key_pool,
					(void *)key);
	return 0;
}
Example #11
0
/*
 * Wait on a condition variable
 */
int lthread_cond_wait(struct lthread_cond *c, __rte_unused uint64_t reserved)
{
	struct lthread *lt = THIS_LTHREAD;

	if (c == NULL) {
		DIAG_EVENT(c, LT_DIAG_COND_WAIT, c, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}


	DIAG_EVENT(c, LT_DIAG_COND_WAIT, c, 0);

	/* queue the current thread in the blocked queue
	 * this will be written when we return to the scheduler
	 * to ensure that the current thread context is saved
	 * before any signal could result in it being dequeued and
	 * resumed
	 */
	lt->pending_wr_queue = c->blocked;
	_suspend();

	/* the condition happened */
	return 0;
}
Example #12
0
/*
 * Create a mutex
 */
int
lthread_mutex_init(char *name, struct lthread_mutex **mutex,
		   __rte_unused const struct lthread_mutexattr *attr)
{
	struct lthread_mutex *m;

	if (mutex == NULL)
		return POSIX_ERRNO(EINVAL);


	m = _lthread_objcache_alloc((THIS_SCHED)->mutex_cache);
	if (m == NULL)
		return POSIX_ERRNO(EAGAIN);

	m->blocked = _lthread_queue_create("blocked queue");
	if (m->blocked == NULL) {
		_lthread_objcache_free((THIS_SCHED)->mutex_cache, m);
		return POSIX_ERRNO(EAGAIN);
	}

	if (name == NULL)
		strncpy(m->name, "no name", sizeof(m->name));
	else
		strncpy(m->name, name, sizeof(m->name));
	m->name[sizeof(m->name)-1] = 0;

	m->root_sched = THIS_SCHED;
	m->owner = NULL;

	rte_atomic64_init(&m->count);

	DIAG_CREATE_EVENT(m, LT_DIAG_MUTEX_CREATE);
	/* success */
	(*mutex) = m;
	return 0;
}
Example #13
0
/*
 * Set a value against a key
 * If the key is no longer valid return an error
 * when storing value
 */
int lthread_setspecific(unsigned int k, const void *data)
{
	if (k > LTHREAD_MAX_KEYS)
		return POSIX_ERRNO(EINVAL);

	int n = THIS_LTHREAD->tls->nb_keys_inuse;

	/* discard const qualifier */
	char *p = (char *) (uintptr_t) data;


	if (data != NULL) {
		if (THIS_LTHREAD->tls->data[k] == NULL)
			THIS_LTHREAD->tls->nb_keys_inuse = n+1;
	}

	THIS_LTHREAD->tls->data[k] = (void *) p;
	return 0;
}
Example #14
0
/*
 * Destroy a mutex
 */
int lthread_mutex_destroy(struct lthread_mutex *m)
{
	if ((m == NULL) || (m->blocked == NULL)) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_DESTROY, m, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	if (m->owner == NULL) {
		/* try to delete the blocked queue */
		if (_lthread_queue_destroy(m->blocked) < 0) {
			DIAG_EVENT(m, LT_DIAG_MUTEX_DESTROY,
					m, POSIX_ERRNO(EBUSY));
			return POSIX_ERRNO(EBUSY);
		}

		/* free the mutex to cache */
		_lthread_objcache_free(m->root_sched->mutex_cache, m);
		DIAG_EVENT(m, LT_DIAG_MUTEX_DESTROY, m, 0);
		return 0;
	}
	/* can't do its still in use */
	DIAG_EVENT(m, LT_DIAG_MUTEX_DESTROY, m, POSIX_ERRNO(EBUSY));
	return POSIX_ERRNO(EBUSY);
}