Example #1
0
int
inv_seek(struct lobj *obj_desc, int offset, int whence)
{
	ASSERT(PTR_VALID(obj_desc));

	switch (whence) {
	case SEEK_SET:
		if (offset < 0)
			elog(ERROR, "invalid seek offset: %d", offset);

		obj_desc->offset = offset;
		break;
	case SEEK_CUR:
		if (offset < 0 && obj_desc->offset < ((uint32) (-offset)))
			elog(ERROR, "invalid seek offset: %d", offset);

		obj_desc->offset += offset;
		break;
	case SEEK_END: {
		uint32 size = inv_getsize(obj_desc);
		if (offset < 0 && size < ((uint32) (-offset)))
			elog(ERROR, "invalid seek offset: %d", offset);

		obj_desc->offset = size + offset;
		}
		break;
	default:
		elog(ERROR, "invalid whence: %d", whence);
	}

	return obj_desc->offset;
}
Example #2
0
int
inv_tell(struct lobj *obj_desc)
{
	ASSERT(PTR_VALID(obj_desc));

	return obj_desc->offset;
}
Example #3
0
/*
 * Closes a large object descriptor previously made by inv_open(), and
 * releases the long-term memory used by it.
 */
void
inv_close(struct lobj *obj_desc)
{
	ASSERT(PTR_VALID(obj_desc));

	if (obj_desc->snapshot != snap_now)
		unregister_snap_res(obj_desc->snapshot, top_xact_resource);

	pfree(obj_desc);
}
Example #4
0
/*-------------------------------------------------------------------------
 * datum_size
 *
 * Find the "real" size of a datum, given the datum value,
 * whether it is a "by value", and the declared type length.
 *
 * This is essentially an out-of-line version of the ATTR_ADD_LENGTH_DATUM()
 * macro in access/tup_macros.h.  We do a tad more error checking though.
 *-------------------------------------------------------------------------
 */
size_t datum_size(datum_t value, bool typByVal, int typLen)
{
	size_t size;

	if (typByVal) {
		/* Pass-by-value types are always fixed-length */
		ASSERT(typLen > 0 && typLen <= sizeof(datum_t));
		size = (size_t) typLen;
	} else {
		if (typLen > 0) {
			/* Fixed-length pass-by-ref type */
			size = (size_t) typLen;
		} else if (typLen == -1) {
			/* It is a varlena datatype */
			struct vla *s;

			s = (struct vla *)D_TO_PTR(value);
			if (!PTR_VALID(s))
				ereport(ERROR, (
				errcode(E_DATA_EXCEPTION),
				errmsg("invalid datum_t pointer")));

			size = (size_t) VLA_SZ_ANY(s);
		} else if (typLen == -2) {
			/* It is a cstring datatype */
			char *s = (char *)D_TO_PTR(value);

			if (!PTR_VALID(s))
				ereport(ERROR, (
				errcode(E_DATA_EXCEPTION),
				errmsg("invalid datum_t pointer")));

			size = (size_t) (strlen(s) + 1);
		} else {
			elog(ERROR, "invalid typLen: %d", typLen);
			size = 0;	/* keep compiler quiet */
		}
	}

	return size;
}
Example #5
0
GC_USER_FUNC GC_CAP char *
copy_string (GC_CAP const char * str)
{
  size_t len = cstrlen(str)+1;
  GC_CAP char * copy = GC_INVALID_PTR();
  GC_STORE_CAP(copy, ml_malloc(len));
  if (!PTR_VALID(copy))
  {
    fprintf(stderr, "copy_string(): out of memory\n");
    exit(1);
  }
  cmemcpy(copy, str, len);
  return copy;
}
Example #6
0
GC_USER_FUNC void
lex_read_file (GC_CAP const char * name)
{
  lex_state.num_tokens = 0;
  FILE * file = fopen((const char *) name, "rb");
  if (!file)
  {
    fprintf(stderr, "could not open file %s\n", (const char *) name);
    exit(1);
  }
  
  // A very inefficient way of reading a file, designed to stress the collector.
  lex_state.max = 0;
  lex_state.file = GC_INVALID_PTR();
  lex_state.index = 0;
  char c;
  while (fread(&c, 1, 1, file) == 1)
  {
    lex_state.max++;
    GC_CAP char * tmp = GC_INVALID_PTR();
    GC_STORE_CAP(tmp, ml_malloc(lex_state.max));
    if (!PTR_VALID(tmp))
    {
      fprintf(stderr, "out of memory reading file %s\n", (const char *) name);
      exit(1);
    }
    cmemset(tmp, 0, lex_state.max);
    if (PTR_VALID(lex_state.file))
    {
      cmemcpy(tmp, lex_state.file, lex_state.max-1);
    }
    GC_STORE_CAP(lex_state.file, tmp);
    lex_state.file[lex_state.max-1] = c;
  }

  fclose(file);
}
Example #7
0
GC_USER_FUNC void
lex_read_string (GC_CAP const char * str)
{
  lex_state.num_tokens = 0;
  lex_state.file = GC_INVALID_PTR();
  GC_STORE_CAP(lex_state.file, copy_string(str));
  if (!PTR_VALID(lex_state.file))
  {
    fprintf(stderr, "lex_read_string: out of memory\n");
    exit(1);
  }
  //GC_debug_track_allocated(lex_state.file, "lex_state file");
  lex_state.index = 0;
  lex_state.max = cstrlen(str);
}
Example #8
0
/*
 * Determine size of a large object
 *
 * NOTE: LOs can contain gaps, just like Unix files.  We actually return
 * the offset of the last byte + 1.
 */
static uint32
inv_getsize(struct lobj *obj_desc)
{
	uint32 lastbyte = 0;
	struct scankey skey[1];
	struct sys_scan* sd;
	struct heap_tuple* tuple;

	ASSERT(PTR_VALID(obj_desc));

	open_lo_relation();

	scankey_init(&skey[0], Anum_pg_largeobject_loid, BT_EQ_STRAT_NR, F_OIDEQ, OID_TO_D(obj_desc->id));
	sd = systable_beginscan_ordered(lo_heap_r, lo_index_r, obj_desc->snapshot, 1, skey);

	/*
	 * Because the pg_largeobject index is on both loid and pageno, but we
	 * constrain only loid, a backwards scan should visit all pages of the
	 * large object in reverse pageno order.  So, it's sufficient to examine
	 * the first valid tuple (== last valid page).
	 */
	tuple = systable_getnext_ordered(sd, BACKWARD_SCANDIR);
	if (HT_VALID(tuple)) {
		Form_pg_largeobject data;
		bytea* datafield;
		bool pfreeit;

		if (HT_HAS_NULLS(tuple))	/* paranoia */
			elog(ERROR, "null field found in pg_largeobject");

		data = (Form_pg_largeobject) GET_STRUCT(tuple);
		datafield = &(data->data);	/* see note at top of file */
		pfreeit = false;
		if (VLA_EXTENDED(datafield)) {
			datafield = (bytea *) heap_tuple_untoast_attr((struct vla *) datafield);
			pfreeit = true;
		}

		lastbyte = data->pageno * LO_BLK_SIZE + getbytealen(datafield);
		if (pfreeit)
			pfree(datafield);
	}

	systable_endscan_ordered(sd);
	return lastbyte;
}
Example #9
0
// Builds Huffman tree. Called with the first 8 bits loaded from input stream
void THuffmannTree::BuildTree(unsigned int nCmpType)
{
    unsigned long   maxByte;                // [ESP+10] - The greatest character found in table
    THTreeItem   ** itemPtr;                // [ESP+14] - Pointer to Huffman tree item pointer array
    unsigned char * byteArray;              // [ESP+1C] - Pointer to unsigned char in Table1502A630
    THTreeItem    * child1;
    unsigned long   i;                      // egcs in linux doesn't like multiple for loops without an explicit i

    // Loop while pointer has a valid value
    while(PTR_VALID(pLast))                 // ESI - Last entry
    {
        THTreeItem * temp;                  // EAX

        if(pLast->next != NULL)             // ESI->next
            pLast->RemoveItem();
                                            // EDI = &offs3054
        pItem3058   = PTR_PTR(&pItem3054);  // [EDI+4]
        pLast->prev = pItem3058;            // EAX

        temp = PTR_PTR(&pItem3054)->GetPrevItem(PTR_INT(&pItem3050));

        temp->next = pLast;
        pItem3054  = pLast;
    }

    // Clear all pointers in HTree item array
    memset(items306C, 0, sizeof(items306C));

    maxByte = 0;                            // Greatest character found init to zero.
    itemPtr = (THTreeItem **)&items306C;    // Pointer to current entry in HTree item pointer array

    // Ensure we have low 8 bits only
    nCmpType &= 0xFF;
    byteArray  = Table1502A630 + nCmpType * 258; // EDI also

    for(i = 0; i < 0x100; i++, itemPtr++)
    {
        THTreeItem * item   = pItem3058;    // Item to be created
        THTreeItem * pItem3 = pItem3058;
        unsigned char         oneByte = byteArray[i];

        // Skip all the bytes which are zero.
        if(byteArray[i] == 0)
            continue;

        // If not valid pointer, take the first available item in the array
        if(PTR_INVALID_OR_NULL(item))
            item = &items0008[nItems++];

        // Insert this item as the top of the tree
        InsertItem(&pItem305C, item, SWITCH_ITEMS, NULL);

        item->parent    = NULL;                 // Invalidate child and parent
        item->child     = NULL;
        *itemPtr        = item;                 // Store pointer into pointer array

        item->dcmpByte  = i;                    // Store counter
        item->byteValue = oneByte;              // Store byte value
        if(oneByte >= maxByte)
        {
            maxByte = oneByte;
            continue;
        }

        // Find the first item which has byte value greater than current one byte
        if(PTR_VALID(pItem3 = pLast))           // EDI - Pointer to the last item
        {
            // 15006AF7
            if(pItem3 != NULL)
            {
                do  // 15006AFB
                {
                    if(pItem3->byteValue >= oneByte)
                        goto _15006B09;
                    pItem3 = pItem3->prev;
                }
                while(PTR_VALID(pItem3));
            }
        }
        pItem3 = NULL;

        // 15006B09
        _15006B09:
        if(item->next != NULL)
            item->RemoveItem();

        // 15006B15
        if(pItem3 == NULL)
            pItem3 = PTR_PTR(&pFirst);

        // 15006B1F
        item->next = pItem3->next;
        item->prev = pItem3->next->prev;
        pItem3->next->prev = item;
        pItem3->next = item;
    }

    // 15006B4A
    for(; i < 0x102; i++)
    {
        THTreeItem ** itemPtr = &items306C[i];  // EDI

        // 15006B59
        THTreeItem * item = pItem3058;          // ESI
        if(PTR_INVALID_OR_NULL(item))
            item = &items0008[nItems++];

        InsertItem(&pItem305C, item, INSERT_ITEM, NULL);

        // 15006B89
        item->dcmpByte   = i;
        item->byteValue  = 1;
        item->parent     = NULL;
        item->child      = NULL;
        *itemPtr++ = item;
    }

    // 15006BAA
    if(PTR_VALID(child1 = pLast))                   // EDI - last item (first child to item
    {
        THTreeItem * child2;                        // EBP
        THTreeItem * item;                          // ESI

        // 15006BB8
        while(PTR_VALID(child2 = child1->prev))
        {
            if(PTR_INVALID_OR_NULL(item = pItem3058))
                item = &items0008[nItems++];

            // 15006BE3
            InsertItem(&pItem305C, item, SWITCH_ITEMS, NULL);

            // 15006BF3
            item->parent = NULL;
            item->child  = NULL;

            //EDX = child2->byteValue + child1->byteValue;
            //EAX = child1->byteValue;
            //ECX = maxByte;                        // The greatest character (0xFF usually)

            item->byteValue = child1->byteValue + child2->byteValue; // 0x02
            item->child     = child1;                                // Prev item in the
            child1->parent  = item;
            child2->parent  = item;

            // EAX = item->byteValue;
            if(item->byteValue >= maxByte)
                maxByte = item->byteValue;
            else
            {
                THTreeItem * pItem2 = child2->prev;   // EDI

                // 15006C2D
                while(PTR_VALID(pItem2))
                {
                    if(pItem2->byteValue >= item->byteValue)
                        goto _15006C3B;
                    pItem2 = pItem2->prev;
                }
                pItem2 = NULL;

                _15006C3B:
                if(item->next != 0)
                {
                    THTreeItem * temp4 = item->GetPrevItem(-1);

                    temp4->next      = item->next;                 // The first item changed
                    item->next->prev = item->prev;                 // First->prev changed to negative value
                    item->next = NULL;
                    item->prev = NULL;
                }

                // 15006C62
                if(pItem2 == NULL)
                    pItem2 = PTR_PTR(&pFirst);

                item->next = pItem2->next;                           // Set item with 0x100 byte value
                item->prev = pItem2->next->prev;                     // Set item with 0x17 byte value
                pItem2->next->prev = item;                           // Changed prev of item with
                pItem2->next = item;
            }

            // 15006C7B
            if(PTR_INVALID_OR_NULL(child1 = child2->prev))
                break;
        }
    }
    // 15006C88
    offs0004 = 1;
}
Example #10
0
void
inv_truncate(struct lobj *obj_desc, int len)
{
	int32 pageno = (int32) (len / LO_BLK_SIZE);
	int off;
	struct scankey skey[2];
	struct sys_scan* sd;
	struct heap_tuple* oldtuple;
	Form_pg_largeobject olddata;
	struct {
		bytea	hdr;
		char	data[LO_BLK_SIZE];	/* make struct big enough */
		int32	align_it;/* ensure struct is aligned well enough */
	} workbuf;
	char* workb = VLA_DATA(&workbuf.hdr);
	struct heap_tuple* newtup;
	datum_t	values[Natts_pg_largeobject];
	bool nulls[Natts_pg_largeobject];
	bool replace[Natts_pg_largeobject];
	CatalogIndexState indstate;

	ASSERT(PTR_VALID(obj_desc));

	/* enforce writability because snapshot is probably wrong otherwise */
	if ((obj_desc->flags & IFS_WRLOCK) == 0)
		ereport(ERROR, (
		errcode(E_OBJECT_NOT_IN_PREREQUISITE_STATE),
		errmsg("large object %u was not opened for writing",
			obj_desc->id)));

	/* check existence of the target largeobject */
	if (!large_obj_exists(obj_desc->id))
		ereport(ERROR, (
		errcode(E_UNDEFINED_OBJECT),
		errmsg("large object %u was already dropped", obj_desc->id)));

	open_lo_relation();
	indstate = cat_open_indexes(lo_heap_r);

	/*
	 * Set up to find all pages with desired loid and pageno >= target
	 */
	scankey_init(&skey[0], Anum_pg_largeobject_loid, BT_EQ_STRAT_NR, F_OIDEQ, OID_TO_D(obj_desc->id));
	scankey_init(&skey[1], Anum_pg_largeobject_pageno, BT_GE_STRAT_NR, F_INT4GE, INT32_TO_D(pageno));

	sd = systable_beginscan_ordered(lo_heap_r, lo_index_r, obj_desc->snapshot, 2, skey);

	/*
	 * If possible, get the page the truncation point is in. The truncation
	 * point may be beyond the end of the LO or in a hole.
	 */
	olddata = NULL;
	if ((oldtuple = systable_getnext_ordered(sd, FORWARD_SCANDIR)) != NULL) {
		if (HT_HAS_NULLS(oldtuple))		/* paranoia */
			elog(ERROR, "null field found in pg_largeobject");

		olddata = (Form_pg_largeobject) GET_STRUCT(oldtuple);
		ASSERT(olddata->pageno >= pageno);
	}

	/*
	 * If we found the page of the truncation point we need to truncate the
	 * data in it.	Otherwise if we're in a hole, we need to create a page to
	 * mark the end of data.
	 */
	if (olddata != NULL && olddata->pageno == pageno) {
		/* First, load old data into workbuf */
		bytea* datafield = &(olddata->data);	/* see note at top of file */
		bool pfreeit = false;
		int pagelen;

		if (VLA_EXTENDED(datafield)) {
			datafield = (bytea *) heap_tuple_untoast_attr((struct vla *) datafield);
			pfreeit = true;
		}

		pagelen = getbytealen(datafield);
		ASSERT(pagelen <= LO_BLK_SIZE);
		memcpy(workb, VLA_DATA(datafield), pagelen);
		if (pfreeit)
			pfree(datafield);

		/*
		 * Fill any hole
		 */
		off = len % LO_BLK_SIZE;
		if (off > pagelen)
			pg_memset(workb + pagelen, 0, off - pagelen);

		/* compute length of new page */
		VLA_SET_SZ_STND(&workbuf.hdr, off + VAR_HDR_SZ);

		/*
		 * Form and insert updated tuple
		 */
		memset(values, 0, sizeof(values));
		memset(nulls, false, sizeof(nulls));
		memset(replace, false, sizeof(replace));

		values[Anum_pg_largeobject_data - 1] = PTR_TO_D(&workbuf);
		replace[Anum_pg_largeobject_data - 1] = true;

		newtup = heap_modify_tuple(oldtuple, REL_DESC(lo_heap_r), values, nulls, replace);
		simple_heap_update(lo_heap_r, &newtup->t_self, newtup);
		cat_index_insert(indstate, newtup);
		heap_free_tuple(newtup);
	} else {
		/*
		 * If the first page we found was after the truncation point, we're in
		 * a hole that we'll fill, but we need to delete the later page
		 * because the loop below won't visit it again.
		 */
		if (olddata != NULL) {
			ASSERT(olddata->pageno > pageno);
			simple_heap_delete(lo_heap_r, &oldtuple->t_self);
		}

		/*
		 * Write a brand new page.
		 *
		 * Fill the hole up to the truncation point
		 */
		off = len % LO_BLK_SIZE;
		if (off > 0)
			pg_memset(workb, 0, off);

		/* compute length of new page */
		VLA_SET_SZ_STND(&workbuf.hdr, off + VAR_HDR_SZ);

		/*
		 * Form and insert new tuple
		 */
		memset(values, 0, sizeof(values));
		memset(nulls, false, sizeof(nulls));

		values[Anum_pg_largeobject_loid - 1] = OID_TO_D(obj_desc->id);
		values[Anum_pg_largeobject_pageno - 1] = INT32_TO_D(pageno);
		values[Anum_pg_largeobject_data - 1] = PTR_TO_D(&workbuf);

		newtup = heap_form_tuple(lo_heap_r->rd_att, values, nulls);
		simple_heap_insert(lo_heap_r, newtup);
		cat_index_insert(indstate, newtup);
		heap_free_tuple(newtup);
	}

	/*
	 * Delete any pages after the truncation point.  If the initial search
	 * didn't find a page, then of course there's nothing more to do.
	 */
	if (olddata != NULL) {
		while ((oldtuple = systable_getnext_ordered(sd, FORWARD_SCANDIR)) != NULL) {
			simple_heap_delete(lo_heap_r, &oldtuple->t_self);
		}
	}

	systable_endscan_ordered(sd);
	cat_close_indexes(indstate);

	/*
	 * Advance command counter so that tuple updates will be seen by later
	 * large-object operations in this transaction.
	 */
	cmd_count_incr();
}
Example #11
0
int
inv_write(struct lobj *obj_desc, const char *buf, int nbytes)
{
	int nwritten = 0;
	int n;
	int off;
	int len;
	int32	pageno = (int32) (obj_desc->offset / LO_BLK_SIZE);
	struct scankey skey[2];
	struct sys_scan * sd;
	struct heap_tuple *	oldtuple;
	Form_pg_largeobject olddata;
	bool	neednextpage;
	bytea* datafield;
	bool pfreeit;
	struct {
		bytea	hdr;
		char	data[LO_BLK_SIZE];	/* make struct big enough */
		int32	align_it;	/* ensure struct is aligned well enough */
	} workbuf;
	char* workb = VLA_DATA(&workbuf.hdr);
	struct heap_tuple* newtup;
	datum_t	values[Natts_pg_largeobject];
	bool nulls[Natts_pg_largeobject];
	bool replace[Natts_pg_largeobject];
	CatalogIndexState indstate;

	ASSERT(PTR_VALID(obj_desc));
	ASSERT(buf != NULL);

	/* enforce writability because snapshot is probably wrong otherwise */
	if ((obj_desc->flags & IFS_WRLOCK) == 0)
		ereport(ERROR, (
		errcode(E_OBJECT_NOT_IN_PREREQUISITE_STATE),
		errmsg("large object %u was not opened for writing",
			obj_desc->id)));

	/* check existence of the target largeobject */
	if (!large_obj_exists(obj_desc->id))
		ereport(ERROR, (
		errcode(E_UNDEFINED_OBJECT),
		errmsg("large object %u was already dropped", obj_desc->id)));

	if (nbytes <= 0)
		return 0;

	open_lo_relation();
	indstate = cat_open_indexes(lo_heap_r);

	scankey_init(&skey[0], Anum_pg_largeobject_loid, BT_EQ_STRAT_NR, F_OIDEQ, OID_TO_D(obj_desc->id));
	scankey_init(&skey[1], Anum_pg_largeobject_pageno, BT_GE_STRAT_NR, F_INT4GE, INT32_TO_D(pageno));

	sd = systable_beginscan_ordered(lo_heap_r, lo_index_r, obj_desc->snapshot, 2, skey);
	oldtuple = NULL;
	olddata = NULL;
	neednextpage = true;

	while (nwritten < nbytes) {
		/*
		 * If possible, get next pre-existing page of the LO.  We expect the
		 * indexscan will deliver these in order --- but there may be holes.
		 */
		if (neednextpage) {
			if ((oldtuple = systable_getnext_ordered(sd, FORWARD_SCANDIR)) != NULL) {
				if (HT_HAS_NULLS(oldtuple))		/* paranoia */
					elog(ERROR, "null field found in pg_largeobject");

				olddata = (Form_pg_largeobject) GET_STRUCT(oldtuple);
				ASSERT(olddata->pageno >= pageno);
			}

			neednextpage = false;
		}

		/*
		 * If we have a pre-existing page, see if it is the page we want to
		 * write, or a later one.
		 */
		if (olddata != NULL && olddata->pageno == pageno) {
			/*
			 * Update an existing page with fresh data.
			 *
			 * First, load old data into workbuf
			 */
			datafield = &(olddata->data);		/* see note at top of file */
			pfreeit = false;
			if (VLA_EXTENDED(datafield)) {
				datafield = (bytea *)
					heap_tuple_untoast_attr((struct vla *) datafield);
				pfreeit = true;
			}

			len = getbytealen(datafield);
			ASSERT(len <= LO_BLK_SIZE);
			memcpy(workb, VLA_DATA(datafield), len);
			if (pfreeit)
				pfree(datafield);

			/*
			 * Fill any hole
			 */
			off = (int)(obj_desc->offset % LO_BLK_SIZE);
			if (off > len)
				pg_memset(workb + len, 0, off - len);

			/*
			 * Insert appropriate portion of new data
			 */
			n = LO_BLK_SIZE - off;
			n = (n <= (nbytes - nwritten))? n : (nbytes - nwritten);
			memcpy(workb + off, buf + nwritten, n);
			nwritten += n;
			obj_desc->offset += n;
			off += n;

			/* compute valid length of new page */
			len = (len >= off) ? len : off;
			VLA_SET_SZ_STND(&workbuf.hdr, len + VAR_HDR_SZ);

			/*
			 * Form and insert updated tuple
			 */
			memset(values, 0, sizeof(values));
			memset(nulls, false, sizeof(nulls));
			memset(replace, false, sizeof(replace));

			values[Anum_pg_largeobject_data - 1] =  PTR_TO_D(&workbuf);
			replace[Anum_pg_largeobject_data - 1] = true;

			newtup = heap_modify_tuple(oldtuple, REL_DESC(lo_heap_r), values, nulls, replace);
			simple_heap_update(lo_heap_r, &newtup->t_self, newtup);
			cat_index_insert(indstate, newtup);
			heap_free_tuple(newtup);

			/*
			 * We're done with this old page.
			 */
			oldtuple = NULL;
			olddata = NULL;
			neednextpage = true;
		} else {
			/*
			 * Write a brand new page.
			 *
			 * First, fill any hole
			 */
			off = (int)(obj_desc->offset % LO_BLK_SIZE);
			if (off > 0)
				pg_memset(workb, 0, off);

			/*
			 * Insert appropriate portion of new data
			 */
			n = LO_BLK_SIZE - off;
			n = (n <= (nbytes - nwritten))? n : (nbytes - nwritten);
			memcpy(workb + off, buf + nwritten, n);
			nwritten += n;
			obj_desc->offset += n;

			/* compute valid length of new page */
			len = off + n;
			VLA_SET_SZ_STND(&workbuf.hdr, len + VAR_HDR_SZ);

			/*
			 * Form and insert updated tuple
			 */
			memset(values, 0, sizeof(values));
			memset(nulls, false, sizeof(nulls));

			values[Anum_pg_largeobject_loid - 1] = OID_TO_D(obj_desc->id);
			values[Anum_pg_largeobject_pageno - 1] = INT32_TO_D(pageno);
			values[Anum_pg_largeobject_data - 1] = PTR_TO_D(&workbuf);

			newtup = heap_form_tuple(lo_heap_r->rd_att, values, nulls);
			simple_heap_insert(lo_heap_r, newtup);
			cat_index_insert(indstate, newtup);
			heap_free_tuple(newtup);
		}

		pageno++;
	}

	systable_endscan_ordered(sd);
	cat_close_indexes(indstate);

	/*
	 * Advance command counter so that my tuple updates will be seen by 
	 * later large-object operations in this transaction.
	 */
	cmd_count_incr();

	return nwritten;
}
Example #12
0
int
inv_read(struct lobj *obj_desc, char *buf, int nbytes)
{
	int nread = 0;
	int n;
	int off;
	int len;
	int32 pageno = (int32) (obj_desc->offset / LO_BLK_SIZE);
	uint32 pageoff;
	struct scankey skey[2];
	struct sys_scan* sd;
	struct heap_tuple* tuple;

	ASSERT(PTR_VALID(obj_desc));
	ASSERT(buf != NULL);

	if (nbytes <= 0)
		return 0;

	open_lo_relation();
	scankey_init(&skey[0], Anum_pg_largeobject_loid, BT_EQ_STRAT_NR, F_OIDEQ, OID_TO_D(obj_desc->id));
	scankey_init(&skey[1], Anum_pg_largeobject_pageno, BT_GE_STRAT_NR, F_INT4GE, INT32_TO_D(pageno));

	sd = systable_beginscan_ordered(lo_heap_r, lo_index_r, obj_desc->snapshot, 2, skey);
	while ((tuple = systable_getnext_ordered(sd, FORWARD_SCANDIR)) != NULL) {
		Form_pg_largeobject data;
		bytea* datafield;
		bool pfreeit;

		if (HT_HAS_NULLS(tuple))	/* paranoia */
			elog(ERROR, "null field found in pg_largeobject");

		data = (Form_pg_largeobject) GET_STRUCT(tuple);

		/*
		 * We expect the indexscan will deliver pages in order.  However,
		 * there may be missing pages if the LO contains unwritten "holes". We
		 * want missing sections to read out as zeroes.
		 */
		pageoff = ((uint32) data->pageno) * LO_BLK_SIZE;
		if (pageoff > obj_desc->offset) {
			n = pageoff - obj_desc->offset;
			n = (n <= (nbytes - nread)) ? n : (nbytes - nread);
			pg_memset(buf + nread, 0, n);
			nread += n;
			obj_desc->offset += n;
		}

		if (nread < nbytes) {
			ASSERT(obj_desc->offset >= pageoff);
			off = (int) (obj_desc->offset - pageoff);
			ASSERT(off >= 0 && off < LO_BLK_SIZE);

			datafield = &(data->data);	/* see note at top of file */
			pfreeit = false;
			if (VLA_EXTENDED(datafield)) {
				datafield = (bytea *) heap_tuple_untoast_attr((struct vla *) datafield);
				pfreeit = true;
			}

			len = getbytealen(datafield);
			if (len > off) {
				n = len - off;
				n = (n <= (nbytes - nread)) ? n : (nbytes - nread);
				memcpy(buf + nread, VLA_DATA(datafield) + off, n);
				nread += n;
				obj_desc->offset += n;
			}

			if (pfreeit)
				pfree(datafield);
		}

		if (nread >= nbytes)
			break;
	}

	systable_endscan_ordered(sd);

	return nread;
}
Example #13
0
/* ----------------------------------------------------------------
 *		procedure_create
 *
 * Note: allParameterTypes, parameterModes, parameterNames, and proconfig
 * are either arrays of the proper types or NULL.  We declare them Datum,
 * not "ArrayType *", to avoid importing array.h into pg_proc_fn.h.
 * ----------------------------------------------------------------
 */
oid_t
procedure_create(
	const char *procedureName,
	oid_t procNamespace,
	bool replace,
	bool returnsSet,
	oid_t returnType,
	oid_t languageObjectId,
	oid_t languageValidator,
	const char *prosrc,
	const char *probin,
	bool isAgg,
	bool isWindowFunc,
	bool security_definer,
	bool isStrict,
	char volatility,
	oid_vector_s *parameterTypes,
	datum_t allParameterTypes,
	datum_t parameterModes,
	datum_t parameterNames,
	struct list *parameterDefaults,
	datum_t proconfig,
	float4 procost,
	float4 prorows)
{
	oid_t retval;
	int parameterCount;
	int allParamCount;
	oid_t* allParams;
	bool genericInParam = false;
	bool genericOutParam = false;
	bool internalInParam = false;
	bool internalOutParam = false;
	oid_t variadicType = INVALID_OID;
	oid_t proowner = get_uid();
	acl_s* proacl = NULL;
	struct relation* rel;
	struct heap_tuple* tup;
	struct heap_tuple* oldtup;
	bool nulls[Natts_pg_proc];
	datum_t	values[Natts_pg_proc];
	bool replaces[Natts_pg_proc];
	oid_t relid;
	struct name procname;
	struct tuple* tupDesc;
	bool is_update;
	struct objaddr myself;
	struct objaddr referenced;
	int i;

	/*
	 * sanity checks
	 */
	ASSERT(PTR_VALID(prosrc));

	parameterCount = parameterTypes->dim1;
	if (parameterCount < 0 || parameterCount > FUNC_MAX_ARGS) {
		ereport(ERROR, (
		errcode(E_TOO_MANY_ARGUMENTS),
		errmsg_plural("functions cannot have more than %d argument",
			"functions cannot have more than %d arguments",
			FUNC_MAX_ARGS,
			FUNC_MAX_ARGS)));
	}

	/* note: the above is correct, we do NOT count output arguments */
	if (allParameterTypes != PTR_TO_D(NULL)) {
		/*
		 * We expect the array to be a 1-D OID array; verify that. We don't
		 * need to use deconstruct_array() since the array data is just going
		 * to look like a C array of OID values.
		 */
		array_s *allParamArray;

		allParamArray = (array_s*) D_TO_PTR(allParameterTypes);
		allParamCount = ARR_DIMS(allParamArray)[0];
		if (ARR_NDIM(allParamArray) != 1
			|| allParamCount <= 0
			|| ARR_HASNULL(allParamArray)
			|| ARR_ELEMTYPE(allParamArray) != OIDOID)
			elog(ERROR, "allParameterTypes is not a 1-D oid_t array");

		allParams = (oid_t*) ARR_DATA_PTR(allParamArray);
		ASSERT(allParamCount >= parameterCount);
		/* we assume caller got the contents right */
	} else {
		allParamCount = parameterCount;
		allParams = parameterTypes->values;
	}

	/*
	 * Do not allow polymorphic return type unless at least one input argument
	 * is polymorphic.	Also, do not allow return type INTERNAL unless at
	 * least one input argument is INTERNAL.
	 */
	for (i = 0; i < parameterCount; i++) {
		switch (parameterTypes->values[i]) {
		case ANYARRAYOID:
		case ANYELEMENTOID:
		case ANYNONARRAYOID:
		case ANYENUMOID:
			genericInParam = true;
			break;

		case INTERNALOID:
			internalInParam = true;
			break;
		}
	}

	if (allParameterTypes != PTR_TO_D(NULL)) {
		for (i = 0; i < allParamCount; i++) {
			/*
			 * We don't bother to distinguish input and output params here, so
			 * if there is, say, just an input INTERNAL param then we will
			 * still set internalOutParam.	This is OK since we don't really
			 * care.
			 */
			switch (allParams[i]) {
			case ANYARRAYOID:
			case ANYELEMENTOID:
			case ANYNONARRAYOID:
			case ANYENUMOID:
				genericOutParam = true;
				break;

			case INTERNALOID:
				internalOutParam = true;
				break;
			}
		}
	}

	if ((is_polymorphic_type(returnType) || genericOutParam)
		&& !genericInParam) {
		ereport(ERROR, (
		errcode(E_INVALID_FUNCTION_DEFINITION),
		errmsg("cannot determine result data type"),
		errdetail("A function returning a polymorphic type must have"
			" at least one polymorphic argument.")));
	}

	if ((returnType == INTERNALOID || internalOutParam)
		&& !internalInParam) {
		ereport(ERROR, (
		errcode(E_INVALID_FUNCTION_DEFINITION),
		errmsg("unsafe use of pseudo-type \"internal\""),
		errdetail("A function returning \"internal\" must have at"
			" least one \"internal\" argument.")));
	}

	/*
	 * don't allow functions of complex types that have the same name as
	 * existing attributes of the type
	 */
	if (parameterCount == 1
		&& OID_VALID(parameterTypes->values[0])
		&& (relid = typeid_to_relid(parameterTypes->values[0])) != INVALID_OID
		&& get_attnum(relid, procedureName) != INVALID_ATTR_NR) {
		ereport(ERROR, (
		errcode(E_DUPLICATE_COLUMN),
		errmsg("\"%s\" is already an attribute of type %s",
			procedureName,
			format_type_be(parameterTypes->values[0]))));
	}

	if (parameterModes != PTR_TO_D(NULL)) {
		/*
		 * We expect the array to be a 1-D CHAR array; verify that. We don't
		 * need to use deconstruct_array() since the array data is just going
		 * to look like a C array of char values.
		 */
		array_s* modesArray;
		char* modes;

		modesArray = (array_s *) D_TO_PTR(parameterModes);
		if (ARR_NDIM(modesArray) != 1
			|| ARR_DIMS(modesArray)[0] != allParamCount
			|| ARR_HASNULL(modesArray)
			|| ARR_ELEMTYPE(modesArray) != CHAROID)
			elog(ERROR, "parameterModes is not a 1-D char array");

		modes = (char*) ARR_DATA_PTR(modesArray);

		/*
		 * Only the last input parameter can be variadic; if it is, save its
		 * element type.  Errors here are just elog since caller should have
		 * checked this already.
		 */
		for (i = 0; i < allParamCount; i++) {
			switch (modes[i]) {
			case PROARGMODE_IN:
			case PROARGMODE_INOUT:
				if (OID_VALID(variadicType))
					elog(ERROR, "variadic parameter must be last");
				break;

			case PROARGMODE_OUT:
			case PROARGMODE_TABLE:
				/* okay */
				break;

			case PROARGMODE_VARIADIC:
				if (OID_VALID(variadicType))
					elog(ERROR, "variadic parameter must be last");

				switch (allParams[i]) {
				case ANYOID:
					variadicType = ANYOID;
					break;

				case ANYARRAYOID:
					variadicType = ANYELEMENTOID;
					break;

				default:
					variadicType = get_element_type(allParams[i]);
					if (!OID_VALID(variadicType))
						elog(ERROR, "variadic parameter is not an array");
					break;
				}
				break;

			default:
				elog(ERROR, "invalid parameter mode '%c'", modes[i]);
				break;
			}
		}
	}

	/*
	 * All seems OK; prepare the data to be inserted into pg_proc.
	 */

	for (i = 0; i < Natts_pg_proc; ++i) {
		nulls[i] = false;
		values[i] = (datum_t) 0;
		replaces[i] = true;
	}

	namestrcpy(&procname, procedureName);
	values[Anum_pg_proc_proname - 1] = NAME_TO_D(&procname);
	values[Anum_pg_proc_pronamespace - 1] = OID_TO_D(procNamespace);
	values[Anum_pg_proc_proowner - 1] = OID_TO_D(proowner);
	values[Anum_pg_proc_prolang - 1] = OID_TO_D(languageObjectId);
	values[Anum_pg_proc_procost - 1] = FLOAT4_TO_D(procost);
	values[Anum_pg_proc_prorows - 1] = FLOAT4_TO_D(prorows);
	values[Anum_pg_proc_provariadic - 1] = OID_TO_D(variadicType);
	values[Anum_pg_proc_proisagg - 1] = BOOL_TO_D(isAgg);
	values[Anum_pg_proc_proiswindow - 1] = BOOL_TO_D(isWindowFunc);
	values[Anum_pg_proc_prosecdef - 1] = BOOL_TO_D(security_definer);
	values[Anum_pg_proc_proisstrict - 1] = BOOL_TO_D(isStrict);
	values[Anum_pg_proc_proretset - 1] = BOOL_TO_D(returnsSet);
	values[Anum_pg_proc_provolatile - 1] = CHAR_TO_D(volatility);
	values[Anum_pg_proc_pronargs - 1] = UINT16_TO_D(parameterCount);
	values[Anum_pg_proc_pronargdefaults - 1] = UINT16_TO_D(list_length(parameterDefaults));
	values[Anum_pg_proc_prorettype - 1] = OID_TO_D(returnType);
	values[Anum_pg_proc_proargtypes - 1] = PTR_TO_D(parameterTypes);

	if (allParameterTypes != PTR_TO_D(NULL))
		values[Anum_pg_proc_proallargtypes - 1] = allParameterTypes;
	else
		nulls[Anum_pg_proc_proallargtypes - 1] = true;

	if (parameterModes != PTR_TO_D(NULL))
		values[Anum_pg_proc_proargmodes - 1] = parameterModes;
	else
		nulls[Anum_pg_proc_proargmodes - 1] = true;

	if (parameterNames != PTR_TO_D(NULL))
		values[Anum_pg_proc_proargnames - 1] = parameterNames;
	else
		nulls[Anum_pg_proc_proargnames - 1] = true;

	if (parameterDefaults != NIL)
		values[Anum_pg_proc_proargdefaults - 1] = CStringGetTextDatum(
			node_to_string(parameterDefaults));
	else
		nulls[Anum_pg_proc_proargdefaults - 1] = true;

	values[Anum_pg_proc_prosrc - 1] = CStringGetTextDatum(prosrc);
	if (probin)
		values[Anum_pg_proc_probin - 1] = CStringGetTextDatum(probin);
	else
		nulls[Anum_pg_proc_probin - 1] = true;

	if (proconfig != PTR_TO_D(NULL))
		values[Anum_pg_proc_proconfig - 1] = proconfig;
	else
		nulls[Anum_pg_proc_proconfig - 1] = true;

	/* 
	 * proacl will be determined later
	 */

	rel = heap_open(ProcedureRelationId, ROW_EXCL_LOCK);
	tupDesc = REL_DESC(rel);

	/* Check for pre-existing definition */
	oldtup = search_syscache3(
		PROCNAMEARGSNSP,
		PTR_TO_D(procedureName),
		PTR_TO_D(parameterTypes),
		OID_TO_D(procNamespace));

	if (HT_VALID(oldtup)) {
		/* There is one; okay to replace it? */
		Form_pg_proc oldproc;
		datum_t	proargnames;
		bool isnull;

		oldproc = (Form_pg_proc) GET_STRUCT(oldtup);
		if (!replace) {
			ereport(ERROR, (
			errcode(E_DUPLICATE_FUNCTION),
			errmsg("function \"%s\" already exists with same argument types",
				procedureName)));
		}

		if (!pg_proc_ownercheck(HEAPTUP_OID(oldtup), proowner))
			aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_PROC, procedureName);

		/*
		 * Not okay to change the return type of the existing proc, since
		 * existing rules, views, etc may depend on the return type.
		 */
		if (returnType != oldproc->prorettype
			|| returnsSet != oldproc->proretset) {
			ereport(ERROR, (
			errcode(E_INVALID_FUNCTION_DEFINITION),
			errmsg("cannot change return type of existing function"),
			errhint("Use DROP FUNCTION first.")));
		}

		/*
		 * If it returns RECORD, check for possible change of record type
		 * implied by OUT parameters
		 */
		if (returnType == RECORDOID) {
			struct tuple* olddesc;
			struct tuple* newdesc;

			olddesc = build_function_result_tupdesc_t(oldtup);
			newdesc = build_function_result_tupdesc_d(
				allParameterTypes,
				parameterModes,
				parameterNames);

			if (olddesc == NULL
				&& newdesc == NULL) {
				 /* ok, both are runtime-defined RECORDs */ ;
			} else if (olddesc == NULL
				|| newdesc == NULL
				|| !tupdesc_equal(olddesc, newdesc)) {
				ereport(ERROR, (
				errcode(E_INVALID_FUNCTION_DEFINITION),
				errmsg("cannot change return type of existing function"),
				errdetail("Row type defined by OUT parameters is different."),
				errhint("Use DROP FUNCTION first.")));
			}
		}

		/*
		 * If there were any named input parameters, check to make sure the
		 * names have not been changed, as this could break existing calls. We
		 * allow adding names to formerly unnamed parameters, though.
		 */
		proargnames = syscache_attr(
			PROCNAMEARGSNSP,
			oldtup,
			Anum_pg_proc_proargnames,
			&isnull);
		if (!isnull) {
			datum_t	proargmodes;
			char** old_arg_names;
			char** new_arg_names;
			int n_old_arg_names;
			int n_new_arg_names;
			int j;

			proargmodes = syscache_attr(
				PROCNAMEARGSNSP,
				oldtup,
				Anum_pg_proc_proargmodes,
				&isnull);
			if (isnull)
				proargmodes = PTR_TO_D(NULL);	/* just to be sure */

			n_old_arg_names = get_func_input_arg_names(
				proargnames,
				proargmodes,
				&old_arg_names);
			n_new_arg_names = get_func_input_arg_names(
				parameterNames,
				parameterModes,
				&new_arg_names);
			for (j = 0; j < n_old_arg_names; j++) {
				if (old_arg_names[j] == NULL)
					continue;

				if (j >= n_new_arg_names
					|| new_arg_names[j] == NULL
					|| strcmp(old_arg_names[j], new_arg_names[j]) != 0) {
					ereport(ERROR,(
					errcode(E_INVALID_FUNCTION_DEFINITION),
					errmsg("cannot change name of input parameter \"%s\"",
						old_arg_names[j]),
					errhint("Use DROP FUNCTION first.")));
				}
			}
		}

		/*
		 * If there are existing defaults, check compatibility: redefinition
		 * must not remove any defaults nor change their types.  (Removing a
		 * default might cause a function to fail to satisfy an existing call.
		 * Changing type would only be possible if the associated parameter is
		 * polymorphic, and in such cases a change of default type might alter
		 * the resolved output type of existing calls.)
		 */
		if (oldproc->pronargdefaults != 0) {
			datum_t	proargdefaults;
			struct list* oldDefaults;
			struct list_cell* oldlc;
			struct list_cell* newlc;

			if (list_length(parameterDefaults) < oldproc->pronargdefaults) {
				ereport(ERROR, (
				errcode(E_INVALID_FUNCTION_DEFINITION),
				errmsg("cannot remove parameter defaults from existing function"),
				errhint("Use DROP FUNCTION first.")));
			}

			proargdefaults = syscache_attr(
				PROCNAMEARGSNSP,
				oldtup,
				Anum_pg_proc_proargdefaults,
				&isnull);
			ASSERT(!isnull);

			oldDefaults = (struct list*) string_to_node(
				TextD_TO_CSTRING(proargdefaults));

			ASSERT(IS_A(oldDefaults, List));
			ASSERT(list_length(oldDefaults) == oldproc->pronargdefaults);

			/* new list can have more defaults than old, advance over 'em */
			newlc = list_head(parameterDefaults);
			for (i = list_length(parameterDefaults) - oldproc->pronargdefaults;
				i > 0;
				i--)
				newlc = lnext(newlc);

			foreach(oldlc, oldDefaults) {
				node_n* oldDef;
				node_n* newDef;

				oldDef = (node_n*) lfirst(oldlc);
				newDef = (node_n*) lfirst(newlc);
				if (expr_type(oldDef) != expr_type(newDef)) {
					ereport(ERROR,(
					errcode(E_INVALID_FUNCTION_DEFINITION),
					errmsg("cannot change data type of existing"
						" parameter default value"),
					errhint("Use DROP FUNCTION first.")));
				}

				newlc = lnext(newlc);
			}
		}
Example #14
0
GC_USER_FUNC int main (int argc, char ** argv)
{
#ifdef MEMWATCH
  mwInit();
  mwDoFlush(1);
#endif // MEMWATCH
  
  ML_START_TIMING(main_time);
  
  GC_init();
  
  //ml_print_gc_stats();
  
  printf("Compiled for "
#if   defined(GC_CHERI)
  "GC_CHERI"
#elif defined(GC_BOEHM)
  "GC_BOEHM"
#elif defined(GC_NONE)
  "GC_NONE"
#elif defined(GC_NOCAP)
  "GC_NOCAP"
#else
#error "Define one of GC_CHERI, GC_BOEHM, GC_NONE."
#endif // GC_CHERI, GC_BOEHM, GC_NONE
  " at %s\n", __TIME__  " " __DATE__);
  
  //GC_CAP const char * filename = GC_cheri_ptr("ml-tmp", sizeof("ml-tmp"));
  
  //lex_read_file(filename);
  
  //const char str[] = "(fn x . ((fn x . x) 3) + x) 2";
  //const char str[] = "fn f . (fn g. (f (fn a . (g g) a))) (fn g. (f (fn a . (g g) a)))";
  
  //const char str[] =
    //"((fn f . fn n . if n then n * f (n-1) else 1) (fn n . n)) 5";
  
  // factorial:
  //const char str[] =
  //  "((fn f . (fn g. (f (fn a . (g g) a))) (fn g. (f (fn a . (g g) a)))) (fn f . fn n . if n then n * f (n-1) else 1)) 6";

  // for the benchmark:
  if (argc < 2)
  {
    printf("Need a program argument\n");
    return 1;
  }
  if (argc < 3)
  {
    printf("Need a number argument\n");
    return 1;
  }
  printf("Program should be evaluating something to do with the number %s\n", argv[2]);
  
  int num = atoi(argv[2]);
#ifdef GC_CHERI
  gc_cheri_grow_heap(num);
#endif
  
#ifdef GC_BOEHM
  GC_set_max_heap_size(num >= 1024 ? 350000*(num/1024) : num >= 256 ? 200000 : 65536);
#endif
  
  /*const char str[] =
    "((fn f . (fn g. (f (fn a . (g g) a))) (fn g. (f (fn f . (g g) f)))) (fn f . fn n . if n then n + f (n-1) else 1)) ";
  GC_CAP char * str2 = ml_malloc(sizeof(str)+strlen(argv[1]));
  cmemcpy(str2, GC_cheri_ptr(str, sizeof(str)), sizeof(str));
  cmemcpy(str2+sizeof(str)-1, GC_cheri_ptr(argv[1], strlen(argv[1]+1)), strlen(argv[1]+1));
  */
  GC_CAP const char * str2 = GC_cheri_ptr(argv[1], strlen(argv[1])+1);
  
  unsigned long long before = ml_time();
  
  lex_read_string(str2);
  printf("program: %s\n\n", (void*)(str2));
  
  /*size_t i;
  for (i=0; i<lex_state.max; i++)
  {
    putchar(((char*)lex_state.file)[i]);
  }
  
  GC_CAP token_t * t;
  t = lex();
  while (t->type != TKEOF)
  {
    printf("[%d] (tag=%d alloc=%d) %s\n", ((token_t*)t)->type, (int) GC_cheri_gettag(((token_t*)t)->str), (int) GC_IS_GC_ALLOCATED(((token_t*)t)->str), (char*) ((token_t*)t)->str);
    GC_malloc(5000);
    t = lex();
  }
  printf("Finished\n");
  return 0;*/
  
  parse_init();
  
  GC_CAP expr_t * expr = GC_INVALID_PTR();
  GC_STORE_CAP(expr, parse());
  
  printf("AST:\n");
  print_ast(expr);
  printf("\nDone printing AST\n");
  
  /*printf("collecting loads\n");
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  ml_collect();
  printf("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~done collecting loads\n");
  GC_debug_print_region_stats(&GC_state.thread_local_region);*/
  
  GC_CAP val_t * val = GC_INVALID_PTR();
  
  int i;
  for (i=0; i<10; i++)
  {
    GC_STORE_CAP(val, eval(expr, GC_INVALID_PTR()));
  }
  
  unsigned long long after = ml_time();
  unsigned long long diff = after - before;
  
  printf("eval: ");
  if (!PTR_VALID(val))
    printf("(invalid");
  else
    print_val(val);
  printf("\n\n");
  
  printf("[plotdata] %s %llu\n", argv[2], (unsigned long long) diff);
#ifdef GC_CHERI
  printf("(young) heap size:\n");
  printf("[altplotdata] %s %llu\n", argv[2], (unsigned long long) (GC_cheri_getlen(GC_state.thread_local_region.tospace)));
#ifdef GC_GENERATIONAL
  printf("old heap size:\n");
  printf("[altplotdataold] %s %llu\n", argv[2], (unsigned long long) (GC_cheri_getlen(GC_state.old_generation.tospace)));
#endif // GC_GENERATIONAL
#endif // GC_CHERI
#ifdef GC_BOEHM
    printf("[altplotdata] %s %llu\n", argv[2],
    (unsigned long long) GC_get_heap_size());
#endif // GC_BOEHM

  ML_STOP_TIMING(main_time, "main()");
  
  ml_print_gc_stats();
  
  ml_print_plot_data();
  
#ifdef MEMWATCH
  mwTerm();
#endif // MEMWATCH
  return 0;
}