Example #1
0
bool ICACHE_FLASH_ATTR
pwm_delete(uint8 channel){
    PWM_DBG("--Function pwm_delete() is called. channel:%d\n", channel);
    PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
    PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
    PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
    uint8 i,j;
    for(i=0;i<pwm_channel_num;i++){
        if(pwm_out_io_num[i]==channel){  // exist
            LOCK_PWM(critical);   // enter critical
            pwm_out_io_num[i] = -1;
            pwm_gpio &= ~(1 << pin_num[channel]);   //clear the bit
            for(j=i;j<pwm_channel_num-1;j++){
                pwm_out_io_num[j] = pwm_out_io_num[j+1];
                pwm.duty[j] = pwm.duty[j+1];
            }
            pwm_out_io_num[pwm_channel_num-1] = -1;
            pwm.duty[pwm_channel_num-1] = 0;
            pwm_channel_num--;
            UNLOCK_PWM(critical);   // leave critical
            return true;
        }
    }
    // non found
    return true;
}
Example #2
0
bool ICACHE_FLASH_ATTR
pwm_exist(uint8 channel){
    PWM_DBG("--Function pwm_exist() is called. channel:%d\n", channel);
    PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
    PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
    PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
    uint8 i;
    for(i=0;i<PWM_CHANNEL;i++){
        if(pwm_out_io_num[i]==channel)  // exist
            return true;
    }
    return false;
}
Example #3
0
/******************************************************************************
 * FunctionName : pwm_init
 * Description  : pwm gpio, params and timer initialization
 * Parameters   : uint16 freq : pwm freq param
 *                uint16 *duty : each channel's duty
 * Returns      : void
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_init(uint16 freq, uint16 *duty)
{
    uint8 i;

    // PIN_FUNC_SELECT(PWM_0_OUT_IO_MUX, PWM_0_OUT_IO_FUNC);
    // PIN_FUNC_SELECT(PWM_1_OUT_IO_MUX, PWM_1_OUT_IO_FUNC);
    // PIN_FUNC_SELECT(PWM_2_OUT_IO_MUX, PWM_2_OUT_IO_FUNC);
    // GPIO_OUTPUT_SET(GPIO_ID_PIN(PWM_0_OUT_IO_NUM), 0);
    // GPIO_OUTPUT_SET(GPIO_ID_PIN(PWM_1_OUT_IO_NUM), 0);
    // GPIO_OUTPUT_SET(GPIO_ID_PIN(PWM_2_OUT_IO_NUM), 0);
    
    for (i = 0; i < PWM_CHANNEL; i++) {
        // pwm_gpio |= (1 << pwm_out_io_num[i]);
        pwm_gpio = 0;
        pwm.duty[i] = 0;
    }

    pwm_set_freq(500, 0);
    // pwm_set_freq_duty(freq, duty);

    pwm_start();

    PWM_DBG("pwm_init returning\n");
}
Example #4
0
bool ICACHE_FLASH_ATTR
pwm_add(uint8 channel){
    PWM_DBG("--Function pwm_add() is called. channel:%d\n", channel);
    PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
    PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
    PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
    uint8 i;
    for(i=0;i<PWM_CHANNEL;i++){
        if(pwm_out_io_num[i]==channel)  // already exist
            return true;
        if(pwm_out_io_num[i] == -1){ // empty exist
            pwm_out_io_num[i] = channel;
            pwm.duty[i] = 0;
            pwm_gpio |= (1 << pin_num[channel]);
            PIN_FUNC_SELECT(pin_mux[channel], pin_func[channel]);
            GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel])), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel]))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain;
            pwm_channel_num++;
            return true;
        }
    }
    return false;
}
Example #5
0
void ICACHE_FLASH_ATTR
pwm_start(void)
{
    uint8 i, j;
    PWM_DBG("--Function pwm_start() is called\n");
    PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
    PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
    PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]);

    LOCK_PWM(critical);   // enter critical

    struct pwm_single_param *local_single = pwm_single_toggle[pwm_toggle ^ 0x01];
    uint8 *local_channel = &pwm_channel_toggle[pwm_toggle ^ 0x01];

    // step 1: init PWM_CHANNEL+1 channels param
    for (i = 0; i < pwm_channel_num; i++) {
        uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH;
        local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us);
        PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time);
        local_single[i].gpio_set = 0;
        local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]];
    }

    local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period);
    local_single[pwm_channel_num].gpio_set = pwm_gpio;
    local_single[pwm_channel_num].gpio_clear = 0;
    PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time);
    // step 2: sort, small to big
    pwm_insert_sort(local_single, pwm_channel_num + 1);

    *local_channel = pwm_channel_num + 1;
    PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
    // step 3: combine same duty channels
    for (i = pwm_channel_num; i > 0; i--) {
        if (local_single[i].h_time == local_single[i - 1].h_time) {
            local_single[i - 1].gpio_set |= local_single[i].gpio_set;
            local_single[i - 1].gpio_clear |= local_single[i].gpio_clear;

            for (j = i + 1; j < *local_channel; j++) {
                os_memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param));
            }

            (*local_channel)--;
        }
    }
    PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
    // step 4: cacl delt time
    for (i = *local_channel - 1; i > 0; i--) {
        local_single[i].h_time -= local_single[i - 1].h_time;
    }

    // step 5: last channel needs to clean
    local_single[*local_channel-1].gpio_clear = 0;

    // step 6: if first channel duty is 0, remove it
    if (local_single[0].h_time == 0) {
        local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear;
        local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear;

        for (i = 1; i < *local_channel; i++) {
            os_memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param));
        }

        (*local_channel)--;
    }

    // if timer is down, need to set gpio and start timer
    if (pwm_timer_down == 1) {
        pwm_channel = local_channel;
        pwm_single = local_single;
        // start
        gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0);

        // yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start...
        if (*local_channel != 1) {
            pwm_timer_down = 0;
            RTC_REG_WRITE(FRC1_LOAD_ADDRESS, local_single[0].h_time);
        }
    }

    if (pwm_toggle == 1) {
        pwm_toggle = 0;
    } else {
        pwm_toggle = 1;
    }

    UNLOCK_PWM(critical);   // leave critical
    PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
}
Example #6
0
// Returns FALSE if we cannot start
bool ICACHE_FLASH_ATTR
pwm_start(void)
{
    uint8 i, j;
    PWM_DBG("--Function pwm_start() is called\n");
    PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
    PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
    PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]);

    // First we need to make sure that the interrupt handler is running
    // out of the same set of params as we expect
    while (!pwm_timer_down && pwm_toggle != pwm_current_toggle) {
      os_delay_us(100);
    }
    if (pwm_timer_down) {
      pwm_toggle = pwm_current_toggle;
    }

    uint8_t new_toggle = pwm_toggle ^ 0x01;

    struct pwm_single_param *local_single = pwm_single_toggle[new_toggle];
    uint8 *local_channel = &pwm_channel_toggle[new_toggle];

    // step 1: init PWM_CHANNEL+1 channels param
    for (i = 0; i < pwm_channel_num; i++) {
        uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH;
        local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us);
        PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time);
        local_single[i].gpio_set = 0;
        local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]];
    }

    local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period);
    local_single[pwm_channel_num].gpio_set = pwm_gpio;
    local_single[pwm_channel_num].gpio_clear = 0;
    PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time);
    // step 2: sort, small to big
    pwm_insert_sort(local_single, pwm_channel_num + 1);

    *local_channel = pwm_channel_num + 1;
    PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
    // step 3: combine same duty channels (or nearly the same duty). If there is
    // under 2 us between pwm outputs, then treat them as the same.
    for (i = pwm_channel_num; i > 0; i--) {
        if (local_single[i].h_time <= local_single[i - 1].h_time + US_TO_RTC_TIMER_TICKS(2)) {
            local_single[i - 1].gpio_set |= local_single[i].gpio_set;
            local_single[i - 1].gpio_clear |= local_single[i].gpio_clear;

            for (j = i + 1; j < *local_channel; j++) {
                os_memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param));
            }

            (*local_channel)--;
        }
    }
    PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
    // step 4: cacl delt time
    for (i = *local_channel - 1; i > 0; i--) {
        local_single[i].h_time -= local_single[i - 1].h_time;
    }

    // step 5: last channel needs to clean
    local_single[*local_channel-1].gpio_clear = 0;

    // step 6: if first channel duty is 0, remove it
    if (local_single[0].h_time == 0) {
        local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear;
        local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear;

        for (i = 1; i < *local_channel; i++) {
            os_memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param));
        }

        (*local_channel)--;
    }

    // Make the new ones active
    pwm_toggle = new_toggle;

    // if timer is down, need to set gpio and start timer
    if (pwm_timer_down == 1) {
        pwm_channel = local_channel;
        pwm_single = local_single;
	pwm_current_toggle = pwm_toggle;
        // start
        gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0);

        // yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start...
        if (*local_channel != 1) {
	  PWM_DBG("Need to setup timer\n");
	  if (!platform_hw_timer_init(TIMER_OWNER, FRC1_SOURCE, FALSE)) {
	    return FALSE;
	  }
	  pwm_timer_down = 0;
	  platform_hw_timer_set_func(TIMER_OWNER, pwm_tim1_intr_handler, 0);
	  platform_hw_timer_arm_ticks(TIMER_OWNER, local_single[0].h_time);
	} else {
	  PWM_DBG("Timer left idle\n");
	  platform_hw_timer_close(TIMER_OWNER);
	}
    } else {
      // ensure that all outputs are outputs
      gpio_output_set(0, 0, pwm_gpio, 0);
    }

#ifdef PWM_DBG_PIN
    // Enable as output
    gpio_output_set(0, 0, 1 << PWM_DBG_PIN, 0);
#endif

    PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);

    return TRUE;
}