Example #1
0
EFI_STATUS
EFIAPI
BoardDetectionCallback (
  IN CONST EFI_PEI_SERVICES     **PeiServices,
  IN EFI_PEI_NOTIFY_DESCRIPTOR  *NotifyDescriptor,
  IN VOID                       *Ppi
  )
{
  EFI_STATUS   Status;
  VOID         *Instance;
  
  DEBUG ((EFI_D_INFO, "Detecting Galileo ...\n"));
  //
  // Check if board detection is finished.
  //
  Status = PeiServicesLocatePpi (
             &gBoardDetectedPpiGuid,
             0,
             NULL,
             &Instance
             );
  if (!EFI_ERROR(Status)) {
    return EFI_SUCCESS;
  }

  //
  // In most real platform, here should be the code to detect board type.
  // 
  // For galileo, we only support build time board selection, so use PCD to do the fake detection.
  //
  if (PcdGet16(PcdPlatformType) != Galileo) {
    return EFI_UNSUPPORTED;
  }
  DEBUG ((EFI_D_INFO, "Detected Galileo!\n"));

  Status = PcdSet64S (PcdBoardInitPreMem, (UINT64)(UINTN)BoarInitPreMem);
  ASSERT_EFI_ERROR(Status);
  Status = PcdSet64S (PcdBoardInitPostMem, (UINT64)(UINTN)BoarInitPostMem);
  ASSERT_EFI_ERROR(Status);

  Status = PcdSet32S (PcdPciExpPerstResumeWellGpio, PCIEXP_PERST_RESUMEWELL_GPIO);
  ASSERT_EFI_ERROR(Status);
  Status = PcdSet32S (PcdFlashUpdateLedResumeWellGpio, GALILEO_FLASH_UPDATE_LED_RESUMEWELL_GPIO);
  ASSERT_EFI_ERROR(Status);

  Status = PeiServicesInstallPpi(&mDetectedPpi);
  ASSERT_EFI_ERROR(Status);
  return Status;
}
Example #2
0
VOID
ReserveEmuVariableNvStore (
  )
{
  EFI_PHYSICAL_ADDRESS VariableStore;
  RETURN_STATUS        PcdStatus;

  //
  // Allocate storage for NV variables early on so it will be
  // at a consistent address.  Since VM memory is preserved
  // across reboots, this allows the NV variable storage to survive
  // a VM reboot.
  //
  VariableStore =
    (EFI_PHYSICAL_ADDRESS)(UINTN)
      AllocateRuntimePages (
        EFI_SIZE_TO_PAGES (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize))
        );
  DEBUG ((EFI_D_INFO,
          "Reserved variable store memory: 0x%lX; size: %dkb\n",
          VariableStore,
          (2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize)) / 1024
        ));
  PcdStatus = PcdSet64S (PcdEmuVariableNvStoreReserved, VariableStore);
  ASSERT_RETURN_ERROR (PcdStatus);
}
Example #3
0
/**
  Performs platform specific initialization required for the CPU to access
  the hardware associated with a SerialPortLib instance.  This function does
  not intiailzie the serial port hardware itself.  Instead, it initializes
  hardware devices that are required for the CPU to access the serial port
  hardware.  This function may be called more than once.

  @retval RETURN_SUCCESS       The platform specific initialization succeeded.
  @retval RETURN_DEVICE_ERROR  The platform specific initialization could not be completed.

**/
RETURN_STATUS
EFIAPI
PlatformHookSerialPortInitialize (
  VOID
  )
{
  RETURN_STATUS     Status;
  UINT32            SerialRegBase;
  UINT32            SerialRegAccessType;

  Status = CbParseSerialInfo (&SerialRegBase, &SerialRegAccessType, NULL);
  if (RETURN_ERROR (Status)) {
    return Status;
  }

  if (SerialRegAccessType == 2) { //MMIO
    Status = PcdSetBoolS (PcdSerialUseMmio, TRUE);
  } else { //IO
    Status = PcdSetBoolS (PcdSerialUseMmio, FALSE);
  }
  if (RETURN_ERROR (Status)) {
    return Status;
  }
  Status = PcdSet64S (PcdSerialRegisterBase, (UINT64) SerialRegBase);
  if (RETURN_ERROR (Status)) {
    return Status;
  }

  return RETURN_SUCCESS;
}
Example #4
0
/**
  Main entry point.

  @param[in] ImageHandle    The firmware allocated handle for the EFI image.  
  @param[in] SystemTable    A pointer to the EFI System Table.
  
  @retval EFI_SUCCESS       Successfully initialized.

**/
EFI_STATUS
EFIAPI
FvbInitialize (
  IN EFI_HANDLE         ImageHandle,
  IN EFI_SYSTEM_TABLE   *SystemTable
  )
{
  EFI_STATUS                          Status;
  VOID                                *Ptr;
  VOID                                *SubPtr;
  BOOLEAN                             Initialize;
  EFI_HANDLE                          Handle;
  EFI_PHYSICAL_ADDRESS                Address;
  RETURN_STATUS                       PcdStatus;

  DEBUG ((EFI_D_INFO, "EMU Variable FVB Started\n"));

  //
  // Verify that the PCD's are set correctly.
  //
  if (
       (PcdGet32 (PcdVariableStoreSize) +
        PcdGet32 (PcdFlashNvStorageFtwWorkingSize)
       ) >
       EMU_FVB_BLOCK_SIZE
     ) {
    DEBUG ((EFI_D_ERROR, "EMU Variable invalid PCD sizes\n"));
    return EFI_INVALID_PARAMETER;
  }

  if (PcdGet64 (PcdFlashNvStorageVariableBase64) != 0) {
    DEBUG ((EFI_D_INFO, "Disabling EMU Variable FVB since "
                        "flash variables appear to be supported.\n"));
    return EFI_ABORTED;
  }

  //
  // By default we will initialize the FV contents.  But, if
  // PcdEmuVariableNvStoreReserved is non-zero, then we will
  // use this location for our buffer.
  //
  // If this location does not have a proper FV header, then
  // we will initialize it.
  //
  Initialize = TRUE;
  if (PcdGet64 (PcdEmuVariableNvStoreReserved) != 0) {
    Ptr = (VOID*)(UINTN) PcdGet64 (PcdEmuVariableNvStoreReserved);
    DEBUG ((
      EFI_D_INFO,
      "EMU Variable FVB: Using pre-reserved block at %p\n",
      Ptr
      ));
    Status = ValidateFvHeader (Ptr);
    if (!EFI_ERROR (Status)) {
      DEBUG ((EFI_D_INFO, "EMU Variable FVB: Found valid pre-existing FV\n"));
      Initialize = FALSE;
    }
  } else {
    Ptr = AllocateAlignedRuntimePages (
            EFI_SIZE_TO_PAGES (EMU_FVB_SIZE),
            SIZE_64KB
            );
  }

  mEmuVarsFvb.BufferPtr = Ptr;

  //
  // Initialize the main FV header and variable store header
  //
  if (Initialize) {
    SetMem (Ptr, EMU_FVB_SIZE, ERASED_UINT8);
    InitializeFvAndVariableStoreHeaders (Ptr);
  }
  PcdStatus = PcdSet64S (PcdFlashNvStorageVariableBase64, (UINT32)(UINTN) Ptr);
  ASSERT_RETURN_ERROR (PcdStatus);

  //
  // Initialize the Fault Tolerant Write data area
  //
  SubPtr = (VOID*) ((UINT8*) Ptr + PcdGet32 (PcdVariableStoreSize));
  PcdStatus = PcdSet32S (PcdFlashNvStorageFtwWorkingBase,
                (UINT32)(UINTN) SubPtr);
  ASSERT_RETURN_ERROR (PcdStatus);

  //
  // Initialize the Fault Tolerant Write spare block
  //
  SubPtr = (VOID*) ((UINT8*) Ptr + EMU_FVB_BLOCK_SIZE);
  PcdStatus = PcdSet32S (PcdFlashNvStorageFtwSpareBase,
                (UINT32)(UINTN) SubPtr);
  ASSERT_RETURN_ERROR (PcdStatus);

  //
  // Setup FVB device path
  //
  Address = (EFI_PHYSICAL_ADDRESS)(UINTN) Ptr;
  mEmuVarsFvb.DevicePath.MemMapDevPath.StartingAddress = Address;
  mEmuVarsFvb.DevicePath.MemMapDevPath.EndingAddress = Address + EMU_FVB_SIZE - 1;

  //
  // Install the protocols
  //
  DEBUG ((EFI_D_INFO, "Installing FVB for EMU Variable support\n"));
  Handle = 0;
  Status = gBS->InstallMultipleProtocolInterfaces (
                  &Handle,
                  &gEfiFirmwareVolumeBlock2ProtocolGuid,
                  &mEmuVarsFvb.FwVolBlockInstance,
                  &gEfiDevicePathProtocolGuid,
                  &mEmuVarsFvb.DevicePath,
                  NULL
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Register for the virtual address change event
  //
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  FvbVirtualAddressChangeEvent,
                  NULL,
                  &gEfiEventVirtualAddressChangeGuid,
                  &mEmuVarsFvbAddrChangeEvent
                  );
  ASSERT_EFI_ERROR (Status);

  return EFI_SUCCESS;
}
Example #5
0
VOID
MemMapInitialization (
  VOID
  )
{
  UINT64        PciIoBase;
  UINT64        PciIoSize;
  RETURN_STATUS PcdStatus;

  PciIoBase = 0xC000;
  PciIoSize = 0x4000;

  //
  // Create Memory Type Information HOB
  //
  BuildGuidDataHob (
    &gEfiMemoryTypeInformationGuid,
    mDefaultMemoryTypeInformation,
    sizeof(mDefaultMemoryTypeInformation)
    );

  //
  // Video memory + Legacy BIOS region
  //
  AddIoMemoryRangeHob (0x0A0000, BASE_1MB);

  if (!mXen) {
    UINT32  TopOfLowRam;
    UINT64  PciExBarBase;
    UINT32  PciBase;
    UINT32  PciSize;

    TopOfLowRam = GetSystemMemorySizeBelow4gb ();
    PciExBarBase = 0;
    if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
      //
      // The MMCONFIG area is expected to fall between the top of low RAM and
      // the base of the 32-bit PCI host aperture.
      //
      PciExBarBase = FixedPcdGet64 (PcdPciExpressBaseAddress);
      ASSERT (TopOfLowRam <= PciExBarBase);
      ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB);
      PciBase = (UINT32)(PciExBarBase + SIZE_256MB);
    } else {
      PciBase = (TopOfLowRam < BASE_2GB) ? BASE_2GB : TopOfLowRam;
    }

    //
    // address       purpose   size
    // ------------  --------  -------------------------
    // max(top, 2g)  PCI MMIO  0xFC000000 - max(top, 2g)
    // 0xFC000000    gap                           44 MB
    // 0xFEC00000    IO-APIC                        4 KB
    // 0xFEC01000    gap                         1020 KB
    // 0xFED00000    HPET                           1 KB
    // 0xFED00400    gap                          111 KB
    // 0xFED1C000    gap (PIIX4) / RCRB (ICH9)     16 KB
    // 0xFED20000    gap                          896 KB
    // 0xFEE00000    LAPIC                          1 MB
    //
    PciSize = 0xFC000000 - PciBase;
    AddIoMemoryBaseSizeHob (PciBase, PciSize);
    PcdStatus = PcdSet64S (PcdPciMmio32Base, PciBase);
    ASSERT_RETURN_ERROR (PcdStatus);
    PcdStatus = PcdSet64S (PcdPciMmio32Size, PciSize);
    ASSERT_RETURN_ERROR (PcdStatus);

    AddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB);
    AddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB);
    if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
      AddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB);
      //
      // Note: there should be an
      //
      //   AddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB);
      //
      // call below, just like the one above for RCBA. However, Linux insists
      // that the MMCONFIG area be marked in the E820 or UEFI memory map as
      // "reserved memory" -- Linux does not content itself with a simple gap
      // in the memory map wherever the MCFG ACPI table points to.
      //
      // This appears to be a safety measure. The PCI Firmware Specification
      // (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can
      // *optionally* be returned in [...] EFIGetMemoryMap as reserved memory
      // [...]". (Emphasis added here.)
      //
      // Normally we add memory resource descriptor HOBs in
      // QemuInitializeRam(), and pre-allocate from those with memory
      // allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area
      // is most definitely not RAM; so, as an exception, cover it with
      // uncacheable reserved memory right here.
      //
      AddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE);
      BuildMemoryAllocationHob (PciExBarBase, SIZE_256MB,
        EfiReservedMemoryType);
    }
    AddIoMemoryBaseSizeHob (PcdGet32(PcdCpuLocalApicBaseAddress), SIZE_1MB);

    //
    // On Q35, the IO Port space is available for PCI resource allocations from
    // 0x6000 up.
    //
    if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {
      PciIoBase = 0x6000;
      PciIoSize = 0xA000;
      ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase);
    }
  }

  //
  // Add PCI IO Port space available for PCI resource allocations.
  //
  BuildResourceDescriptorHob (
    EFI_RESOURCE_IO,
    EFI_RESOURCE_ATTRIBUTE_PRESENT     |
    EFI_RESOURCE_ATTRIBUTE_INITIALIZED,
    PciIoBase,
    PciIoSize
    );
  PcdStatus = PcdSet64S (PcdPciIoBase, PciIoBase);
  ASSERT_RETURN_ERROR (PcdStatus);
  PcdStatus = PcdSet64S (PcdPciIoSize, PciIoSize);
  ASSERT_RETURN_ERROR (PcdStatus);
}
Example #6
0
/**
   The entry function of the CpuS3Data driver.

   Allocate and initialize all fields of the ACPI_CPU_DATA structure except the
   MTRR settings.  Register an event notification on gEfiEndOfDxeEventGroupGuid
   to capture the ACPI_CPU_DATA MTRR settings.  The PcdCpuS3DataAddress is set
   to the address that ACPI_CPU_DATA is allocated at.

   @param[in] ImageHandle  The firmware allocated handle for the EFI image.
   @param[in] SystemTable  A pointer to the EFI System Table.

   @retval EFI_SUCCESS     The entry point is executed successfully.
   @retval EFI_UNSUPPORTED Do not support ACPI S3.
   @retval other           Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
CpuS3DataInitialize (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
{
  EFI_STATUS                 Status;
  ACPI_CPU_DATA_EX           *AcpiCpuDataEx;
  ACPI_CPU_DATA              *AcpiCpuData;
  EFI_MP_SERVICES_PROTOCOL   *MpServices;
  UINTN                      NumberOfCpus;
  UINTN                      NumberOfEnabledProcessors;
  VOID                       *Stack;
  UINTN                      TableSize;
  CPU_REGISTER_TABLE         *RegisterTable;
  UINTN                      Index;
  EFI_PROCESSOR_INFORMATION  ProcessorInfoBuffer;
  UINTN                      GdtSize;
  UINTN                      IdtSize;
  VOID                       *Gdt;
  VOID                       *Idt;
  EFI_EVENT                  Event;
  ACPI_CPU_DATA              *OldAcpiCpuData;

  if (!PcdGetBool (PcdAcpiS3Enable)) {
    return EFI_UNSUPPORTED;
  }

  //
  // Set PcdCpuS3DataAddress to the base address of the ACPI_CPU_DATA structure
  //
  OldAcpiCpuData = (ACPI_CPU_DATA *) (UINTN) PcdGet64 (PcdCpuS3DataAddress);

  AcpiCpuDataEx = AllocateZeroPages (sizeof (ACPI_CPU_DATA_EX));
  ASSERT (AcpiCpuDataEx != NULL);
  AcpiCpuData = &AcpiCpuDataEx->AcpiCpuData;

  //
  // Get MP Services Protocol
  //
  Status = gBS->LocateProtocol (
                  &gEfiMpServiceProtocolGuid,
                  NULL,
                  (VOID **)&MpServices
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Get the number of CPUs
  //
  Status = MpServices->GetNumberOfProcessors (
                         MpServices,
                         &NumberOfCpus,
                         &NumberOfEnabledProcessors
                         );
  ASSERT_EFI_ERROR (Status);
  AcpiCpuData->NumberOfCpus = (UINT32)NumberOfCpus;

  //
  // Initialize ACPI_CPU_DATA fields
  //
  AcpiCpuData->StackSize                 = PcdGet32 (PcdCpuApStackSize);
  AcpiCpuData->ApMachineCheckHandlerBase = 0;
  AcpiCpuData->ApMachineCheckHandlerSize = 0;
  AcpiCpuData->GdtrProfile  = (EFI_PHYSICAL_ADDRESS)(UINTN)&AcpiCpuDataEx->GdtrProfile;
  AcpiCpuData->IdtrProfile  = (EFI_PHYSICAL_ADDRESS)(UINTN)&AcpiCpuDataEx->IdtrProfile;
  AcpiCpuData->MtrrTable    = (EFI_PHYSICAL_ADDRESS)(UINTN)&AcpiCpuDataEx->MtrrTable;

  //
  // Allocate stack space for all CPUs.
  // Use ACPI NVS memory type because this data will be directly used by APs
  // in S3 resume phase in long mode. Also during S3 resume, the stack buffer
  // will only be used as scratch space. i.e. we won't read anything from it
  // before we write to it, in PiSmmCpuDxeSmm.
  //
  Stack = AllocateAcpiNvsMemory (NumberOfCpus * AcpiCpuData->StackSize);
  ASSERT (Stack != NULL);
  AcpiCpuData->StackAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Stack;

  //
  // Get the boot processor's GDT and IDT
  //
  AsmReadGdtr (&AcpiCpuDataEx->GdtrProfile);
  AsmReadIdtr (&AcpiCpuDataEx->IdtrProfile);

  //
  // Allocate GDT and IDT and copy current GDT and IDT contents
  //
  GdtSize = AcpiCpuDataEx->GdtrProfile.Limit + 1;
  IdtSize = AcpiCpuDataEx->IdtrProfile.Limit + 1;
  Gdt = AllocateZeroPages (GdtSize + IdtSize);
  ASSERT (Gdt != NULL);
  Idt = (VOID *)((UINTN)Gdt + GdtSize);
  CopyMem (Gdt, (VOID *)AcpiCpuDataEx->GdtrProfile.Base, GdtSize);
  CopyMem (Idt, (VOID *)AcpiCpuDataEx->IdtrProfile.Base, IdtSize);
  AcpiCpuDataEx->GdtrProfile.Base = (UINTN)Gdt;
  AcpiCpuDataEx->IdtrProfile.Base = (UINTN)Idt;

  if (OldAcpiCpuData != NULL) {
    AcpiCpuData->RegisterTable           = OldAcpiCpuData->RegisterTable;
    AcpiCpuData->PreSmmInitRegisterTable = OldAcpiCpuData->PreSmmInitRegisterTable;
    AcpiCpuData->ApLocation              = OldAcpiCpuData->ApLocation;
    CopyMem (&AcpiCpuData->CpuStatus, &OldAcpiCpuData->CpuStatus, sizeof (CPU_STATUS_INFORMATION));
  } else {
    //
    // Allocate buffer for empty RegisterTable and PreSmmInitRegisterTable for all CPUs
    //
    TableSize = 2 * NumberOfCpus * sizeof (CPU_REGISTER_TABLE);
    RegisterTable = (CPU_REGISTER_TABLE *)AllocateZeroPages (TableSize);
    ASSERT (RegisterTable != NULL);

    for (Index = 0; Index < NumberOfCpus; Index++) {
      Status = MpServices->GetProcessorInfo (
                           MpServices,
                           Index,
                           &ProcessorInfoBuffer
                           );
      ASSERT_EFI_ERROR (Status);

      RegisterTable[Index].InitialApicId      = (UINT32)ProcessorInfoBuffer.ProcessorId;
      RegisterTable[Index].TableLength        = 0;
      RegisterTable[Index].AllocatedSize      = 0;
      RegisterTable[Index].RegisterTableEntry = 0;

      RegisterTable[NumberOfCpus + Index].InitialApicId      = (UINT32)ProcessorInfoBuffer.ProcessorId;
      RegisterTable[NumberOfCpus + Index].TableLength        = 0;
      RegisterTable[NumberOfCpus + Index].AllocatedSize      = 0;
      RegisterTable[NumberOfCpus + Index].RegisterTableEntry = 0;
    }
    AcpiCpuData->RegisterTable           = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTable;
    AcpiCpuData->PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)(RegisterTable + NumberOfCpus);
  }

  //
  // Set PcdCpuS3DataAddress to the base address of the ACPI_CPU_DATA structure
  //
  Status = PcdSet64S (PcdCpuS3DataAddress, (UINT64)(UINTN)AcpiCpuData);
  ASSERT_EFI_ERROR (Status);

  //
  // Register EFI_END_OF_DXE_EVENT_GROUP_GUID event.
  // The notification function allocates StartupVector and saves MTRRs for ACPI_CPU_DATA
  //
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_CALLBACK,
                  CpuS3DataOnEndOfDxe,
                  AcpiCpuData,
                  &gEfiEndOfDxeEventGroupGuid,
                  &Event
                  );
  ASSERT_EFI_ERROR (Status);

  return EFI_SUCCESS;
}