Example #1
0
File: PciInfo.c Project: b-man/edk2
/**
  Scan PCI bus and invoke callback function for each PCI devices under the bus.

  @param[in]  Context               The context of the callback function.
  @param[in]  Segment               The segment of the source.
  @param[in]  Bus                   The bus of the source.
  @param[in]  Callback              The callback function in PCI scan.

  @retval EFI_SUCCESS           The PCI devices under the bus are scaned.
**/
EFI_STATUS
ScanPciBus (
  IN VOID                         *Context,
  IN UINT16                       Segment,
  IN UINT8                        Bus,
  IN SCAN_BUS_FUNC_CALLBACK_FUNC  Callback
  )
{
  UINT8                   Device;
  UINT8                   Function;
  UINT8                   SecondaryBusNumber;
  UINT8                   HeaderType;
  UINT8                   BaseClass;
  UINT8                   SubClass;
  UINT32                  MaxFunction;
  UINT16                  VendorID;
  UINT16                  DeviceID;
  EFI_STATUS              Status;

  // Scan the PCI bus for devices
  for (Device = 0; Device < PCI_MAX_DEVICE + 1; Device++) {
    HeaderType = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, 0, PCI_HEADER_TYPE_OFFSET));
    MaxFunction = PCI_MAX_FUNC + 1;
    if ((HeaderType & HEADER_TYPE_MULTI_FUNCTION) == 0x00) {
      MaxFunction = 1;
    }
    for (Function = 0; Function < MaxFunction; Function++) {
      VendorID  = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_VENDOR_ID_OFFSET));
      DeviceID  = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_DEVICE_ID_OFFSET));
      if (VendorID == 0xFFFF && DeviceID == 0xFFFF) {
        continue;
      }

      Status = Callback (Context, Segment, Bus, Device, Function);
      if (EFI_ERROR (Status)) {
        return Status;
      }

      BaseClass = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_CLASSCODE_OFFSET + 2));
      if (BaseClass == PCI_CLASS_BRIDGE) {
        SubClass = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_CLASSCODE_OFFSET + 1));
        if (SubClass == PCI_CLASS_BRIDGE_P2P) {
          SecondaryBusNumber = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, Bus, Device, Function, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET));
          DEBUG ((DEBUG_INFO,"  ScanPciBus: PCI bridge S%04x B%02x D%02x F%02x (SecondBus:%02x)\n", Segment, Bus, Device, Function, SecondaryBusNumber));
          if (SecondaryBusNumber != 0) {
            Status = ScanPciBus (Context, Segment, SecondaryBusNumber, Callback);
            if (EFI_ERROR (Status)) {
              return Status;
            }
          }
        }
      }
    }
  }

  return EFI_SUCCESS;
}
Example #2
0
/**
  Reads a 16-bit PCI configuration register, and saves the value in the S3 script
  to be replayed on S3 resume.

  Reads and returns the 16-bit PCI configuration register specified by Address.
  This function must guarantee that all PCI read and write operations are serialized.

  If any reserved bits in Address are set, then ASSERT().
  If Address is not aligned on a 16-bit boundary, then ASSERT().

  @param  Address   Address that encodes the PCI Segment, Bus, Device, Function, and Register.

  @return The 16-bit PCI configuration register specified by Address.

**/
UINT16
EFIAPI
S3PciSegmentRead16 (
  IN UINT64                    Address
  )
{
  return InternalSavePciSegmentWrite16ValueToBootScript (Address, PciSegmentRead16 (Address));
}
Example #3
0
/**
  Performs a bitwise AND of a 16-bit PCI configuration register with a 16-bit
  value.

  Reads the 16-bit PCI configuration register specified by Address, performs a
  bitwise AND between the read result and the value specified by AndData, and
  writes the result to the 16-bit PCI configuration register specified by
  Address. The value written to the PCI configuration register is returned.
  This function must guarantee that all PCI read and write operations are
  serialized.

  If any reserved bits in Address are set, then ASSERT().

  @param  Address Address that encodes the PCI Segment, Bus, Device, Function and
                  Register.
  @param  AndData The value to AND with the PCI configuration register.

  @return The value written back to the PCI configuration register.

**/
UINT16
EFIAPI
PciSegmentAnd16 (
  IN      UINT64                    Address,
  IN      UINT16                    AndData
  )
{
  return PciSegmentWrite16 (Address, (UINT16) (PciSegmentRead16 (Address) & AndData));
}
Example #4
0
/**
  Performs a bitwise OR of a 16-bit PCI configuration register with
  a 16-bit value.

  Reads the 16-bit PCI configuration register specified by Address, performs a
  bitwise OR between the read result and the value specified by
  OrData, and writes the result to the 16-bit PCI configuration register
  specified by Address. The value written to the PCI configuration register is
  returned. This function must guarantee that all PCI read and write operations
  are serialized.

  If any reserved bits in Address are set, then ASSERT().

  @param  Address Address that encodes the PCI Segment, Bus, Device, Function and
                  Register.
  @param  OrData  The value to OR with the PCI configuration register.

  @return The value written back to the PCI configuration register.

**/
UINT16
EFIAPI
PciSegmentOr16 (
  IN      UINT64                    Address,
  IN      UINT16                    OrData
  )
{
  return PciSegmentWrite16 (Address, (UINT16) (PciSegmentRead16 (Address) | OrData));
}
Example #5
0
/**
  Reads a bit field of a PCI configuration register.

  Reads the bit field in a 16-bit PCI configuration register. The bit field is
  specified by the StartBit and the EndBit. The value of the bit field is
  returned.

  If any reserved bits in Address are set, then ASSERT().
  If StartBit is greater than 15, then ASSERT().
  If EndBit is greater than 15, then ASSERT().
  If EndBit is less than StartBit, then ASSERT().

  @param  Address   PCI configuration register to read.
  @param  StartBit  The ordinal of the least significant bit in the bit field.
                    Range 0..15.
  @param  EndBit    The ordinal of the most significant bit in the bit field.
                    Range 0..15.

  @return The value of the bit field read from the PCI configuration register.

**/
UINT16
EFIAPI
PciSegmentBitFieldRead16 (
  IN      UINT64                    Address,
  IN      UINTN                     StartBit,
  IN      UINTN                     EndBit
  )
{
  return BitFieldRead16 (PciSegmentRead16 (Address), StartBit, EndBit);
}
Example #6
0
/**
  Reads a bit field in a 16-bit PCI configuration register, performs a bitwise
  AND, and writes the result back to the bit field in the 16-bit register.

  Reads the 16-bit PCI configuration register specified by Address, performs a
  bitwise AND between the read result and the value specified by AndData, and
  writes the result to the 16-bit PCI configuration register specified by
  Address. The value written to the PCI configuration register is returned.
  This function must guarantee that all PCI read and write operations are
  serialized. Extra left bits in AndData are stripped.

  If any reserved bits in Address are set, then ASSERT().
  If StartBit is greater than 15, then ASSERT().
  If EndBit is greater than 15, then ASSERT().
  If EndBit is less than StartBit, then ASSERT().

  @param  Address   PCI configuration register to write.
  @param  StartBit  The ordinal of the least significant bit in the bit field.
                    Range 0..15.
  @param  EndBit    The ordinal of the most significant bit in the bit field.
                    Range 0..15.
  @param  AndData   The value to AND with the PCI configuration register.

  @return The value written back to the PCI configuration register.

**/
UINT16
EFIAPI
PciSegmentBitFieldAnd16 (
  IN      UINT64                    Address,
  IN      UINTN                     StartBit,
  IN      UINTN                     EndBit,
  IN      UINT16                    AndData
  )
{
  return PciSegmentWrite16 (
           Address,
           BitFieldAnd16 (PciSegmentRead16 (Address), StartBit, EndBit, AndData)
           );
}
Example #7
0
/**
  Writes a bit field to a PCI configuration register.

  Writes Value to the bit field of the PCI configuration register. The bit
  field is specified by the StartBit and the EndBit. All other bits in the
  destination PCI configuration register are preserved. The new value of the
  16-bit register is returned.

  If any reserved bits in Address are set, then ASSERT().
  If StartBit is greater than 15, then ASSERT().
  If EndBit is greater than 15, then ASSERT().
  If EndBit is less than StartBit, then ASSERT().

  @param  Address   PCI configuration register to write.
  @param  StartBit  The ordinal of the least significant bit in the bit field.
                    Range 0..15.
  @param  EndBit    The ordinal of the most significant bit in the bit field.
                    Range 0..15.
  @param  Value     New value of the bit field.

  @return The value written back to the PCI configuration register.

**/
UINT16
EFIAPI
PciSegmentBitFieldWrite16 (
  IN      UINT64                    Address,
  IN      UINTN                     StartBit,
  IN      UINTN                     EndBit,
  IN      UINT16                    Value
  )
{
  return PciSegmentWrite16 (
           Address,
           BitFieldWrite16 (PciSegmentRead16 (Address), StartBit, EndBit, Value)
           );
}
Example #8
0
/**
  Reads a range of PCI configuration registers into a caller supplied buffer.

  Reads the range of PCI configuration registers specified by StartAddress and
  Size into the buffer specified by Buffer. This function only allows the PCI
  configuration registers from a single PCI function to be read. Size is
  returned. When possible 32-bit PCI configuration read cycles are used to read
  from StartAdress to StartAddress + Size. Due to alignment restrictions, 8-bit
  and 16-bit PCI configuration read cycles may be used at the beginning and the
  end of the range.

  If StartAddress > 0x0FFFFFFF, then ASSERT().
  If ((StartAddress & 0xFFF) + Size) > 0x1000, then ASSERT().
  If Size > 0 and Buffer is NULL, then ASSERT().

  @param  StartAddress  Starting Address that encodes the PCI Segment, Bus, Device,
                        Function and Register.
  @param  Size          Size in bytes of the transfer.
  @param  Buffer        Pointer to a buffer receiving the data read.

  @return Size

**/
UINTN
EFIAPI
PciSegmentReadBuffer (
  IN      UINT64                    StartAddress,
  IN      UINTN                     Size,
  OUT     VOID                      *Buffer
  )
{
  UINTN                             ReturnValue;

  ASSERT_INVALID_PCI_SEGMENT_ADDRESS (StartAddress, 0);
  ASSERT (((StartAddress & 0xFFF) + Size) <= 0x1000);

  if (Size == 0) {
    return Size;
  }

  ASSERT (Buffer != NULL);

  //
  // Save Size for return
  //
  ReturnValue = Size;

  if ((StartAddress & 1) != 0) {
    //
    // Read a byte if StartAddress is byte aligned
    //
    *(volatile UINT8 *)Buffer = PciSegmentRead8 (StartAddress);
    StartAddress += sizeof (UINT8);
    Size -= sizeof (UINT8);
    Buffer = (UINT8*)Buffer + 1;
  }

  if (Size >= sizeof (UINT16) && (StartAddress & 2) != 0) {
    //
    // Read a word if StartAddress is word aligned
    //
    *(volatile UINT16 *)Buffer = PciSegmentRead16 (StartAddress);
    StartAddress += sizeof (UINT16);
    Size -= sizeof (UINT16);
    Buffer = (UINT16*)Buffer + 1;
  }

  while (Size >= sizeof (UINT32)) {
    //
    // Read as many double words as possible
    //
    *(volatile UINT32 *)Buffer = PciSegmentRead32 (StartAddress);
    StartAddress += sizeof (UINT32);
    Size -= sizeof (UINT32);
    Buffer = (UINT32*)Buffer + 1;
  }

  if (Size >= sizeof (UINT16)) {
    //
    // Read the last remaining word if exist
    //
    *(volatile UINT16 *)Buffer = PciSegmentRead16 (StartAddress);
    StartAddress += sizeof (UINT16);
    Size -= sizeof (UINT16);
    Buffer = (UINT16*)Buffer + 1;
  }

  if (Size >= sizeof (UINT8)) {
    //
    // Read the last remaining byte if exist
    //
    *(volatile UINT8 *)Buffer = PciSegmentRead8 (StartAddress);
  }

  return ReturnValue;
}
Example #9
0
File: PciInfo.c Project: b-man/edk2
/**
  Register PCI device to VTd engine.

  @param[in]  VtdIndex              The index of VTd engine.
  @param[in]  Segment               The segment of the source.
  @param[in]  SourceId              The SourceId of the source.
  @param[in]  DeviceType            The DMAR device scope type.
  @param[in]  CheckExist            TRUE: ERROR will be returned if the PCI device is already registered.
                                    FALSE: SUCCESS will be returned if the PCI device is registered.

  @retval EFI_SUCCESS           The PCI device is registered.
  @retval EFI_OUT_OF_RESOURCES  No enough resource to register a new PCI device.
  @retval EFI_ALREADY_STARTED   The device is already registered.
**/
EFI_STATUS
RegisterPciDevice (
  IN UINTN          VtdIndex,
  IN UINT16         Segment,
  IN VTD_SOURCE_ID  SourceId,
  IN UINT8          DeviceType,
  IN BOOLEAN        CheckExist
  )
{
  PCI_DEVICE_INFORMATION           *PciDeviceInfo;
  VTD_SOURCE_ID                    *PciSourceId;
  UINTN                            PciDataIndex;
  UINTN                            Index;
  PCI_DEVICE_DATA                  *NewPciDeviceData;
  EDKII_PLATFORM_VTD_PCI_DEVICE_ID *PciDeviceId;

  PciDeviceInfo = &mVtdUnitInformation[VtdIndex].PciDeviceInfo;

  if (PciDeviceInfo->IncludeAllFlag) {
    //
    // Do not register device in other VTD Unit
    //
    for (Index = 0; Index < VtdIndex; Index++) {
      PciDataIndex = GetPciDataIndex (Index, Segment, SourceId);
      if (PciDataIndex != (UINTN)-1) {
        DEBUG ((DEBUG_INFO, "  RegisterPciDevice: PCI S%04x B%02x D%02x F%02x already registered by Other Vtd(%d)\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, Index));
        return EFI_SUCCESS;
      }
    }
  }

  PciDataIndex = GetPciDataIndex (VtdIndex, Segment, SourceId);
  if (PciDataIndex == (UINTN)-1) {
    //
    // Register new
    //

    if (PciDeviceInfo->PciDeviceDataNumber >= PciDeviceInfo->PciDeviceDataMaxNumber) {
      //
      // Reallocate
      //
      NewPciDeviceData = AllocateZeroPool (sizeof(*NewPciDeviceData) * (PciDeviceInfo->PciDeviceDataMaxNumber + MAX_VTD_PCI_DATA_NUMBER));
      if (NewPciDeviceData == NULL) {
        return EFI_OUT_OF_RESOURCES;
      }
      PciDeviceInfo->PciDeviceDataMaxNumber += MAX_VTD_PCI_DATA_NUMBER;
      if (PciDeviceInfo->PciDeviceData != NULL) {
        CopyMem (NewPciDeviceData, PciDeviceInfo->PciDeviceData, sizeof(*NewPciDeviceData) * PciDeviceInfo->PciDeviceDataNumber);
        FreePool (PciDeviceInfo->PciDeviceData);
      }
      PciDeviceInfo->PciDeviceData = NewPciDeviceData;
    }

    ASSERT (PciDeviceInfo->PciDeviceDataNumber < PciDeviceInfo->PciDeviceDataMaxNumber);

    PciSourceId = &PciDeviceInfo->PciDeviceData[PciDeviceInfo->PciDeviceDataNumber].PciSourceId;
    PciSourceId->Bits.Bus = SourceId.Bits.Bus;
    PciSourceId->Bits.Device = SourceId.Bits.Device;
    PciSourceId->Bits.Function = SourceId.Bits.Function;

    DEBUG ((DEBUG_INFO, "  RegisterPciDevice: PCI S%04x B%02x D%02x F%02x", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));

    PciDeviceId = &PciDeviceInfo->PciDeviceData[PciDeviceInfo->PciDeviceDataNumber].PciDeviceId;
    if ((DeviceType == EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT) ||
        (DeviceType == EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE)) {
      PciDeviceId->VendorId   = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, PCI_VENDOR_ID_OFFSET));
      PciDeviceId->DeviceId   = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, PCI_DEVICE_ID_OFFSET));
      PciDeviceId->RevisionId = PciSegmentRead8 (PCI_SEGMENT_LIB_ADDRESS(Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, PCI_REVISION_ID_OFFSET));

      DEBUG ((DEBUG_INFO, " (%04x:%04x:%02x", PciDeviceId->VendorId, PciDeviceId->DeviceId, PciDeviceId->RevisionId));

      if (DeviceType == EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT) {
        PciDeviceId->SubsystemVendorId = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, PCI_SUBSYSTEM_VENDOR_ID_OFFSET));
        PciDeviceId->SubsystemDeviceId = PciSegmentRead16 (PCI_SEGMENT_LIB_ADDRESS(Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function, PCI_SUBSYSTEM_ID_OFFSET));
        DEBUG ((DEBUG_INFO, ":%04x:%04x", PciDeviceId->SubsystemVendorId, PciDeviceId->SubsystemDeviceId));
      }
      DEBUG ((DEBUG_INFO, ")"));
    }

    PciDeviceInfo->PciDeviceData[PciDeviceInfo->PciDeviceDataNumber].DeviceType = DeviceType;

    if ((DeviceType != EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_ENDPOINT) &&
        (DeviceType != EFI_ACPI_DEVICE_SCOPE_ENTRY_TYPE_PCI_BRIDGE)) {
      DEBUG ((DEBUG_INFO, " (*)"));
    }
    DEBUG ((DEBUG_INFO, "\n"));

    PciDeviceInfo->PciDeviceDataNumber++;
  } else {
    if (CheckExist) {
      DEBUG ((DEBUG_INFO, "  RegisterPciDevice: PCI S%04x B%02x D%02x F%02x already registered\n", Segment, SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
      return EFI_ALREADY_STARTED;
    }
  }

  return EFI_SUCCESS;
}