Example #1
0
//*****************************************************************************
//
// Print "Hello World!" to the UART on the Intelligent UART Module.
//
//*****************************************************************************
int
main(void)
{
    //
    // Run from the PLL at 120 MHz.
    //
    g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet(false, false);

    //
    // Enable the GPIO pins for the LED D1 (PN1).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_1);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Hello!
    //
    UARTprintf("Hello, world!\n");

    //
    // We are finished.  Hang around flashing D1.
    //
    while(1)
    {
        //
        // Turn on D1.
        //
        LEDWrite(CLP_D1, 1);

        //
        // Delay for a bit.
        //
        SysCtlDelay(g_ui32SysClock / 10 / 3);

        //
        // Turn off D1.
        //
        LEDWrite(CLP_D1, 0);

        //
        // Delay for a bit.
        //
        SysCtlDelay(g_ui32SysClock / 10 / 3);
    }
}
//*****************************************************************************
//
// Print "Hello World!" to the display on the Intelligent Display Module.
//
//*****************************************************************************
int
main(void)
{
    tContext sContext;
    uint32_t ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "hello");

    //
    // Say hello using the Computer Modern 40 point font.
    //
    GrContextFontSet(&sContext, g_psFontCm40);
    GrStringDrawCentered(&sContext, "Hello World!", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24,
                         0);

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // We are finished. Hang around doing nothing.
    //
    while(1)
    {
    }
}
Example #3
0
//*****************************************************************************
//
// A simple application demonstrating use of the boot loader,
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32SysClock;
    tContext sContext;
    tRectangle sRect;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "boot-demo-uart");

    //
    // Print instructions on the screen.
    //
    GrStringDrawCentered(&sContext, "Press the screen to start", -1, 160, 108,
                         false);
    GrStringDrawCentered(&sContext, "the update process", -1, 160, 128, false);

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit(ui32SysClock);

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(TSHandler);

    //
    // Enable the UART that will be used for the firmware update.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Configure the UART for 115200, 8-N-1.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, ui32SysClock, 115200,
                            (UART_CONFIG_PAR_NONE | UART_CONFIG_STOP_ONE |
                             UART_CONFIG_WLEN_8));

    //
    // Enable the UART operation.
    //
    ROM_UARTEnable(UART0_BASE);

    //
    // Wait until the screen has been pressed, indicating that the firwmare
    // update should begin.
    //
    while(!g_bFirmwareUpdate)
    {
    }

    //
    // Clear the screen.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = 319;
    sRect.i16YMax = 239;
    GrContextForegroundSet(&sContext, ClrBlack);
    GrRectFill(&sContext, &sRect);

    //
    // Indicate that the firmware update is about to start.
    //
    GrContextForegroundSet(&sContext, ClrWhite);
    GrStringDrawCentered(&sContext, "Update process started...", -1, 160, 98,
                         false);
    GrStringDrawCentered(&sContext, "Using UART0 with", -1, 160, 138, false);
    GrStringDrawCentered(&sContext, "115,200 baud, 8-N-1.", -1, 160, 158,
                         false);

    //
    // Disable all processor interrupts.  Instead of disabling them one at a
    // time, a direct write to NVIC is done to disable all peripheral
    // interrupts.
    //
    HWREG(NVIC_DIS0) = 0xffffffff;
    HWREG(NVIC_DIS1) = 0xffffffff;
    HWREG(NVIC_DIS2) = 0xffffffff;
    HWREG(NVIC_DIS3) = 0xffffffff;
    HWREG(NVIC_DIS4) = 0xffffffff;

    //
    // Call the ROM UART boot loader.
    //
    ROM_UpdateUART();

    //
    // The boot loader should not return.  In the off chance that it does,
    // enter a dead loop.
    //
    while(1)
    {
    }
}
Example #4
0
//*****************************************************************************
//
// This example demonstrates the use of both watchdog timers.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_PLL |
                                       SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "watchdog");

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit(ui32SysClock);
    TouchScreenCallbackSet(WatchdogTouchCallback);

    //
    // Reconfigure PF1 as a GPIO output so that it can be directly driven
    // (instead of being an Ethernet LED).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
    ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);

    //
    // Show the state and offer some instructions to the user.
    //
    GrContextFontSet(&g_sContext, g_psFontCmss20);
    GrStringDrawCentered(&g_sContext, "Watchdog 0:", -1, 80, 80, 0);
    GrStringDrawCentered(&g_sContext, "Watchdog 1:", -1, 240, 80, 0);
    GrContextFontSet(&g_sContext, g_psFontCmss14);
    GrStringDrawCentered(&g_sContext,
                         "Tap the left screen to starve the watchdog 0",
                         -1, GrContextDpyWidthGet(&g_sContext) / 2 ,
                         (GrContextDpyHeightGet(&g_sContext) / 2) + 40, 1);
    GrStringDrawCentered(&g_sContext,
                         "Tap the right screen to starve the watchdog 1",
                         -1, GrContextDpyWidthGet(&g_sContext) / 2 ,
                         (GrContextDpyHeightGet(&g_sContext) / 2) + 60, 1);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOG0);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOG1);

    //
    // Enable the watchdog interrupt.
    //
    ROM_IntEnable(INT_WATCHDOG);

    //
    // Set the period of the watchdog timer.
    //
    ROM_WatchdogReloadSet(WATCHDOG0_BASE, ui32SysClock);
    ROM_WatchdogReloadSet(WATCHDOG1_BASE, 16000000);

    //
    // Enable reset generation from the watchdog timer.
    //
    ROM_WatchdogResetEnable(WATCHDOG0_BASE);
    ROM_WatchdogResetEnable(WATCHDOG1_BASE);

    //
    // Enable the watchdog timer.
    //
    ROM_WatchdogEnable(WATCHDOG0_BASE);
    ROM_WatchdogEnable(WATCHDOG1_BASE);

    //
    // Loop forever while the LED winks as watchdog interrupts are handled.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// Performs calibration of the touch screen.
//
//*****************************************************************************
int
main(void)
{
    int32_t i32Idx, i32X1, i32Y1, i32X2, i32Y2, i32Count, ppi32Points[3][4];
    uint32_t ui32SysClock;
    char pcBuffer[32];
    tContext sContext;
    tRectangle sRect;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "calibrate");

    //
    // Print the instructions across the middle of the screen in white with a
    // 20 point small-caps font.
    //
    GrContextForegroundSet(&sContext, ClrWhite);
    GrContextFontSet(&sContext, g_psFontCmsc20);
    GrStringDrawCentered(&sContext, "Touch the box", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         (GrContextDpyHeightGet(&sContext) / 2) - 10, 0);

    //
    // Set the points used for calibration based on the size of the screen.
    //
    ppi32Points[0][0] = GrContextDpyWidthGet(&sContext) / 10;
    ppi32Points[0][1] = (GrContextDpyHeightGet(&sContext) * 2) / 10;
    ppi32Points[1][0] = GrContextDpyWidthGet(&sContext) / 2;
    ppi32Points[1][1] = (GrContextDpyHeightGet(&sContext) * 9) / 10;
    ppi32Points[2][0] = (GrContextDpyWidthGet(&sContext) * 9) / 10;
    ppi32Points[2][1] = GrContextDpyHeightGet(&sContext) / 2;

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit(ui32SysClock);

    //
    // Loop through the calibration points.
    //
    for(i32Idx = 0; i32Idx < 3; i32Idx++)
    {
        //
        // Fill a white box around the calibration point.
        //
        GrContextForegroundSet(&sContext, ClrWhite);
        sRect.i16XMin = ppi32Points[i32Idx][0] - 5;
        sRect.i16YMin = ppi32Points[i32Idx][1] - 5;
        sRect.i16XMax = ppi32Points[i32Idx][0] + 5;
        sRect.i16YMax = ppi32Points[i32Idx][1] + 5;
        GrRectFill(&sContext, &sRect);

        //
        // Flush any cached drawing operations.
        //
        GrFlush(&sContext);

        //
        // Initialize the raw sample accumulators and the sample count.
        //
        i32X1 = 0;
        i32Y1 = 0;
        i32Count = -5;

        //
        // Loop forever.  This loop is explicitly broken out of when the pen is
        // lifted.
        //
        while(1)
        {
            //
            // Grab the current raw touch screen position.
            //
            i32X2 = g_i16TouchX;
            i32Y2 = g_i16TouchY;

            //
            // See if the pen is up or down.
            //
            if((i32X2 < g_i16TouchMin) || (i32Y2 < g_i16TouchMin))
            {
                //
                // The pen is up, so see if any samples have been accumulated.
                //
                if(i32Count > 0)
                {
                    //
                    // The pen has just been lifted from the screen, so break
                    // out of the controlling while loop.
                    //
                    break;
                }

                //
                // Reset the accumulators and sample count.
                //
                i32X1 = 0;
                i32Y1 = 0;
                i32Count = -5;

                //
                // Grab the next sample.
                //
                continue;
            }

            //
            // Increment the count of samples.
            //
            i32Count++;

            //
            // If the sample count is greater than zero, add this sample to the
            // accumulators.
            //
            if(i32Count > 0)
            {
                i32X1 += i32X2;
                i32Y1 += i32Y2;
            }
        }

        //
        // Save the averaged raw ADC reading for this calibration point.
        //
        ppi32Points[i32Idx][2] = i32X1 / i32Count;
        ppi32Points[i32Idx][3] = i32Y1 / i32Count;

        //
        // Erase the box around this calibration point.
        //
        GrContextForegroundSet(&sContext, ClrBlack);
        GrRectFill(&sContext, &sRect);
    }

    //
    // Clear the screen.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&sContext) - 1;
    sRect.i16YMax = GrContextDpyHeightGet(&sContext) - 1;
    GrRectFill(&sContext, &sRect);

    //
    // Indicate that the calibration data is being displayed.
    //
    GrContextForegroundSet(&sContext, ClrWhite);
    GrStringDraw(&sContext, "Calibration data:", -1, 16, 32, 0);

    //
    // Compute and display the M0 calibration value.
    //
    usprintf(pcBuffer, "M0 = %d",
             (((ppi32Points[0][0] - ppi32Points[2][0]) *
               (ppi32Points[1][3] - ppi32Points[2][3])) -
              ((ppi32Points[1][0] - ppi32Points[2][0]) *
               (ppi32Points[0][3] - ppi32Points[2][3]))));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 72, 0);

    //
    // Compute and display the M1 calibration value.
    //
    usprintf(pcBuffer, "M1 = %d",
             (((ppi32Points[0][2] - ppi32Points[2][2]) *
               (ppi32Points[1][0] - ppi32Points[2][0])) -
              ((ppi32Points[0][0] - ppi32Points[2][0]) *
               (ppi32Points[1][2] - ppi32Points[2][2]))));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 92, 0);

    //
    // Compute and display the M2 calibration value.
    //
    usprintf(pcBuffer, "M2 = %d",
             ((((ppi32Points[2][2] * ppi32Points[1][0]) -
                (ppi32Points[1][2] * ppi32Points[2][0])) * ppi32Points[0][3]) +
              (((ppi32Points[0][2] * ppi32Points[2][0]) -
                (ppi32Points[2][2] * ppi32Points[0][0])) * ppi32Points[1][3]) +
              (((ppi32Points[1][2] * ppi32Points[0][0]) -
                (ppi32Points[0][2] * ppi32Points[1][0])) * ppi32Points[2][3])));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 112, 0);

    //
    // Compute and display the M3 calibration value.
    //
    usprintf(pcBuffer, "M3 = %d",
             (((ppi32Points[0][1] - ppi32Points[2][1]) *
               (ppi32Points[1][3] - ppi32Points[2][3])) -
              ((ppi32Points[1][1] - ppi32Points[2][1]) *
               (ppi32Points[0][3] - ppi32Points[2][3]))));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 132, 0);

    //
    // Compute and display the M4 calibration value.
    //
    usprintf(pcBuffer, "M4 = %d",
             (((ppi32Points[0][2] - ppi32Points[2][2]) *
               (ppi32Points[1][1] - ppi32Points[2][1])) -
              ((ppi32Points[0][1] - ppi32Points[2][1]) *
               (ppi32Points[1][2] - ppi32Points[2][2]))));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 152, 0);

    //
    // Compute and display the M5 calibration value.
    //
    usprintf(pcBuffer, "M5 = %d",
             ((((ppi32Points[2][2] * ppi32Points[1][1]) -
                (ppi32Points[1][2] * ppi32Points[2][1])) * ppi32Points[0][3]) +
              (((ppi32Points[0][2] * ppi32Points[2][1]) -
                (ppi32Points[2][2] * ppi32Points[0][1])) * ppi32Points[1][3]) +
              (((ppi32Points[1][2] * ppi32Points[0][1]) -
                (ppi32Points[0][2] * ppi32Points[1][1])) * ppi32Points[2][3])));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 172, 0);

    //
    // Compute and display the M6 calibration value.
    //
    usprintf(pcBuffer, "M6 = %d",
             (((ppi32Points[0][2] - ppi32Points[2][2]) *
               (ppi32Points[1][3] - ppi32Points[2][3])) -
              ((ppi32Points[1][2] - ppi32Points[2][2]) *
               (ppi32Points[0][3] - ppi32Points[2][3]))));
    GrStringDraw(&sContext, pcBuffer, -1, 16, 192, 0);

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // The calibration is complete.  Sit around and wait for a reset.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This is the main example program.  It checks to see that the interrupts are
// processed in the correct order when they have identical priorities,
// increasing priorities, and decreasing priorities.  This exercises interrupt
// preemption and tail chaining.
//
//*****************************************************************************
int
main(void)
{
    uint_fast8_t ui8Error;
    uint32_t ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "interrupts");

    //
    // Put the status header text on the display.
    //
    GrContextFontSet(&g_sContext, g_psFontCm20);
    GrStringDrawCentered(&g_sContext, "Active:      Pending:     ", -1,
                 GrContextDpyWidthGet(&g_sContext) / 2, 150, 0);

    //
    // Configure the B3, L1 and L0 to be outputs to indicate entry/exit of one
    // of the interrupt handlers.
    //
    GPIOPinTypeGPIOOutput(GPIO_A_BASE, GPIO_A_PIN);
    GPIOPinTypeGPIOOutput(GPIO_B_BASE, GPIO_B_PIN);
    GPIOPinTypeGPIOOutput(GPIO_C_BASE, GPIO_C_PIN);
    GPIOPinWrite(GPIO_A_BASE, GPIO_A_PIN, 0);
    GPIOPinWrite(GPIO_B_BASE, GPIO_B_PIN, 0);
    GPIOPinWrite(GPIO_C_BASE, GPIO_C_PIN, 0);

    //
    // Set up and enable the SysTick timer.  It will be used as a reference
    // for delay loops in the interrupt handlers.  The SysTick timer period
    // will be set up for 100 times per second.
    //
    ROM_SysTickPeriodSet(ui32SysClock / 100);
    ROM_SysTickEnable();

    //
    // Reset the error indicator.
    //
    ui8Error = 0;

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Enable the interrupts.
    //
    ROM_IntEnable(INT_GPIOA);
    ROM_IntEnable(INT_GPIOB);
    ROM_IntEnable(INT_GPIOC);

    //
    // Indicate that the equal interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, "Equal Priority", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);

    //
    // Set the interrupt priorities so they are all equal.
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x00);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the LCD.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 1;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the decreasing interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, " Decreasing Priority ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);

    //
    // Set the interrupt priorities so that they are decreasing (i.e. C > B >
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x80);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the display.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 2;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the increasing interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, " Increasing Priority ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);

    //
    // Set the interrupt priorities so that they are increasing (i.e. C < B <
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x80);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the display.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 1) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 3))
    {
        ui8Error |= 4;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Disable the interrupts.
    //
    ROM_IntDisable(INT_GPIOA);
    ROM_IntDisable(INT_GPIOB);
    ROM_IntDisable(INT_GPIOC);

    //
    // Disable interrupts to the processor.
    //
    ROM_IntMasterDisable();

    //
    // Print out the test results.
    //
    GrStringDrawCentered(&g_sContext, " Interrupt Priority ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);
    if(ui8Error)
    {
        GrStringDrawCentered(&g_sContext, "     Equal: P  Inc: P  Dec: P     ",
                             -1, GrContextDpyWidthGet(&g_sContext) / 2, 150, 1);
        if(ui8Error & 1)
        {
            GrStringDrawCentered(&g_sContext, " F ", -1, 113, 150, 1);
        }
        if(ui8Error & 2)
        {
            GrStringDrawCentered(&g_sContext, " F ", -1, 187, 150, 1);
        }
        if(ui8Error & 4)
        {
            GrStringDrawCentered(&g_sContext, " F ", -1, 272, 150, 1);
        }
    }
    else
    {
        GrStringDrawCentered(&g_sContext, "           Success!           ", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 150, 1);
    }

    //
    // Flush the display.
    //
    GrFlush(&g_sContext);

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// The program main function.  It performs initialization, then handles wav
// file playback.
//
//*****************************************************************************
int
main(void)
{
    int nStatus;

    //
    // Set the system clock to run at 80MHz from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Give bget some memory to work with.
    //
    bpool(g_pulHeap, sizeof(g_pulHeap));

    //
    // Set the device pin out appropriately for this board.
    //
    PinoutSet();

    //
    // Configure the relevant pins such that UART0 owns them.
    //
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Open the UART for I/O
    //
    UARTStdioInit(0);

    UARTprintf("i2s_speex_enc\n");

    //
    // Configure and enable uDMA
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    SysCtlDelay(10);
    ROM_uDMAControlBaseSet(&sDMAControlTable[0]);
    ROM_uDMAEnable();

    //
    // Enable Interrupts
    //
    ROM_IntMasterEnable();

    //
    // Configure the I2S peripheral.
    //
    SoundInit(1);

    //
    // Set the format of the play back in the sound driver.
    //
    SoundSetFormat(AUDIO_RATE, AUDIO_BITS, AUDIO_CHANNELS);

    //
    // Print out some header information to the serial console.
    //
    UARTprintf("\ni2s_speex_enc Stellaris Example\n");
    UARTprintf("Streaming at %d %d bit ",SoundSampleRateGet(), AUDIO_BITS);

    if(AUDIO_CHANNELS == 2)
    {
        UARTprintf("Stereo\n");
    }
    else
    {
        UARTprintf("Mono\n");
    }

    //
    // Set the initial volume.
    //
    SoundVolumeSet(INITIAL_VOLUME_PERCENT);

    //
    // Initialize the Speex decoder.
    //
    SpeexDecodeInit();

    //
    // Set the default quality to 2.
    //
    g_iQuality = 2;

    //
    // Initialize the Speex encoder to Complexity of 1 and Quality 2.
    //
    SpeexEncodeInit(AUDIO_RATE, 1, g_iQuality);

    //
    // Initialize the audio buffers.
    //
    InitBuffers();

    //
    // Initialize the applications global state flags.
    //
    g_ulFlags = 0;

    //
    // Kick off a request for a buffer play back and advance the encoder
    // pointer.
    //
    SoundBufferRead(g_pucRecBuffer, RECORD_BUFFER_INC,
                    RecordBufferCallback);
    g_pucEncode += RECORD_BUFFER_INC;

    //
    // Kick off a second request for a buffer play back and advance the encode
    // pointer.
    //
    SoundBufferRead(&g_pucRecBuffer[RECORD_BUFFER_INC], RECORD_BUFFER_INC,
                    RecordBufferCallback);
    g_pucEncode += RECORD_BUFFER_INC;

    //
    // The rest of the handling occurs at interrupt time so the main loop will
    // simply stall here.
    //
    while(1)
    {
        //
        // Print a prompt to the console.  Show the CWD.
        //
        UARTprintf("\n> ");

        //
        // Get a line of text from the user.
        //
        UARTgets(g_cCmdBuf, sizeof(g_cCmdBuf));

        //
        // Pass the line from the user to the command processor.
        // It will be parsed and valid commands executed.
        //
        nStatus = CmdLineProcess(g_cCmdBuf);

        //
        // Handle the case of bad command.
        //
        if(nStatus == CMDLINE_BAD_CMD)
        {
            UARTprintf("Bad command!\n");
        }

        //
        // Handle the case of too many arguments.
        //
        else if(nStatus == CMDLINE_TOO_MANY_ARGS)
        {
            UARTprintf("Too many arguments for command processor!\n");
        }

        //
        // Otherwise the command was executed.  Print the error
        // code if one was returned.
        //
        else if(nStatus != 0)
        {
            UARTprintf("Command returned error code \n");
        }
    }
}
//*****************************************************************************
//
// This example demonstrates how to use the uDMA controller to transfer data
// between memory buffers and to and from a peripheral, in this case a UART.
// The uDMA controller is configured to repeatedly transfer a block of data
// from one memory buffer to another.  It is also set up to repeatedly copy a
// block of data from a buffer to the UART output.  The UART data is looped
// back so the same data is received, and the uDMA controlled is configured to
// continuously receive the UART data using ping-pong buffers.
//
// The processor is put to sleep when it is not doing anything, and this allows
// collection of CPU usage data to see how much CPU is being used while the
// data transfers are ongoing.
//
//*****************************************************************************
int
main(void)
{
    static unsigned long ulPrevSeconds;
    static unsigned long ulPrevXferCount;
    static unsigned long ulPrevUARTCount = 0;
    static char cStrBuf[40];
    tRectangle sRect;
    unsigned long ulCenterX;
    unsigned long ulXfersCompleted;
    unsigned long ulBytesTransferred;

    //
    // Set the clocking to run from the PLL at 50 MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the device pinout appropriately for this board.
    //
    PinoutSet();

    //
    // Enable peripherals to operate when CPU is in sleep.
    //
    ROM_SysCtlPeripheralClockGating(true);

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the graphics context and find the middle X coordinate.
    //
    GrContextInit(&g_sContext, &g_sKitronix320x240x16_SSD2119);

    //
    // Get the center X coordinate of the screen, since it is used a lot.
    //
    ulCenterX = GrContextDpyWidthGet(&g_sContext) / 2;

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 23;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontCm20);
    GrStringDrawCentered(&g_sContext, "udma-demo", -1, ulCenterX, 11, 0);

    //
    // Show the clock frequency on the display.
    //
    GrContextFontSet(&g_sContext, g_pFontCmss18b);
    usnprintf(cStrBuf, sizeof(cStrBuf), "Stellaris @ %u MHz",
              SysCtlClockGet() / 1000000);
    GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 40, 0);

    //
    // Show static text and field labels on the display.
    //
    GrStringDrawCentered(&g_sContext, "uDMA Mem Transfers", -1,
                         ulCenterX, 62, 0);
    GrStringDrawCentered(&g_sContext, "uDMA UART Transfers", -1,
                         ulCenterX, 84, 0);

    //
    // Configure SysTick to occur 100 times per second, to use as a time
    // reference.  Enable SysTick to generate interrupts.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Initialize the CPU usage measurement routine.
    //
    CPUUsageInit(SysCtlClockGet(), SYSTICKS_PER_SECOND, 2);

    //
    // Enable the uDMA controller at the system level.  Enable it to continue
    // to run while the processor is in sleep.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

    //
    // Enable the uDMA controller error interrupt.  This interrupt will occur
    // if there is a bus error during a transfer.
    //
    ROM_IntEnable(INT_UDMAERR);

    //
    // Enable the uDMA controller.
    //
    ROM_uDMAEnable();

    //
    // Point at the control table to use for channel control structures.
    //
    ROM_uDMAControlBaseSet(ucControlTable);

    //
    // Initialize the uDMA memory to memory transfers.
    //
    InitSWTransfer();

    //
    // Initialize the uDMA UART transfers.
    //
    InitUART0Transfer();

    //
    // Remember the current SysTick seconds count.
    //
    ulPrevSeconds = g_ulSeconds;

    //
    // Remember the current count of memory buffer transfers.
    //
    ulPrevXferCount = g_ulMemXferCount;

    //
    // Loop until the button is pressed.  The processor is put to sleep
    // in this loop so that CPU utilization can be measured.
    //
    while(1)
    {
        //
        // Check to see if one second has elapsed.  If so, the make some
        // updates.
        //
        if(g_ulSeconds != ulPrevSeconds)
        {
            //
            // Print a message to the display showing the CPU usage percent.
            // The fractional part of the percent value is ignored.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), "CPU utilization %2u%%",
                      g_ulCPUUsage >> 16);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 160, 1);

            //
            // Tell the user how many seconds we have to go before ending.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), " Test ends in %d seconds ",
                      10 - g_ulSeconds);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 120, 1);

            //
            // Remember the new seconds count.
            //
            ulPrevSeconds = g_ulSeconds;

            //
            // Calculate how many memory transfers have occurred since the last
            // second.
            //
            ulXfersCompleted = g_ulMemXferCount - ulPrevXferCount;

            //
            // Remember the new transfer count.
            //
            ulPrevXferCount = g_ulMemXferCount;

            //
            // Compute how many bytes were transferred in the memory transfer
            // since the last second.
            //
            ulBytesTransferred = ulXfersCompleted * MEM_BUFFER_SIZE * 4;

            //
            // Print a message to the display showing the memory transfer rate.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), " %8u Bytes/Sec ",
                      ulBytesTransferred);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 182, 1);

            //
            // Calculate how many UART transfers have occurred since the last
            // second.
            //
            ulXfersCompleted = (g_ulRxBufACount + g_ulRxBufBCount -
                                ulPrevUARTCount);

            //
            // Remember the new UART transfer count.
            //
            ulPrevUARTCount = g_ulRxBufACount + g_ulRxBufBCount;

            //
            // Compute how many bytes were transferred by the UART.  The number
            // of bytes received is multiplied by 2 so that the TX bytes
            // transferred are also accounted for.
            //
            ulBytesTransferred = ulXfersCompleted * UART_RXBUF_SIZE * 2;

            //
            // Print a message to the display showing the UART transfer rate.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), " %8u Bytes/Sec ",
                      ulBytesTransferred);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 204, 1);
        }

        //
        // Put the processor to sleep if there is nothing to do.  This allows
        // the CPU usage routine to measure the number of free CPU cycles.
        // If the processor is sleeping a lot, it can be hard to connect to
        // the target with the debugger.
        //
        SysCtlSleep();

        //
        // See if we have run long enough and exit the loop if so.
        //
        if(g_ulSeconds >= 10)
        {
            break;
        }
    }
Example #9
0
//*****************************************************************************
//
// The main application loop.
//
//*****************************************************************************
int
main(void)
{
    int32_t i32Status, i32Idx;
    uint32_t ui32SysClock, ui32PLLRate;
#ifdef USE_ULPI
    uint32_t ui32Setting;
#endif

    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Set the part pin out appropriately for this device.
    //
    PinoutSet();

#ifdef USE_ULPI
    //
    // Switch the USB ULPI Pins over.
    //
    USBULPIPinoutSet();

    //
    // Enable USB ULPI with high speed support.
    //
    ui32Setting = USBLIB_FEATURE_ULPI_HS;
    USBOTGFeatureSet(0, USBLIB_FEATURE_USBULPI, &ui32Setting);

    //
    // Setting the PLL frequency to zero tells the USB library to use the
    // external USB clock.
    //
    ui32PLLRate = 0;
#else
    //
    // Save the PLL rate used by this application.
    //
    ui32PLLRate = 480000000;
#endif

    //
    // Initialize the hub port status.
    //
    for(i32Idx = 0; i32Idx < NUM_HUB_STATUS; i32Idx++)
    {
        g_psHubStatus[i32Idx].bConnected = false;
    }

    //
    // Enable Clocking to the USB controller.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);

    //
    // Enable Interrupts
    //
    ROM_IntMasterEnable();

    //
    // Initialize the USB stack mode and pass in a mode callback.
    //
    USBStackModeSet(0, eUSBModeHost, 0);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ui32NumHostClassDrivers);

    //
    // Open the Keyboard interface.
    //
    KeyboardOpen();
    MSCOpen(ui32SysClock);

    //
    // Open a hub instance and provide it with the memory required to hold
    // configuration descriptors for each attached device.
    //
    USBHHubOpen(HubCallback);

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USBHCD_VBUS_AUTO_HIGH | USBHCD_VBUS_FILTER);

    //
    // Tell the USB library the CPU clock and the PLL frequency.
    //
    USBOTGFeatureSet(0, USBLIB_FEATURE_CPUCLK, &ui32SysClock);
    USBOTGFeatureSet(0, USBLIB_FEATURE_USBPLL, &ui32PLLRate);

    //
    // Initialize the USB controller for Host mode.
    //
    USBHCDInit(0, g_pui8HCDPool, sizeof(g_pui8HCDPool));

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "usb-host-hub");

    //
    // Calculate the number of characters that will fit on a line.
    // Make sure to leave a small border for the text box.
    //
    g_ui32CharsPerLine = (GrContextDpyWidthGet(&g_sContext) - 16) /
                         GrFontMaxWidthGet(g_psFontFixed6x8);

    //
    // Calculate the number of lines per usable text screen.  This requires
    // taking off space for the top and bottom banners and adding a small bit
    // for a border.
    //
    g_ui32LinesPerScreen = (GrContextDpyHeightGet(&g_sContext) -
                           (2*(DISPLAY_BANNER_HEIGHT + 1)))/
                           GrFontHeightGet(g_psFontFixed6x8);

    //
    // Initial update of the screen.
    //
    UpdateStatus(0);
    UpdateStatus(1);
    UpdateStatus(2);
    UpdateStatus(3);

    g_ui32CmdIdx = 0;
    g_ui32CurrentLine = 0;

    //
    // Initialize the file system.
    //
    FileInit();

    //
    // The main loop for the application.
    //
    while(1)
    {
        //
        // Print a prompt to the console.  Show the CWD.
        //
        WriteString("> ");

        //
        // Is there a command waiting to be processed?
        //
        while((g_ui32Flags & FLAG_CMD_READY) == 0)
        {
            //
            // Call the YSB library to let non-interrupt code run.
            //
            USBHCDMain();

            //
            // Call the keyboard and mass storage main routines.
            //
            KeyboardMain();
            MSCMain();
        }

        //
        // Pass the line from the user to the command processor.
        // It will be parsed and valid commands executed.
        //
        i32Status = CmdLineProcess(g_pcCmdBuf);

        //
        // Handle the case of bad command.
        //
        if(i32Status == CMDLINE_BAD_CMD)
        {
            WriteString("Bad command!\n");
        }
        //
        // Handle the case of too many arguments.
        //
        else if(i32Status == CMDLINE_TOO_MANY_ARGS)
        {
            WriteString("Too many arguments for command processor!\n");
        }
        //
        // Otherwise the command was executed.  Print the error
        // code if one was returned.
        //
        else if(i32Status != 0)
        {
            WriteString("Command returned error code\n");
            WriteString((char *)StringFromFresult((FRESULT)i32Status));
            WriteString("\n");
        }

        //
        // Reset the command flag and the command index.
        //
        g_ui32Flags &= ~FLAG_CMD_READY;
        g_ui32CmdIdx = 0;
    }
}
Example #10
0
//*****************************************************************************
//
// Main application entry point.
//
//*****************************************************************************
int
main(void)
{
    int_fast32_t i32IPart[16], i32FPart[16];
    uint_fast32_t ui32Idx, ui32CompDCMStarted;
    float pfData[16];
    float *pfAccel, *pfGyro, *pfMag, *pfEulers, *pfQuaternion;

    //
    // Initialize convenience pointers that clean up and clarify the code
    // meaning. We want all the data in a single contiguous array so that
    // we can make our pretty printing easier later.
    //
    pfAccel = pfData;
    pfGyro = pfData + 3;
    pfMag = pfData + 6;
    pfEulers = pfData + 9;
    pfQuaternion = pfData + 12;

    //
    // Configure the system frequency.
    //
    g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                            SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                            SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins for this board.
    //
    PinoutSet(false, false);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JMPU9150 Complimentary DCM Example\n");

    //
    // The I2C7 peripheral must be enabled before use.
    //
    // For BoosterPack 2 interface use I2C8.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C7);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C7 functions on port D0 and D1.
    // This step is not necessary if your part does not support pin muxing.
    //
    // For BoosterPack 2 interface use PA2 and PA3.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C7SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C7SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    // For BoosterPack 2 interface use PA2 and PA3.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Configure and Enable the GPIO interrupt. Used for INT signal from the
    // MPU9150.
    //
    // For BoosterPack 2 interface change this to PM7.
    //
    ROM_GPIOPinTypeGPIOInput(GPIO_PORTM_BASE, GPIO_PIN_3);
    GPIOIntEnable(GPIO_PORTM_BASE, GPIO_PIN_3);
    ROM_GPIOIntTypeSet(GPIO_PORTM_BASE, GPIO_PIN_3, GPIO_FALLING_EDGE);
    ROM_IntEnable(INT_GPIOM);

    //
    // Keep only some parts of the systems running while in sleep mode.
    // GPIOM is for the MPU9150 interrupt pin.
    // UART0 is the virtual serial port
    // I2C7 is the I2C interface to the ISL29023
    //
    // For BoosterPack 2 Interface change this to I2C8.
    //
    ROM_SysCtlPeripheralClockGating(true);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOM);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C7);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize I2C7 peripheral.
    //
    // For BoosterPack 2 use I2C8.
    //
    I2CMInit(&g_sI2CInst, I2C7_BASE, INT_I2C7, 0xff, 0xff, g_ui32SysClock);

    //
    // Turn on the LED to show a transaction is starting.
    //
    LEDWrite(CLP_D3 | CLP_D4, CLP_D3);

    //
    // Initialize the MPU9150 Driver.
    //
    MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
                MPU9150AppCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MPU9150AppI2CWait(__FILE__, __LINE__);

    //
    // Turn on the LED to show a transaction is starting.
    //
    LEDWrite(CLP_D3 | CLP_D4, CLP_D3);

    //
    // Write application specifice sensor configuration such as filter settings
    // and sensor range settings.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
    g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
                                  MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
                 MPU9150AppCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MPU9150AppI2CWait(__FILE__, __LINE__);

    //
    // Turn on the LED to show a transaction is starting.
    //
    LEDWrite(CLP_D3 | CLP_D4, CLP_D3);

    //
    // Configure the data ready interrupt pin output of the MPU9150.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_INT_PIN_CFG_INT_LEVEL |
                                 MPU9150_INT_PIN_CFG_INT_RD_CLEAR |
                                 MPU9150_INT_PIN_CFG_LATCH_INT_EN;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
                 g_sMPU9150Inst.pui8Data, 2, MPU9150AppCallback,
                 &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MPU9150AppI2CWait(__FILE__, __LINE__);

    //
    // Initialize the DCM system. 50 hz sample rate.
    // accel weight = .2, gyro weight = .8, mag weight = .2
    //
    CompDCMInit(&g_sCompDCMInst, 1.0f / 50.0f, 0.2f, 0.6f, 0.2f);

    //
    // Print the basic outline of our data table. Done once and then kept as we
    // print only the data.
    //
    UARTprintf("\033[2J\033[H");
    UARTprintf("MPU9150 9-Axis Simple Data Application Example\n\n");
    UARTprintf("\033[20GX\033[31G|\033[43GY\033[54G|\033[66GZ\n\n");
    UARTprintf("Accel\033[8G|\033[31G|\033[54G|\n\n");
    UARTprintf("Gyro\033[8G|\033[31G|\033[54G|\n\n");
    UARTprintf("Mag\033[8G|\033[31G|\033[54G|\n\n");
    UARTprintf("\n\033[20GRoll\033[31G|\033[43GPitch\033[54G|\033[66GYaw\n\n");
    UARTprintf("Eulers\033[8G|\033[31G|\033[54G|\n\n");

    UARTprintf("\n\033[17GQ1\033[26G|\033[35GQ2\033[44G|\033[53GQ3\033[62G|"
               "\033[71GQ4\n\n");
    UARTprintf("Q\033[8G|\033[26G|\033[44G|\033[62G|\n\n");

    ui32CompDCMStarted = 0;

    while(1) {
        //
        // Go to sleep mode while waiting for data ready.
        //
        while(!g_vui8I2CDoneFlag) {
            ROM_SysCtlSleep();
        }

        //
        // Clear the flag
        //
        g_vui8I2CDoneFlag = 0;

        //
        // Get floating point version of the Accel Data in m/s^2.
        //
        MPU9150DataAccelGetFloat(&g_sMPU9150Inst, pfAccel, pfAccel + 1,
                                 pfAccel + 2);

        //
        // Get floating point version of angular velocities in rad/sec
        //
        MPU9150DataGyroGetFloat(&g_sMPU9150Inst, pfGyro, pfGyro + 1,
                                pfGyro + 2);

        //
        // Get floating point version of magnetic fields strength in tesla
        //
        MPU9150DataMagnetoGetFloat(&g_sMPU9150Inst, pfMag, pfMag + 1,
                                   pfMag + 2);

        //
        // Check if this is our first data ever.
        //
        if(ui32CompDCMStarted == 0) {
            //
            // Set flag indicating that DCM is started.
            // Perform the seeding of the DCM with the first data set.
            //
            ui32CompDCMStarted = 1;
            CompDCMMagnetoUpdate(&g_sCompDCMInst, pfMag[0], pfMag[1],
                                 pfMag[2]);
            CompDCMAccelUpdate(&g_sCompDCMInst, pfAccel[0], pfAccel[1],
                               pfAccel[2]);
            CompDCMGyroUpdate(&g_sCompDCMInst, pfGyro[0], pfGyro[1],
                              pfGyro[2]);
            CompDCMStart(&g_sCompDCMInst);
        } else {
            //
            // DCM Is already started.  Perform the incremental update.
            //
            CompDCMMagnetoUpdate(&g_sCompDCMInst, pfMag[0], pfMag[1],
                                 pfMag[2]);
            CompDCMAccelUpdate(&g_sCompDCMInst, pfAccel[0], pfAccel[1],
                               pfAccel[2]);
            CompDCMGyroUpdate(&g_sCompDCMInst, -pfGyro[0], -pfGyro[1],
                              -pfGyro[2]);
            CompDCMUpdate(&g_sCompDCMInst);
        }

        //
        // Increment the skip counter.  Skip counter is used so we do not
        // overflow the UART with data.
        //
        g_ui32PrintSkipCounter++;
        if(g_ui32PrintSkipCounter >= PRINT_SKIP_COUNT) {
            //
            // Reset skip counter.
            //
            g_ui32PrintSkipCounter = 0;

            //
            // Get Euler data. (Roll Pitch Yaw)
            //
            CompDCMComputeEulers(&g_sCompDCMInst, pfEulers, pfEulers + 1,
                                 pfEulers + 2);

            //
            // Get Quaternions.
            //
            CompDCMComputeQuaternion(&g_sCompDCMInst, pfQuaternion);

            //
            // convert mag data to micro-tesla for better human interpretation.
            //
            pfMag[0] *= 1e6;
            pfMag[1] *= 1e6;
            pfMag[2] *= 1e6;

            //
            // Convert Eulers to degrees. 180/PI = 57.29...
            // Convert Yaw to 0 to 360 to approximate compass headings.
            //
            pfEulers[0] *= 57.295779513082320876798154814105f;
            pfEulers[1] *= 57.295779513082320876798154814105f;
            pfEulers[2] *= 57.295779513082320876798154814105f;
            if(pfEulers[2] < 0) {
                pfEulers[2] += 360.0f;
            }

            //
            // Now drop back to using the data as a single array for the
            // purpose of decomposing the float into a integer part and a
            // fraction (decimal) part.
            //
            for(ui32Idx = 0; ui32Idx < 16; ui32Idx++) {
                //
                // Conver float value to a integer truncating the decimal part.
                //
                i32IPart[ui32Idx] = (int32_t) pfData[ui32Idx];

                //
                // Multiply by 1000 to preserve first three decimal values.
                // Truncates at the 3rd decimal place.
                //
                i32FPart[ui32Idx] = (int32_t) (pfData[ui32Idx] * 1000.0f);

                //
                // Subtract off the integer part from this newly formed decimal
                // part.
                //
                i32FPart[ui32Idx] = i32FPart[ui32Idx] -
                                    (i32IPart[ui32Idx] * 1000);

                //
                // make the decimal part a positive number for display.
                //
                if(i32FPart[ui32Idx] < 0) {
                    i32FPart[ui32Idx] *= -1;
                }
            }

            //
            // Print the acceleration numbers in the table.
            //
            UARTprintf("\033[5;17H%3d.%03d", i32IPart[0], i32FPart[0]);
            UARTprintf("\033[5;40H%3d.%03d", i32IPart[1], i32FPart[1]);
            UARTprintf("\033[5;63H%3d.%03d", i32IPart[2], i32FPart[2]);

            //
            // Print the angular velocities in the table.
            //
            UARTprintf("\033[7;17H%3d.%03d", i32IPart[3], i32FPart[3]);
            UARTprintf("\033[7;40H%3d.%03d", i32IPart[4], i32FPart[4]);
            UARTprintf("\033[7;63H%3d.%03d", i32IPart[5], i32FPart[5]);

            //
            // Print the magnetic data in the table.
            //
            UARTprintf("\033[9;17H%3d.%03d", i32IPart[6], i32FPart[6]);
            UARTprintf("\033[9;40H%3d.%03d", i32IPart[7], i32FPart[7]);
            UARTprintf("\033[9;63H%3d.%03d", i32IPart[8], i32FPart[8]);

            //
            // Print the Eulers in a table.
            //
            UARTprintf("\033[14;17H%3d.%03d", i32IPart[9], i32FPart[9]);
            UARTprintf("\033[14;40H%3d.%03d", i32IPart[10], i32FPart[10]);
            UARTprintf("\033[14;63H%3d.%03d", i32IPart[11], i32FPart[11]);

            //
            // Print the quaternions in a table format.
            //
            UARTprintf("\033[19;14H%3d.%03d", i32IPart[12], i32FPart[12]);
            UARTprintf("\033[19;32H%3d.%03d", i32IPart[13], i32FPart[13]);
            UARTprintf("\033[19;50H%3d.%03d", i32IPart[14], i32FPart[14]);
            UARTprintf("\033[19;68H%3d.%03d", i32IPart[15], i32FPart[15]);

        }
    }
}
//*****************************************************************************
//
// Initialize SafeRTOS and start the initial set of tasks.
//
//*****************************************************************************
int
main(void)
{
    tContext sContext;
    tRectangle sRect;

    //
    // Set the clocking to run at 80 MHz from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Initialize the device pinout appropriately for this board.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKitronix320x240x16_SSD2119);

    //
    // Fill the top 24 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&sContext) - 1;
    sRect.sYMax = 23;
    GrContextForegroundSet(&sContext, ClrDarkBlue);
    GrRectFill(&sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&sContext, ClrWhite);
    GrRectDraw(&sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&sContext, g_pFontCm20);
    GrStringDrawCentered(&sContext, "safertos-demo", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 10, 0);

    //
    // Set the location and size of the system stack.
    //
    g_sSafeRTOSPortInit.pulSystemStackLocation =
        (unsigned portLONG *)(*(unsigned long *)0);
    g_sSafeRTOSPortInit.ulSystemStackSizeBytes = 128 * 4;

    //
    // Set the location of the vector table.
    //
    g_sSafeRTOSPortInit.pulVectorTableBase =
        (unsigned portLONG *)HWREG(NVIC_VTABLE);

    //
    // Initialize the SafeRTOS kernel.
    //
    vTaskInitializeScheduler((signed portCHAR *)g_pulIdleTaskStack,
                             sizeof(g_pulIdleTaskStack), 0,
                             &g_sSafeRTOSPortInit);

    //
    // Create the display task.
    //
    if(DisplayTaskInit() != 0)
    {
        GrContextForegroundSet(&sContext, ClrRed);
        GrStringDrawCentered(&sContext, "Failed to create display task!", -1,
                             GrContextDpyWidthGet(&sContext) / 2,
                             (((GrContextDpyHeightGet(&sContext) - 24) / 2) +
                              24), 0);
        while(1)
        {
        }
    }

    //
    // Create the spider task.
    //
    if(SpiderTaskInit() != 0)
    {
        GrContextForegroundSet(&sContext, ClrRed);
        GrStringDrawCentered(&sContext, "Failed to create spider task!", -1,
                             GrContextDpyWidthGet(&sContext) / 2,
                             (((GrContextDpyHeightGet(&sContext) - 24) / 2) +
                              24), 0);
        while(1)
        {
        }
    }

    //
    // Create the LED task.
    //
    if(LEDTaskInit() != 0)
    {
        GrContextForegroundSet(&sContext, ClrRed);
        GrStringDrawCentered(&sContext, "Failed to create LED task!", -1,
                             GrContextDpyWidthGet(&sContext) / 2,
                             (((GrContextDpyHeightGet(&sContext) - 24) / 2) +
                              24), 0);
        while(1)
        {
        }
    }

    //
    // Create the lwIP tasks.
    //
    if(lwIPTaskInit() != 0)
    {
        GrContextForegroundSet(&sContext, ClrRed);
        GrStringDrawCentered(&sContext, "Failed to create lwIP tasks!", -1,
                             GrContextDpyWidthGet(&sContext) / 2,
                             (((GrContextDpyHeightGet(&sContext) - 24) / 2) +
                              24), 0);
        while(1)
        {
        }
    }

    //
    // Start the scheduler.  This should not return.
    //
    xTaskStartScheduler(pdTRUE);

    //
    // In case the scheduler returns for some reason, print an error and loop
    // forever.
    //
    GrContextForegroundSet(&sContext, ClrRed);
    GrStringDrawCentered(&sContext, "Failed to start scheduler!", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         (((GrContextDpyHeightGet(&sContext) - 24) / 2) + 24),
                         0);
    while(1)
    {
    }
}
//*****************************************************************************
//
// Provides a scribble pad using the display on the Intelligent Display Module.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "scribble");

    //
    // Print the instructions across the top of the screen in white with a 20
    // point san-serif font.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrContextFontSet(&g_sContext, g_psFontCmss20);
    GrStringDrawCentered(&g_sContext, "Touch the screen to draw", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2,
                         ((GrContextDpyHeightGet(&g_sContext) - 32) / 2) + 14,
                         0);

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&g_sContext);

    //
    // Set the color index to zero.
    //
    g_ui32ColorIdx = 0;

    //
    // Initialize the message queue we use to pass messages from the touch
    // interrupt handler context to the main loop for processing.
    //
    RingBufInit(&g_sMsgQueue, (uint8_t *)g_psMsgQueueBuffer,
                (MSG_QUEUE_SIZE * sizeof(tScribbleMessage)));

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit(ui32SysClock);

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(TSHandler);

    //
    // Loop forever.  All the drawing is done in the touch screen event
    // handler.
    //
    while(1)
    {
        //
        // Process any new touchscreen messages.
        //
        ProcessTouchMessages();
    }
}
Example #13
0
/*
 * main.c
 */
int main(void) {
	float fTemperature, fHumidity;
	    int32_t i32IntegerPart;
	    int32_t i32FractionPart;


	g_ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
	                                             SYSCTL_OSC_MAIN |
	                                             SYSCTL_USE_PLL |
	                                             SYSCTL_CFG_VCO_480), 120000000);
	//confiugre the GPIO pins
	PinoutSet(false,false);

	ConfigureUART();

	//configure I2C pins
	SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C8);

	GPIOPinConfigure(GPIO_PA2_I2C8SCL);
	GPIOPinConfigure(GPIO_PA3_I2C8SDA);

	GPIOPinTypeI2C(GPIO_PORTA_BASE,GPIO_PIN_2);
	GPIOPinTypeI2C(GPIO_PORTA_BASE,GPIO_PIN_3);

	//enable interrupts
	IntMasterEnable();

	//initialize I2C
	I2CMInit(&g_sI2CInst,I2C8_BASE,INT_I2C8,0xff,0xff,g_ui32SysClock);
	IntPrioritySet(INT_I2C7,0xE0);

	//initialize the sensors
	SHT21Init(&g_sSHT21Inst, &g_sI2CInst, SHT21_I2C_ADDRESS,
			SHT21AppCallback,&g_sSHT21Inst);

	//delay for 20 ms
	SysCtlDelay(g_ui32SysClock / (50 * 3));

	while(1){
		  //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Write the command to start a humidity measurement.
		        //
		        SHT21Write(&g_sSHT21Inst, SHT21_CMD_MEAS_RH, g_sSHT21Inst.pui8Data, 0,
		                SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Wait 33 milliseconds before attempting to get the result. Datasheet
		        // claims this can take as long as 29 milliseconds.
		        //
		        SysCtlDelay(g_ui32SysClock / (30 * 3));

		        //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Get the raw data from the sensor over the I2C bus.
		        //
		        SHT21DataRead(&g_sSHT21Inst, SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Get a copy of the most recent raw data in floating point format.
		        //
		        SHT21DataHumidityGetFloat(&g_sSHT21Inst, &fHumidity);

		        //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Write the command to start a temperature measurement.
		        //
		        SHT21Write(&g_sSHT21Inst, SHT21_CMD_MEAS_T, g_sSHT21Inst.pui8Data, 0,
		                SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Wait 100 milliseconds before attempting to get the result. Datasheet
		        // claims this can take as long as 85 milliseconds.
		        //
		        SysCtlDelay(g_ui32SysClock / (10 * 3));

		        //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Read the conversion data from the sensor over I2C.
		        //
		        SHT21DataRead(&g_sSHT21Inst, SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Get the most recent temperature result as a float in celcius.
		        //
		        SHT21DataTemperatureGetFloat(&g_sSHT21Inst, &fTemperature);

		        //
		        // Convert the floats to an integer part and fraction part for easy
		        // print. Humidity is returned as 0.0 to 1.0 so multiply by 100 to get
		        // percent humidity.
		        //
		        fHumidity *= 100.0f;
		        i32IntegerPart = (int32_t) fHumidity;
		        i32FractionPart = (int32_t) (fHumidity * 1000.0f);
		        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
		        if(i32FractionPart < 0)
		        {
		            i32FractionPart *= -1;
		        }

		        //
		        // Print the humidity value using the integers we just created.
		        //
		        UARTprintf("Humidity %3d.%03d\t", i32IntegerPart, i32FractionPart);

		        //
		        // Perform the conversion from float to a printable set of integers.
		        //
		        i32IntegerPart = (int32_t) fTemperature;
		        i32FractionPart = (int32_t) (fTemperature * 1000.0f);
		        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
		        if(i32FractionPart < 0)
		        {
		            i32FractionPart *= -1;
		        }

		        //
		        // Print the temperature as integer and fraction parts.
		        //
		        UARTprintf("Temperature %3d.%03d\n", i32IntegerPart, i32FractionPart);

		        //
		        // Delay for one second. This is to keep sensor duty cycle
		        // to about 10% as suggested in the datasheet, section 2.4.
		        // This minimizes self heating effects and keeps reading more accurate.
		        //
		        SysCtlDelay(g_ui32SysClock / 3);
	}


	
	return 0;
}
//*****************************************************************************
//
// This example demonstrates how to send a string of data to the UART.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32SysClock;
    tContext sContext;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "uart-echo");

    //
    // Display UART configuration on the display.
    //
    GrStringDraw(&sContext, "Port:",       -1,  70, 70, 0);
    GrStringDraw(&sContext, "Baud:",       -1,  70, 95, 0);
    GrStringDraw(&sContext, "Data:",       -1,  70, 120, 0);
    GrStringDraw(&sContext, "Parity:",     -1,  70, 145, 0);
    GrStringDraw(&sContext, "Stop:",       -1,  70, 170, 0);
    GrStringDraw(&sContext, "Uart 0",      -1, 150, 70, 0);
    GrStringDraw(&sContext, "115,200 bps", -1, 150, 95, 0);
    GrStringDraw(&sContext, "8 Bit",       -1, 150, 120, 0);
    GrStringDraw(&sContext, "None",        -1, 150, 145, 0);
    GrStringDraw(&sContext, "1 Bit",       -1, 150, 170, 0);

    //
    // Enable the (non-GPIO) peripherals used by this example.  PinoutSet()
    // already enabled GPIO Port A.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Enable processor interrupts.
    //
    IntMasterEnable();

    //
    // Configure the UART for 115,200, 8-N-1 operation.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, ui32SysClock, 115200,
                            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                             UART_CONFIG_PAR_NONE));

    //
    // Enable the UART interrupt.
    //
    ROM_IntEnable(INT_UART0);
    ROM_UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

    //
    // Prompt for text to be entered.
    //
    UARTSend((uint8_t *)"Enter text: ", 12);

    //
    // Loop forever echoing data through the UART.
    //
    while(1)
    {
    }
}
Example #15
0
int main()
{

    //
    // Make sure the main oscillator is enabled because this is required by
    // the PHY.  The system must have a 25MHz crystal attached to the OSC
    // pins. The SYSCTL_MOSC_HIGHFREQ parameter is used when the crystal
    // frequency is 10MHz or higher.
    //
    SysCtlMOSCConfigSet(SYSCTL_MOSC_HIGHFREQ);

    //
    // Run from the PLL at 120 MHz.
    //
    g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                             SYSCTL_OSC_MAIN |
                                             SYSCTL_USE_PLL |
                                             SYSCTL_CFG_VCO_480), 120000000);
    // Configure the device pins.
    //
    PinoutSet(true, false);

    //
    // Configure UART.
    //
    //UARTStdioConfig(0, 115200, g_ui32SysClock);

    //
    // Clear the terminal and print banner.
    //
    //UARTprintf("\033[2J\033[H");
    //UARTprintf("Ethernet lwIP example\n\n");

    //
    // Configure Port N1 for as an output for the animation LED.
    //
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_1);
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0);
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);

    //
    // Initialize LED to OFF (0)
    //
    MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1);
    MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, ~GPIO_PIN_0);
    MAP_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, ~GPIO_PIN_1);

    //
    // Configure SysTick for a periodic interrupt.
    //
    MAP_SysTickPeriodSet(g_ui32SysClock / SYSTICKHZ);
    MAP_SysTickEnable();
    MAP_SysTickIntEnable();

    // Init Onion Client
    client = new OnionClient("o8Ik6DuC","NfyGRECh3WSZw9xn");
    client->registerFunction("/on",ledOn,0,0);
    client->registerFunction("/off",ledOff,0,0);
    char *params[1] = {"data"};
    client->registerFunction("/pubTest",pubTest,params,1);
    client->init(g_ui32SysClock);
    //
    // Setup Onion Client
    //
    //httpd_init();
    //client->begin();
    //
    // Set the interrupt priorities.  We set the SysTick interrupt to a higher
    // priority than the Ethernet interrupt to ensure that the file system
    // tick is processed if SysTick occurs while the Ethernet handler is being
    // processed.  This is very likely since all the TCP/IP and HTTP work is
    // done in the context of the Ethernet interrupt.
    //
    MAP_IntPrioritySet(INT_EMAC0, ETHERNET_INT_PRIORITY);
    MAP_IntPrioritySet(FAULT_SYSTICK, SYSTICK_INT_PRIORITY);

    //
    // Loop forever.  All the work is done in interrupt handlers.
    //
    uint32_t last_time = g_millis;
    bool led = false;
    while(1)
    {
      if ((g_millis - last_time) > 500) {
        if (led) {
          MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, ~GPIO_PIN_0);
          led = false;
        } else {
          MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, GPIO_PIN_0);
          led = true;
        }
        last_time = g_millis;
      }
      client->loop();
    }
  return 0;
}
//*****************************************************************************
//
// Run the AES encryption/decryption example
//
//*****************************************************************************
int
main(void)
{
    unsigned char ucBlockBuf[17];
    const unsigned *puKey;
    unsigned char ucTempIV[16];
    tContext sContext;
    tRectangle sRect;
    long lCenterX;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the pinout appropriately for this board.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the graphics context and find the middle X coordinate.
    //
    GrContextInit(&sContext, &g_sKitronix320x240x16_SSD2119);
    lCenterX = GrContextDpyWidthGet(&sContext) / 2;

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&sContext) - 1;
    sRect.sYMax = 23;
    GrContextForegroundSet(&sContext, ClrDarkBlue);
    GrRectFill(&sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&sContext, ClrWhite);
    GrRectDraw(&sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&sContext, g_pFontCm20);
    GrStringDrawCentered(&sContext, "aes-expanded-key", -1, lCenterX, 8, 0);

    //
    // Print the plain text title
    //
    GrContextFontSet(&sContext, g_pFontCmss22b);
    GrStringDrawCentered(&sContext, "Plain Text:", -1, lCenterX, 60, 0);
    GrStringDrawCentered(&sContext, g_cPlainText, -1, lCenterX, 85, 0);

    //
    // Get the expanded key to use for encryption
    //
    puKey = AESExpandedEncryptKeyData();

    //
    // Generate the initialization vector needed for CBC mode.
    // A temporary copy is made that will be used with the crypt
    // function because the crypt function will modify the IV that is passed.
    //
    AESGenerateIV(g_ucIV, 1);
    memcpy(ucTempIV, g_ucIV, 16);

    //
    // Encrypt the plaintext message using CBC mode
    //
    aes_crypt_cbc(puKey, AES_ENCRYPT, 16, ucTempIV,
                  (unsigned char *)g_cPlainText, ucBlockBuf);

    //
    // Print the encrypted block to the display.  Note that it will
    // appear as nonsense data.  The block needs to be null terminated
    // so that the StringDraw function will work correctly.
    //
    ucBlockBuf[16] = 0;
    GrStringDrawCentered(&sContext, "Encrypted:", -1, lCenterX, 120, 0);
    GrStringDrawCentered(&sContext, (char *)ucBlockBuf, -1, lCenterX, 145, 0);

    //
    // Get the expanded key to use for decryption
    //
    puKey = AESExpandedDecryptKeyData();

    //
    // Decrypt the message using CBC mode
    //
    memcpy(ucTempIV, g_ucIV, 16);
    aes_crypt_cbc(puKey, AES_DECRYPT, 16, ucTempIV, ucBlockBuf, ucBlockBuf);

    //
    // Print the decrypted block to the display.  It should be the same text
    // as the original message.
    //
    GrStringDrawCentered(&sContext, "Decrypted:", -1, lCenterX, 180, 0);
    GrStringDrawCentered(&sContext, (char *)ucBlockBuf, -1, lCenterX, 205, 0);

    //
    // Finished.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// A simple demonstration of the features of the TivaWare Graphics Library.
//
//*****************************************************************************
int
main(void)
{
    tContext sContext;
    uint32_t ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Set graphics library text rendering defaults.
    //
    GrLibInit(&GRLIB_INIT_STRUCT);

    //
    // Set the string table and the default language.
    //
    GrStringTableSet(STRING_TABLE);

    //
    // Set the default language.
    //
    ChangeLanguage(GrLangEnUS);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "lang-demo");

    //
    // Load the static strings from the string table.  These strings are
    // independent of the language in use but we store them in the string
    // table nonetheless since (a) we may be using codepage remapping in
    // which case it would be difficult to hardcode them into the app source
    // anyway (ASCII or ISO8859-1 text would not render properly with the
    // remapped custom font) and (b) even if we're not using codepage remapping,
    // we may have generated a custom font from the string table output and
    // we want to make sure that all glyphs required by the application are
    // present in that font.  If we hardcode some text in the application
    // source and don't put it in the string table, we run the risk of having
    // characters missing in the font.
    //
    GrStringGet(STR_ENGLISH, g_pcEnglish, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_DEUTSCH, g_pcDeutsch, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_ESPANOL, g_pcEspanol, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_ITALIANO, g_pcItaliano, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_CHINESE, g_pcChinese, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_KOREAN, g_pcKorean, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_JAPANESE, g_pcJapanese, MAX_LANGUAGE_NAME_LEN);
    GrStringGet(STR_PLUS, g_pcPlus, 2);
    GrStringGet(STR_MINUS, g_pcMinus, 2);

    //
    // Initialize the touch screen driver and have it route its messages to the
    // widget tree.
    //
    TouchScreenInit(ui32SysClock);
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the title block and the previous and next buttons to the widget
    // tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sPrevious);
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sTitle);
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sNext);

    //
    // Add the first panel to the widget tree.
    //
    g_ui32Panel = 0;
    WidgetAdd(WIDGET_ROOT, (tWidget *)g_psPanels);

    //
    // Set the string for the title.
    //
    CanvasTextSet(&g_sTitle, g_pcTitle);

    //
    // Issue the initial paint request to the widgets.
    //
    WidgetPaint(WIDGET_ROOT);

    //
    // Loop forever, processing widget messages.
    //
    while(1)
    {
        //
        // Process any messages in the widget message queue.
        //
        WidgetMessageQueueProcess();
    }

}
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the device pinout appropriately for this board.
    //
    PinoutSet();

#ifdef DEBUG
    //
    // Open UART0 for debug output.
    //
    UARTStdioInit(0);
#endif

    //
    // Set the system tick to fire 100 times per second.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKitronix320x240x16_SSD2119);

    //
    // Fill the top 24 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 23;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontCm20);
    GrStringDrawCentered(&g_sContext, "boot-demo-usb", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 10, 0);

    //
    // Draw the buttons in their initial (unpressed)state.
    //
    UpdateDisplay(g_ucButtons, true);

    //
    // Initialize each of the device instances that will form our composite
    // USB device.
    //
    g_sCompDevice.psDevices[0].pvInstance =
        USBDHIDMouseCompositeInit(0, (tUSBDHIDMouseDevice *)&g_sMouseDevice);
    g_sCompDevice.psDevices[1].pvInstance =
        USBDDFUCompositeInit(0, (tUSBDDFUDevice *)&g_sDFUDevice);

    //
    // Pass the USB library our device information, initialize the USB
    // controller and connect the device to the bus.
    //
    USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_BUFFER_SIZE,
                      g_pcDescriptorBuffer);

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(MouseTouchHandler);

    //
    // Drop into the main loop.
    //
    while(!g_bUpdateSignalled)
    {
        //
        // Tell the user what we are doing.
        //
        GrContextFontSet(&g_sContext, g_pFontCmss22b);
        GrContextForegroundSet(&g_sContext, ClrWhite);
        GrStringDrawCentered(&g_sContext, "   Waiting for host...   ", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 40, true);

        //
        // Wait for USB configuration to complete.
        //
        while(!g_bConnected)
        {
        }

        //
        // Update the status.
        //
        GrStringDrawCentered(&g_sContext, "   Host connected...   ", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 40, true);

        //
        // Now keep processing the mouse as long as the host is connected and
        // we've not been told to prepare for a firmware upgrade.
        //
        while(g_bConnected && !g_bUpdateSignalled)
        {
            //
            // If it is time to check the touchscreen state then do so.
            //
            if(g_ulCommands & TOUCH_TICK_EVENT)
            {
                g_ulCommands &= ~TOUCH_TICK_EVENT;
                TouchHandler();
            }
        }

        //
        // If we drop out of the previous loop, either the host has
        // disconnected or a firmware upgrade has been signalled.
        //
    }

    //
    // Tell the user what's going on.
    //
    GrContextFontSet(&g_sContext, g_pFontCmss22b);
    GrStringDrawCentered(&g_sContext, " Switching to DFU mode ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 40, true);

    //
    // If we get here, a firmware upgrade has been signalled so we need to get
    // back into the boot loader to allow this to happen.  Call the USB DFU
    // device class to do this for us.  Note that this function never returns.
    //
    USBDDFUUpdateBegin();
}
//*****************************************************************************
//
// This example encrypts blocks of plaintext using TDES in CBC mode.  It
// does the encryption first without uDMA and then with uDMA.  The results
// are checked after each operation.
//
//*****************************************************************************
int
main(void)
{
    uint32_t pui32CipherText[16], ui32Errors, ui32Idx, ui32SysClock;
    
    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet(false, false);

    //
    // Initialize local variables.
    //
    ui32Errors = 0;
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        pui32CipherText[ui32Idx] = 0;
    }

    //
    // Enable stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPUStackingEnable();

    //
    // Enable DES interrupts.
    //
    ROM_IntEnable(INT_DES0);

    //
    // Enable debug output on UART0 and print a welcome message.
    //
    ConfigureUART();
    UARTprintf("Starting TDES CBC encryption demo.\n");

    //
    // Enable the uDMA module.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

    //
    // Setup the control table.
    //
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Initialize the CCM and DES modules.
    //
    if(!DESInit())
    {
        UARTprintf("Initialization of the DES module failed.\n");
        ui32Errors |= 0x00000001;
    }

    //
    // Perform the encryption without uDMA.
    //
    UARTprintf("Performing encryption without uDMA.\n");
    TDESCBCEncrypt(g_pui32TDESPlainText, pui32CipherText, g_pui32TDESKey,
                   64, g_pui32TDESIV, false);

    //
    // Check the result.
    //
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        if(pui32CipherText[ui32Idx] != g_pui32TDESCipherText[ui32Idx])
        {
            UARTprintf("Ciphertext mismatch on word %d. Exp: 0x%x, Act: "
                       "0x%x\n", ui32Idx, g_pui32TDESCipherText[ui32Idx],
                       pui32CipherText[ui32Idx]);
            ui32Errors |= (ui32Idx << 16) | 0x00000002;
        }
    }

    //
    // Clear the array containing the ciphertext.
    //
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        pui32CipherText[ui32Idx] = 0;
    }

    //
    // Perform the encryption with uDMA.
    //
    UARTprintf("Performing encryption with uDMA.\n");
    TDESCBCEncrypt(g_pui32TDESPlainText, pui32CipherText, g_pui32TDESKey,
                   64, g_pui32TDESIV, true);

    //
    // Check the result.
    //
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        if(pui32CipherText[ui32Idx] != g_pui32TDESCipherText[ui32Idx])
        {
            UARTprintf("Ciphertext mismatch on word %d. Exp: 0x%x, Act: "
                       "0x%x\n", ui32Idx, g_pui32TDESCipherText[ui32Idx],
                       pui32CipherText[ui32Idx]);
            ui32Errors |= (ui32Idx << 16) | 0x00000004;
        }
    }

    //
    // Finished.
    //
    if(ui32Errors)
    {
        UARTprintf("Demo failed with error code 0x%x.\n", ui32Errors);
		LEDWrite(CLP_D3 | CLP_D4, CLP_D4);
    }
    else
    {
        UARTprintf("Demo completed successfully.\n");
		LEDWrite(CLP_D3 | CLP_D4, CLP_D3);
    }

    while(1)
    {
    }
}
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;
    tContext sContext;
    uint32_t ui32SysClock;
    char pcBuf[15];

    //
    // Setup the system clock to run at 40 Mhz from PLL with crystal reference
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 40000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "bmp180");

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // Enable UART0
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, ui32SysClock);

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // The I2C3 peripheral must be enabled before use.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);

    //
    // Configure the pin muxing for I2C3 functions on port G4 and G5.
    // This step is not necessary if your part does not support pin muxing.
    //
    MAP_GPIOPinConfigure(GPIO_PG4_I2C3SCL);
    MAP_GPIOPinConfigure(GPIO_PG5_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    MAP_GPIOPinTypeI2CSCL(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_GPIOPinTypeI2C(GPIO_PORTG_BASE, GPIO_PIN_5);

    //
    // Enable interrupts to the processor.
    //
    MAP_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ui32SysClock);

    //
    // Initialize the BMP180
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 hz.
    //
    MAP_SysTickPeriodSet(ui32SysClock / (10 * 3));
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();

    //
    // Configure PQ4 to control the blue LED.
    //
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTQ_BASE, GPIO_PIN_4);

    //
    // Print temperature, pressure and altitude labels once on the LCD.
    //
    GrStringDraw(&sContext, "Temperature", 11,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 96),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
    GrStringDraw(&sContext, "Pressure", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 63),
                 (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
    GrStringDraw(&sContext, "Altitude", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 59),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete.  When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%03d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart,
                                               i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, -1,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        MAP_SysCtlDelay(ui32SysClock / (10 * 3));
    }
}
Example #21
0
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    uint8_t ui8ButtonsChanged, ui8Buttons;
    uint32_t ui32SysClock;

    //
    // Set the clocking to run from the PLL at 120MHz
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                                           SYSCTL_XTAL_25MHZ |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Configure the buttons driver.
    //
    ButtonsInit(ALL_BUTTONS);

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "usb-dev-gamepad");

    //
    // Default status is disconnected.
    //
    DisplayStatus(&g_sContext, "Disconnected");

    //
    // Not configured initially.
    //
    g_iGamepadState = eStateNotConfigured;

    //
    // Initialize the USB stack for device mode.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Pass the device information to the USB library and place the device
    // on the bus.
    //
    USBDHIDGamepadInit(0, &g_sGamepadDevice);

    //
    // Zero out the initial report.
    //
    g_sReport.ui8Buttons = 0;
    g_sReport.i8XPos = 0;
    g_sReport.i8YPos = 0;

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit(ui32SysClock);

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(TSHandler);

    //
    // The main loop starts here.  We begin by waiting for a host connection
    // then drop into the main gamepad handling section.  If the host
    // disconnects, we return to the top and wait for a new connection.
    //
    while(1)
    {
        //
        // Wait here until USB device is connected to a host.
        //
        if(g_iGamepadState == eStateIdle)
        {
            //
            // See if the buttons updated.
            //
            ButtonsPoll(&ui8ButtonsChanged, &ui8Buttons);

            g_sReport.ui8Buttons = 0;

            //
            // Set button 1 if up button pressed.
            //
            if(ui8Buttons & UP_BUTTON)
            {
                g_sReport.ui8Buttons |= 0x01;
            }

            //
            // Set button 2 if down button pressed.
            //
            if(ui8Buttons & DOWN_BUTTON)
            {
                g_sReport.ui8Buttons |= 0x02;
            }

            //
            // Set button 3 if select button pressed.
            //
            if(ui8Buttons & SELECT_BUTTON)
            {
                g_sReport.ui8Buttons |= 0x04;
            }

            if(ui8ButtonsChanged)
            {
                g_bUpdate = true;
            }

            //
            // Send the report if there was an update.
            //
            if(g_bUpdate)
            {
                g_bUpdate = false;

                USBDHIDGamepadSendReport(&g_sGamepadDevice, &g_sReport,
                                         sizeof(g_sReport));

                //
                // Now sending data but protect this from an interrupt since
                // it can change in interrupt context as well.
                //
                IntMasterDisable();
                g_iGamepadState = eStateSending;
                IntMasterEnable();
            }
        }
    }
}
Example #22
0
//*****************************************************************************
//
// This example generates hashes from a random block of data and empty block.
//
//*****************************************************************************
int
main(void)
{
    uint32_t pui32HashResult[5], ui32Errors, ui32Vector, ui32Idx, ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet(false, false);

    //
    // Initialize local variables.
    //
    ui32Errors = 0;

    //
    // Enable SHA interrupts.
    //
    ROM_IntEnable(INT_SHA0);

    //
    // Enable debug output on UART0 and print a welcome message.
    //
    ConfigureUART();
    UARTprintf("Starting SHA1 hash encryption demo.\n");

    //
    // Enable the uDMA module.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

    //
    // Setup the control table.
    //
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Initialize the CCM and SHAMD5 modules.
    //
    if(!SHAMD5Init())
    {
        UARTprintf("Initialization of the SHA module failed.\n");
        ui32Errors |= 0x00000001;
    }

    //
    // Run tests without uDMA.
    //
    for(ui32Vector = 0; ui32Vector < 3; ui32Vector++)
    {
        UARTprintf("Running test #%d without uDMA\n", ui32Vector);

        //
        // Generate the hash.
        //
        SHA1HashGenerate(g_pui32RandomData,
                         g_psSHA1TestVectors[ui32Vector].ui32DataLength,
                         pui32HashResult, false);

        //
        // Check the result.
        //
        for(ui32Idx = 0; ui32Idx < 5; ui32Idx++)
        {
            if(pui32HashResult[ui32Idx] !=
               g_psSHA1TestVectors[ui32Vector].pui32HashResult[ui32Idx])
            {
                UARTprintf("Hash result mismatch - Exp: 0x%x, Act: 0x%x\n",
                           g_psSHA1TestVectors[ui32Vector].
                           pui32HashResult[ui32Idx], pui32HashResult[0]);
                ui32Errors |= ((ui32Idx << 16) | 0x2);
            }
        }
    }

    //
    // Run tests with uDMA.
    //
    for(ui32Vector = 0; ui32Vector < 3; ui32Vector++)
    {
        UARTprintf("Running test #%d with uDMA\n", ui32Vector);

        //
        // Generate the hash.
        //
        SHA1HashGenerate(g_pui32RandomData,
                         g_psSHA1TestVectors[ui32Vector].ui32DataLength,
                         pui32HashResult, true);

        //
        // Check the result.
        //
        for(ui32Idx = 0; ui32Idx < 5; ui32Idx++)
        {
            if(pui32HashResult[ui32Idx] !=
               g_psSHA1TestVectors[ui32Vector].pui32HashResult[ui32Idx])
            {
                UARTprintf("Hash result mismatch - Exp: 0x%x, Act: 0x%x\n",
                           g_psSHA1TestVectors[ui32Vector].
                           pui32HashResult[ui32Idx], pui32HashResult[0]);
                ui32Errors |= ((ui32Idx << 16) | 0x3);
            }
        }
    }

    //
    // Finished.
    //
    if(ui32Errors)
    {
        UARTprintf("Demo failed with error code 0x%x.\n", ui32Errors);
		LEDWrite(CLP_D3 | CLP_D4, CLP_D4);
    }
    else
    {
        UARTprintf("Demo completed successfully.\n");
		LEDWrite(CLP_D3 | CLP_D4, CLP_D3);
    }

    while(1)
    {
    }
}
Example #23
0
//*****************************************************************************
//
// This example decrypts a block of payload using AES128 in CCM mode.  It
// does the decryption first without uDMA and then with uDMA.  The results
// are checked after each operation.
//
//*****************************************************************************
int
main(void)
{
    uint32_t pui32Payload[16], pui32Tag[4], ui32Errors, ui32Idx;
    uint32_t ui32PayloadLength, ui32TagLength;
    uint32_t ui32NonceLength, ui32AuthDataLength;
    uint32_t *pui32Nonce, *pui32AuthData, ui32SysClock;
    uint32_t *pui32Key, *pui32ExpPayload, *pui32CipherText;
    uint8_t ui8Vector;
    uint8_t *pui8ExpTag, *pui8Tag;
    tContext sContext;
    
    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_PLL |
                                       SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "aes128-ccm-decrypt");
    
    //
    // Show some instructions on the display
    //
    GrContextFontSet(&sContext, g_psFontCm20);
    GrContextForegroundSet(&sContext, ClrWhite);
    GrStringDrawCentered(&sContext, "Connect a terminal to", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 60, false);
    GrStringDrawCentered(&sContext, "UART0 (115200,N,8,1)", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 80, false);
    GrStringDrawCentered(&sContext, "for more information.", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 100, false);

    //
    // Initialize local variables.
    //
    ui32Errors = 0;
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        pui32Payload[ui32Idx] = 0;
    }
    for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
    {
        pui32Tag[ui32Idx] = 0;
    }
    pui8Tag = (uint8_t *)pui32Tag;

    //
    // Enable stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPUStackingEnable();

    //
    // Configure the system clock to run off the internal 16MHz oscillator.
    //
    ROM_SysCtlClockFreqSet(SYSCTL_OSC_INT | SYSCTL_USE_OSC, 16000000);

    //
    // Enable AES interrupts.
    //
    ROM_IntEnable(INT_AES0);

    //
    // Enable debug output on UART0 and print a welcome message.
    //
    ConfigureUART();
    UARTprintf("Starting AES128 CCM decryption demo.\n");
    GrStringDrawCentered(&sContext, "Starting demo...", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 140, false);

    //
    // Enable the uDMA module.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

    //
    // Setup the control table.
    //
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Initialize the CCM and AES modules.
    //
    if(!AESInit())
    {
        UARTprintf("Initialization of the AES module failed.\n");
        ui32Errors |= 0x00000001;
    }

    //
    // Loop through all the given vectors.
    //
    for(ui8Vector = 0;
        (ui8Vector <
         (sizeof(g_psAESCCMTestVectors) / sizeof(g_psAESCCMTestVectors[0]))) &&
        (ui32Errors == 0);
        ui8Vector++)
    {
        UARTprintf("Starting vector #%d\n", ui8Vector);

        //
        // Get the current vector's data members.
        //
        pui32Key = g_psAESCCMTestVectors[ui8Vector].pui32Key;
        pui32ExpPayload = g_psAESCCMTestVectors[ui8Vector].pui32Payload;
        ui32PayloadLength = 
            g_psAESCCMTestVectors[ui8Vector].ui32PayloadLength;
        pui32AuthData = g_psAESCCMTestVectors[ui8Vector].pui32AuthData;
        ui32AuthDataLength = 
            g_psAESCCMTestVectors[ui8Vector].ui32AuthDataLength;
        pui32CipherText = 
            g_psAESCCMTestVectors[ui8Vector].pui32CipherText;
        pui8ExpTag = (uint8_t *)g_psAESCCMTestVectors[ui8Vector].pui32Tag;
        ui32TagLength = g_psAESCCMTestVectors[ui8Vector].ui32TagLength;
        pui32Nonce = g_psAESCCMTestVectors[ui8Vector].pui32Nonce;
        ui32NonceLength =
            g_psAESCCMTestVectors[ui8Vector].ui32NonceLength;

        //
        // Perform the decryption without uDMA.
        //
        UARTprintf("Performing decryption without uDMA.\n");
        AES128CCMDecrypt(pui32Key, pui32CipherText, pui32Payload, 
                         ui32PayloadLength, pui32Nonce, ui32NonceLength,
                         pui32AuthData, ui32AuthDataLength, pui32Tag,
                         ui32TagLength, false);
            
        //
        // Check the result.
        //
        for(ui32Idx = 0; ui32Idx < (ui32PayloadLength / 4); ui32Idx++)
        {
            if(pui32Payload[ui32Idx] != pui32ExpPayload[ui32Idx])
            {
                UARTprintf("Payload mismatch on word %d. Exp: 0x%x, Act: "
                           "0x%x\n", ui32Idx, pui32ExpPayload[ui32Idx],
                           pui32Payload[ui32Idx]);
                ui32Errors |= (ui32Idx << 16) | 0x00000002;
            }
        }
        for(ui32Idx = 0; ui32Idx < ui32TagLength; ui32Idx++)
        {
            if(pui8Tag[ui32Idx] != pui8ExpTag[ui32Idx])
            {
                UARTprintf("Tag mismatch on byte %d. Exp: 0x%x, Act: "
                           "0x%x\n", ui32Idx, pui8ExpTag[ui32Idx],
                           pui8Tag[ui32Idx]);
                ui32Errors |= (ui32Idx << 16) | 0x00000004;
            }
        }

        //
        // Clear the array containing the ciphertext.
        //
        for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
        {
            pui32Payload[ui32Idx] = 0;
        }
        for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
        {
            pui32Tag[ui32Idx] = 0;
        }

        //
        // Perform the decryption with uDMA.
        //
        UARTprintf("Performing decryption with uDMA.\n");
        AES128CCMDecrypt(pui32Key, pui32CipherText, pui32Payload, 
                         ui32PayloadLength, pui32Nonce, ui32NonceLength,
                         pui32AuthData, ui32AuthDataLength, pui32Tag,
                         ui32TagLength, true);
        
        //
        // Check the result.
        //
        for(ui32Idx = 0; ui32Idx < (ui32PayloadLength / 4); ui32Idx++)
        {
            if(pui32Payload[ui32Idx] != pui32ExpPayload[ui32Idx])
            {
                UARTprintf("Payload mismatch on word %d. Exp: 0x%x, Act: "
                           "0x%x\n", ui32Idx, pui32ExpPayload[ui32Idx],
                           pui32Payload[ui32Idx]);
                ui32Errors |= (ui32Idx << 16) | 0x00000002;
            }
        }
        for(ui32Idx = 0; ui32Idx < ui32TagLength; ui32Idx++)
        {
            if(pui8Tag[ui32Idx] != pui8ExpTag[ui32Idx])
            {
                UARTprintf("Tag mismatch on byte %d. Exp: 0x%x, Act: "
                           "0x%x\n", ui32Idx, pui8ExpTag[ui32Idx],
                           pui8Tag[ui32Idx]);
                ui32Errors |= (ui32Idx << 16) | 0x00000004;
            }
        }
        
        //
        // Clear the array containing the ciphertext.
        //
        for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
        {
            pui32Payload[ui32Idx] = 0;
        }
        for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
        {
            pui32Tag[ui32Idx] = 0;
        }
    }

    //
    // Finished.
    //
    if(ui32Errors)
    {
        UARTprintf("Demo failed with error code 0x%x.\n", ui32Errors);
        GrStringDrawCentered(&sContext, "Demo failed.", -1,
                             GrContextDpyWidthGet(&sContext) / 2, 180, false);
    }
    else
    {
        UARTprintf("Demo completed successfully.\n");
        GrStringDrawCentered(&sContext, "Demo passed.", -1,
                             GrContextDpyWidthGet(&sContext) / 2, 180, false);
    }

    while(1)
    {
    }
}
//*****************************************************************************
//
// This example decrypts blocks ciphertext using AES128 and AES256 in GCM
// mode.  It does the decryption first without uDMA and then with uDMA.
// The results are checked after each operation.
//
//*****************************************************************************
int
main(void)
{
    uint32_t pui32PlainText[64], pui32Tag[4], pui32Y0[4], ui32Errors, ui32Idx;
    uint32_t *pui32Key, ui32IVLength, *pui32IV, ui32DataLength;
    uint32_t *pui32ExpPlainText, ui32AuthDataLength, *pui32AuthData;
    uint32_t *pui32CipherText, *pui32ExpTag;
    uint32_t ui32KeySize;
    uint32_t ui32SysClock;
    uint8_t ui8Vector;
    tContext sContext;
    
    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "aes-gcm-decrypt");
    
    //
    // Show some instructions on the display
    //
    GrContextFontSet(&sContext, g_psFontCm20);
    GrContextForegroundSet(&sContext, ClrWhite);
    GrStringDrawCentered(&sContext, "Connect a terminal to", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 60, false);
    GrStringDrawCentered(&sContext, "UART0 (115200,N,8,1)", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 80, false);
    GrStringDrawCentered(&sContext, "for more information.", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 100, false);

    //
    // Initialize local variables.
    //
    ui32Errors = 0;
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        pui32PlainText[ui32Idx] = 0;
    }
    for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
    {
        pui32Tag[ui32Idx] = 0;
    }

    //
    // Enable stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPUStackingEnable();

    //
    // Enable AES interrupts.
    //
    ROM_IntEnable(INT_AES0);

    //
    // Enable debug output on UART0 and print a welcome message.
    //
    ConfigureUART();
    UARTprintf("Starting AES GCM decryption demo.\n");
    GrStringDrawCentered(&sContext, "Starting demo...", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 140, false);

    //
    // Enable the uDMA module.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

    //
    // Setup the control table.
    //
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Initialize the CCM and AES modules.
    //
    if(!AESInit())
    {
        UARTprintf("Initialization of the AES module failed.\n");
        ui32Errors |= 0x00000001;
    }

    //
    // Loop through all the given vectors.
    //
    for(ui8Vector = 0;
        (ui8Vector <
         (sizeof(g_psAESGCMTestVectors) / sizeof(g_psAESGCMTestVectors[0]))) &&
        (ui32Errors == 0);
        ui8Vector++)
    {
        UARTprintf("Starting vector #%d\n", ui8Vector);

        //
        // Get the current vector's data members.
        //
        ui32KeySize = g_psAESGCMTestVectors[ui8Vector].ui32KeySize;
        pui32Key = g_psAESGCMTestVectors[ui8Vector].pui32Key;
        ui32IVLength = g_psAESGCMTestVectors[ui8Vector].ui32IVLength;
        pui32IV = g_psAESGCMTestVectors[ui8Vector].pui32IV;
        ui32DataLength = g_psAESGCMTestVectors[ui8Vector].ui32DataLength;
        pui32ExpPlainText = g_psAESGCMTestVectors[ui8Vector].pui32PlainText;
        ui32AuthDataLength =
            g_psAESGCMTestVectors[ui8Vector].ui32AuthDataLength;
        pui32AuthData = g_psAESGCMTestVectors[ui8Vector].pui32AuthData;
        pui32CipherText = g_psAESGCMTestVectors[ui8Vector].pui32CipherText;
        pui32ExpTag = g_psAESGCMTestVectors[ui8Vector].pui32Tag;

        //
        // If both the data lengths are zero, then it's a special case.
        //
        if((ui32DataLength == 0) && (ui32AuthDataLength == 0))
        {
            UARTprintf("Performing decryption without uDMA.\n");

            //
            // Figure out the value of Y0 depending on the IV length.
            //
            AESGCMY0Get(ui32KeySize, pui32IV, ui32IVLength, pui32Key, pui32Y0);

            //
            // Perform the basic encryption.
            //
            AESECBEncrypt(ui32KeySize, pui32Y0, pui32Tag, pui32Key, 16);
        }
        else
        {
            //
            // Figure out the value of Y0 depending on the IV length.
            //
            AESGCMY0Get(ui32KeySize, pui32IV, ui32IVLength, pui32Key, pui32Y0);

            //
            // Perform the decryption without uDMA.
            //
            UARTprintf("Performing decryption without uDMA.\n");
            AESGCMDecrypt(ui32KeySize, pui32CipherText, pui32PlainText,
                          ui32DataLength, pui32Key, pui32Y0, pui32AuthData,
                          ui32AuthDataLength, pui32Tag, false);
        }

        //
        // Check the results.
        //
        for(ui32Idx = 0; ui32Idx < (ui32DataLength / 4); ui32Idx++)
        {
            if(pui32ExpPlainText[ui32Idx] != pui32PlainText[ui32Idx])
            {
                UARTprintf("Plaintext mismatch on word %d. Exp: 0x%x, Act: "
                           "0x%x\n", ui32Idx, pui32ExpPlainText[ui32Idx],
                           pui32PlainText[ui32Idx]);
                ui32Errors |= (ui32Idx << 16) | 0x00000002;
            }
        }
        for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
        {
            if(pui32ExpTag[ui32Idx] != pui32Tag[ui32Idx])
            {
                UARTprintf("Tag mismatch on word %d. Exp: 0x%x, Act: 0x%x\n",
                           ui32Idx, pui32ExpTag[ui32Idx], pui32Tag[ui32Idx]);
                ui32Errors |= (ui32Idx << 16) | 0x00000003;
            }
        }

        //
        // Clear the arrays containing the ciphertext and tag to ensure things
        // are working correctly.
        //
        for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
        {
            pui32PlainText[ui32Idx] = 0;
        }
        for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
        {
            pui32Tag[ui32Idx] = 0;
        }

        //
        // Only use DMA with the vectors that have data.
        //
        if((ui32DataLength != 0) || (ui32AuthDataLength != 0))
        {
            //
            // Perform the decryption with uDMA.
            //
            UARTprintf("Performing decryption with uDMA.\n");
            AESGCMDecrypt(ui32KeySize, pui32CipherText, pui32PlainText,
                          ui32DataLength, pui32Key, pui32Y0, pui32AuthData,
                          ui32AuthDataLength, pui32Tag, true);

            //
            // Check the result.
            //
            for(ui32Idx = 0; ui32Idx < (ui32DataLength / 4); ui32Idx++)
            {
                if(pui32ExpPlainText[ui32Idx] != pui32PlainText[ui32Idx])
                {
                    UARTprintf("Plaintext mismatch on word %d. Exp: 0x%x, "
                               "Act: 0x%x\n", ui32Idx,
                               pui32ExpPlainText[ui32Idx],
                               pui32PlainText[ui32Idx]);
                    ui32Errors |= (ui32Idx << 16) | 0x00000002;
                }
            }
            for(ui32Idx = 0; ui32Idx < 4; ui32Idx++)
            {
                if(pui32ExpTag[ui32Idx] != pui32Tag[ui32Idx])
                {
                    UARTprintf("Tag mismatch on word %d. Exp: 0x%x, Act: "
                               "0x%x\n", ui32Idx, pui32ExpTag[ui32Idx],
                               pui32Tag[ui32Idx]);
                    ui32Errors |= (ui32Idx << 16) | 0x00000003;
                }
            }
        }
    }

    //
    // Finished.
    //
    if(ui32Errors)
    {
        UARTprintf("Demo failed with error code 0x%x.\n", ui32Errors);
        GrStringDrawCentered(&sContext, "Demo failed.", -1,
                             GrContextDpyWidthGet(&sContext) / 2, 180, false);
    }
    else
    {
        UARTprintf("Demo completed successfully.\n");
        GrStringDrawCentered(&sContext, "Demo passed.", -1,
                             GrContextDpyWidthGet(&sContext) / 2, 180, false);
    }

    //
    // Wait forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This example demonstrates how to send a string of data to the UART.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32SysClock;
    tContext sContext;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "ble-btool");

    //
    // PJ0, 1, 4, 5 are used for UART3.
    //
    ROM_GPIOPinConfigure(GPIO_PJ0_U3RX);
    ROM_GPIOPinConfigure(GPIO_PJ1_U3TX);
    ROM_GPIOPinConfigure(GPIO_PJ4_U3RTS);
    ROM_GPIOPinConfigure(GPIO_PJ5_U3CTS);
    ROM_GPIOPinTypeUART(GPIO_PORTJ_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5);

    //
    // Display UART configuration on the display.
    //
    GrStringDraw(&sContext, "Use BTool on PC",  -1,  70, 40, 0);
    GrStringDraw(&sContext, "Port:",       -1,  70, 70, 0);
    GrStringDraw(&sContext, "Baud:",       -1,  70, 95, 0);
    GrStringDraw(&sContext, "Data:",       -1,  70, 120, 0);
    GrStringDraw(&sContext, "Parity:",     -1,  70, 145, 0);
    GrStringDraw(&sContext, "Stop:",       -1,  70, 170, 0);
    GrStringDraw(&sContext, "Flow:",       -1,  70, 195, 0);
    GrStringDraw(&sContext, "Uart 0",      -1, 150, 70, 0);
    GrStringDraw(&sContext, "115,200 bps", -1, 150, 95, 0);
    GrStringDraw(&sContext, "8 Bit",       -1, 150, 120, 0);
    GrStringDraw(&sContext, "None",        -1, 150, 145, 0);
    GrStringDraw(&sContext, "1 Bit",       -1, 150, 170, 0);
    GrStringDraw(&sContext, "CTS/RTS",     -1, 150, 195, 0);

    //
    // Enable the (non-GPIO) peripherals used by this example.  PinoutSet()
    // already enabled GPIO Port A.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART3);

    //
    // Enable processor interrupts.
    //
    IntMasterEnable();

    //
    // Configure the UART0 for 115,200, 8-N-1 operation.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, ui32SysClock, 115200,
                            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                             UART_CONFIG_PAR_NONE));

    //
    // Configure the UART3 for 115,200, 8-N-1 operation.
    //
    ROM_UARTConfigSetExpClk(UART3_BASE, ui32SysClock, 115200,
                            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                             UART_CONFIG_PAR_NONE));

    //
    // Configure the UART3 with flow control.
    //
    UARTFlowControlSet(UART3_BASE, UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX);

    //
    // Enable the UART interrupt.
    //
    ROM_IntEnable(INT_UART0);
    ROM_IntEnable(INT_UART3);
    ROM_UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);
    ROM_UARTIntEnable(UART3_BASE, UART_INT_RX | UART_INT_RT);

    //
    // Loop forever passing data between UART0 and UART3.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This is the main example program.  It checks to see that the interrupts are
// processed in the correct order when they have identical priorities,
// increasing priorities, and decreasing priorities.  This exercises interrupt
// preemption and tail chaining.
//
//*****************************************************************************
int
main(void)
{
    uint_fast8_t ui8Error;

    //
    // Run from the PLL at 120 MHz.
    //
    g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet(false, false);

    //
    // Configure the UART.
    //
    ConfigureUART();

    //
    // Configure the B3, L1 and L0 to be outputs to indicate entry/exit of one
    // of the interrupt handlers.
    //
    GPIOPinTypeGPIOOutput(GPIO_A_BASE, GPIO_A_PIN);
    GPIOPinTypeGPIOOutput(GPIO_B_BASE, GPIO_B_PIN);
    GPIOPinTypeGPIOOutput(GPIO_C_BASE, GPIO_C_PIN);
    GPIOPinWrite(GPIO_A_BASE, GPIO_A_PIN, 0);
    GPIOPinWrite(GPIO_B_BASE, GPIO_B_PIN, 0);
    GPIOPinWrite(GPIO_C_BASE, GPIO_C_PIN, 0);

    //
    // Set up and enable the SysTick timer.  It will be used as a reference
    // for delay loops in the interrupt handlers.  The SysTick timer period
    // will be set up for 100 times per second.
    //
    ROM_SysTickPeriodSet(g_ui32SysClock / 100);
    ROM_SysTickEnable();

    //
    // Reset the error indicator.
    //
    ui8Error = 0;

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Enable the interrupts.
    //
    ROM_IntEnable(INT_GPIOA);
    ROM_IntEnable(INT_GPIOB);
    ROM_IntEnable(INT_GPIOC);

    //
    // Indicate that the equal interrupt priority test is beginning.
    //
    g_ui32IntMode = EQUAL_PRIORITY;

    //
    // Set the interrupt priorities so they are all equal.
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x00);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the LCD.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 1;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the decreasing interrupt priority test is beginning.
    //
    g_ui32IntMode = DECREASING_PRIORITY;

    //
    // Set the interrupt priorities so that they are decreasing (i.e. C > B >
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x80);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the UART.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 2;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the increasing interrupt priority test is beginning.
    //
    g_ui32IntMode = INCREASING_PRIORITY;

    //
    // Set the interrupt priorities so that they are increasing (i.e. C < B <
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x80);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the UART.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 1) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 3))
    {
        ui8Error |= 4;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Disable the interrupts.
    //
    ROM_IntDisable(INT_GPIOA);
    ROM_IntDisable(INT_GPIOB);
    ROM_IntDisable(INT_GPIOC);

    //
    // Disable interrupts to the processor.
    //
    ROM_IntMasterDisable();

    //
    // Print out the test results.
    //
    UARTprintf("\033[2J\033[H");
    UARTprintf("Interrupts example\n\n");
    if(ui8Error)
    {
        if(ui8Error & 1)
        {
            UARTprintf("Equal Priority Fail!\n");
        }
        if(ui8Error & 2)
        {
            UARTprintf("Decreasing Priority Fail!\n");
        }
        if(ui8Error & 4)
        {
            UARTprintf("Increasing Priority Fail!\n");
        }
    }
    else
    {
        UARTprintf("Success!");
    }

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32TxCount, ui32RxCount, ui32Fullness, ui32SysClock, ui32PLLRate;
    tRectangle sRect;
    char pcBuffer[16];
#ifdef USE_ULPI
    uint32_t ui32Setting;
#endif

    //
    // Set the system clock to run at 120MHz from the PLL.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

#ifdef USE_ULPI
    //
    // Switch the USB ULPI Pins over.
    //
    USBULPIPinoutSet();

    //
    // Enable USB ULPI with high speed support.
    //
    ui32Setting = USBLIB_FEATURE_ULPI_HS;
    USBOTGFeatureSet(0, USBLIB_FEATURE_USBULPI, &ui32Setting);

    //
    // Setting the PLL frequency to zero tells the USB library to use the
    // external USB clock.
    //
    ui32PLLRate = 0;
#else
    //
    // Save the PLL rate used by this application.
    //
    ui32PLLRate = 480000000;
#endif

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ui32SysClock / TICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Not configured initially.
    //
    g_ui32Flags = 0;

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "usb-dev-serial");

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = 23;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Show the various static text elements on the color STN display.
    //
    GrContextFontSet(&g_sContext, TEXT_FONT);
    GrStringDraw(&g_sContext, "Tx bytes:", -1, 8, 80, false);
    GrStringDraw(&g_sContext, "Tx buffer:", -1, 8, 105, false);
    GrStringDraw(&g_sContext, "Rx bytes:", -1, 8, 160, false);
    GrStringDraw(&g_sContext, "Rx buffer:", -1, 8, 185, false);
    DrawBufferMeter(&g_sContext, 150, 105);
    DrawBufferMeter(&g_sContext, 150, 185);

    //
    // Enable the UART that we will be redirecting.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Change the UART clock to the 16 MHz PIOSC.
    //
    UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

    //
    // Set the default UART configuration.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, UART_CLOCK,
                            DEFAULT_BIT_RATE, DEFAULT_UART_CONFIG);
    ROM_UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Configure and enable UART interrupts.
    //
    ROM_UARTIntClear(UART0_BASE, ROM_UARTIntStatus(UART0_BASE, false));
    ROM_UARTIntEnable(UART0_BASE, (UART_INT_OE | UART_INT_BE | UART_INT_PE |
                      UART_INT_FE | UART_INT_RT | UART_INT_TX | UART_INT_RX));

    //
    // Tell the user what we are up to.
    //
    DisplayStatus(&g_sContext, " Configuring USB... ");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Tell the USB library the CPU clock and the PLL frequency.  This is a
    // new requirement for TM4C129 devices.
    //
    USBDCDFeatureSet(0, USBLIB_FEATURE_CPUCLK, &ui32SysClock);
    USBDCDFeatureSet(0, USBLIB_FEATURE_USBPLL, &ui32PLLRate);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDCDCInit(0, (tUSBDCDCDevice *)&g_sCDCDevice);

    //
    // Wait for initial configuration to complete.
    //
    DisplayStatus(&g_sContext, " Waiting for host... ");

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;
    g_ui32UARTTxCount = 0;
    g_ui32UARTRxCount = 0;
#ifdef DEBUG
    g_ui32UARTRxErrors = 0;
#endif

    //
    // Enable interrupts now that the application is ready to start.
    //
    ROM_IntEnable(INT_UART0);

    //
    // Main application loop.
    //
    while(1)
    {
        //
        // Have we been asked to update the status display?
        //
        if(HWREGBITW(&g_ui32Flags, FLAG_STATUS_UPDATE))
        {
            //
            // Clear the command flag
            //
            HWREGBITW(&g_ui32Flags, FLAG_STATUS_UPDATE) = 0;

            DisplayStatus(&g_sContext, g_pcStatus);
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ui32TxCount != g_ui32UARTTxCount)
        {
            //
            // Take a snapshot of the latest transmit count.
            //
            ui32TxCount = g_ui32UARTTxCount;

            //
            // Update the display of bytes transmitted by the UART.
            //
            usnprintf(pcBuffer, 16, "%d ", ui32TxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 150, 80, true);

            //
            // Update the RX buffer fullness. Remember that the buffers are
            // named relative to the USB whereas the status display is from
            // the UART's perspective. The USB's receive buffer is the UART's
            // transmit buffer.
            //
            ui32Fullness = ((USBBufferDataAvailable(&g_sRxBuffer) * 100) /
                          UART_BUFFER_SIZE);

            UpdateBufferMeter(&g_sContext, ui32Fullness, 150, 105);
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ui32RxCount != g_ui32UARTRxCount)
        {
            //
            // Take a snapshot of the latest receive count.
            //
            ui32RxCount = g_ui32UARTRxCount;

            //
            // Update the display of bytes received by the UART.
            //
            usnprintf(pcBuffer, 16, "%d ", ui32RxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 150, 160, true);

            //
            // Update the TX buffer fullness. Remember that the buffers are
            // named relative to the USB whereas the status display is from
            // the UART's perspective. The USB's transmit buffer is the UART's
            // receive buffer.
            //
            ui32Fullness = ((USBBufferDataAvailable(&g_sTxBuffer) * 100) /
                          UART_BUFFER_SIZE);

            UpdateBufferMeter(&g_sContext, ui32Fullness, 150, 185);
        }
    }
}
//*****************************************************************************
//
// This example demonstrates the use of the watchdog timer.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the device pinout appropriately for this board.
    //
    PinoutSet();

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();
    TouchScreenCallbackSet(WatchdogTouchCallback);

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the graphics context and find the middle X coordinate.
    //
    GrContextInit(&g_sContext, &g_sKitronix320x240x16_SSD2119);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 23;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontCm20);
    GrStringDrawCentered(&g_sContext, "watchdog", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 8, 0);

    //
    // Show the state and offer some instructions to the user.
    //
    GrContextFontSet(&g_sContext, g_pFontCmss20);
    GrStringDrawCentered(&g_sContext, "Watchdog is being fed.", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2 ,
                         (GrContextDpyHeightGet(&g_sContext) / 2), 1);
    GrContextFontSet(&g_sContext, g_pFontCmss14);
    GrStringDrawCentered(&g_sContext, "Tap the screen to starve the watchdog",
                         -1, GrContextDpyWidthGet(&g_sContext) / 2 ,
                         (GrContextDpyHeightGet(&g_sContext) / 2) + 20, 1);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOG0);

    //
    // Enable processor interrupts.
    //
    ROM_IntMasterEnable();

    //
    // Set GPIO PF3 as an output.  This drives an LED on the board that will
    // toggle when a watchdog interrupt is processed.
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3);
    ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);

    //
    // Enable the watchdog interrupt.
    //
    ROM_IntEnable(INT_WATCHDOG);

    //
    // Set the period of the watchdog timer.
    //
    ROM_WatchdogReloadSet(WATCHDOG0_BASE, ROM_SysCtlClockGet());

    //
    // Enable reset generation from the watchdog timer.
    //
    ROM_WatchdogResetEnable(WATCHDOG0_BASE);

    //
    // Enable the watchdog timer.
    //
    ROM_WatchdogEnable(WATCHDOG0_BASE);

    //
    // Loop forever while the LED winks as watchdog interrupts are handled.
    //
    while(1)
    {
    }
}
Example #29
0
//*****************************************************************************
//
// This example encrypts blocks of plaintext using TDES in CBC mode.  It
// does the encryption first without uDMA and then with uDMA.  The results
// are checked after each operation.
//
//*****************************************************************************
int
main(void)
{
    uint32_t pui32CipherText[16], ui32Errors, ui32Idx, ui32SysClock;
    tContext sContext;
    
    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_OSC_MAIN |
                                       SYSCTL_USE_PLL |
                                       SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "tdes-cbc-encrypt");
    
    //
    // Show some instructions on the display
    //
    GrContextFontSet(&sContext, g_psFontCm20);
    GrContextForegroundSet(&sContext, ClrWhite);
    GrStringDrawCentered(&sContext, "Connect a terminal to", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 60, false);
    GrStringDrawCentered(&sContext, "UART0 (115200,N,8,1)", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 80, false);
    GrStringDrawCentered(&sContext, "for more information.", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 100, false);

    //
    // Initialize local variables.
    //
    ui32Errors = 0;
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        pui32CipherText[ui32Idx] = 0;
    }

    //
    // Enable stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPUStackingEnable();

    //
    // Enable DES interrupts.
    //
    ROM_IntEnable(INT_DES0);

    //
    // Enable debug output on UART0 and print a welcome message.
    //
    ConfigureUART();
    UARTprintf("Starting TDES CBC encryption demo.\n");
    GrStringDrawCentered(&sContext, "Starting demo...", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 140, false);

    //
    // Enable the uDMA module.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

    //
    // Setup the control table.
    //
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Initialize the CCM and DES modules.
    //
    if(!DESInit())
    {
        UARTprintf("Initialization of the DES module failed.\n");
        ui32Errors |= 0x00000001;
    }

    //
    // Perform the encryption without uDMA.
    //
    UARTprintf("Performing encryption without uDMA.\n");
    TDESCBCEncrypt(g_pui32TDESPlainText, pui32CipherText, g_pui32TDESKey,
                   64, g_pui32TDESIV, false);

    //
    // Check the result.
    //
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        if(pui32CipherText[ui32Idx] != g_pui32TDESCipherText[ui32Idx])
        {
            UARTprintf("Ciphertext mismatch on word %d. Exp: 0x%x, Act: "
                       "0x%x\n", ui32Idx, g_pui32TDESCipherText[ui32Idx],
                       pui32CipherText[ui32Idx]);
            ui32Errors |= (ui32Idx << 16) | 0x00000002;
        }
    }

    //
    // Clear the array containing the ciphertext.
    //
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        pui32CipherText[ui32Idx] = 0;
    }

    //
    // Perform the encryption with uDMA.
    //
    UARTprintf("Performing encryption with uDMA.\n");
    TDESCBCEncrypt(g_pui32TDESPlainText, pui32CipherText, g_pui32TDESKey,
                   64, g_pui32TDESIV, true);

    //
    // Check the result.
    //
    for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
    {
        if(pui32CipherText[ui32Idx] != g_pui32TDESCipherText[ui32Idx])
        {
            UARTprintf("Ciphertext mismatch on word %d. Exp: 0x%x, Act: "
                       "0x%x\n", ui32Idx, g_pui32TDESCipherText[ui32Idx],
                       pui32CipherText[ui32Idx]);
            ui32Errors |= (ui32Idx << 16) | 0x00000004;
        }
    }

    //
    // Finished.
    //
    if(ui32Errors)
    {
        UARTprintf("Demo failed with error code 0x%x.\n", ui32Errors);
        GrStringDrawCentered(&sContext, "Demo failed.", -1,
                             GrContextDpyWidthGet(&sContext) / 2, 180, false);
    }
    else
    {
        UARTprintf("Demo completed successfully.\n");
        GrStringDrawCentered(&sContext, "Demo passed.", -1,
                             GrContextDpyWidthGet(&sContext) / 2, 180, false);
    }

    while(1)
    {
    }
}
Example #30
0
//*****************************************************************************
//
// Print "Hello World!" to the display on the Intelligent Display Module.
//
//*****************************************************************************
int
main(void)
{
    tContext 	sContext;
    uint32_t 	ui32SysClock;
    uint32_t 	i;
    uint32_t 	reg_read;

    //
    // Run from the PLL at 120 MHz.
    //
/*
    ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                       SYSCTL_SYSDIV_10  |		//Needed for ADC
                                       SYSCTL_OSC_MAIN   |
                                       SYSCTL_USE_PLL    |
                                       SYSCTL_CFG_VCO_480), 120000000);
*/

    ui32SysClock = SysCtlClockFreqSet(( SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_25MHZ), 120000000);


    //
    // Configure the device pins.
    //
    PinoutSet();
	
    GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_1);	//OUT 0 L1
    GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_0);	//OUT 1 L0
    GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_2);	//OUT 2 L2
    GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_3);	//OUT 3 L3
    GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_4);	//OUT 4 L4
    GPIOPinTypeGPIOOutput(GPIO_PORTL_BASE, GPIO_PIN_5);	//OUT 5 L5
    GPIOPinTypeGPIOOutput(GPIO_PORTP_BASE, GPIO_PIN_5);	//OUT 6 P5
    GPIOPinTypeGPIOOutput(GPIO_PORTP_BASE, GPIO_PIN_4);	//OUT 7 P4

    GPIOPinTypeGPIOInput (GPIO_PORTM_BASE, GPIO_PIN_3);	//IN  0 M3
    GPIOPinTypeGPIOInput (GPIO_PORTM_BASE, GPIO_PIN_2);	//IN  1 M2
    GPIOPinTypeGPIOInput (GPIO_PORTM_BASE, GPIO_PIN_1);	//IN  2 M1
    GPIOPinTypeGPIOInput (GPIO_PORTM_BASE, GPIO_PIN_0);	//IN  3 M0
    GPIOPinTypeGPIOInput (GPIO_PORTN_BASE, GPIO_PIN_4);	//IN  4 N4
    GPIOPinTypeGPIOInput (GPIO_PORTA_BASE, GPIO_PIN_7);	//IN  5 A7
    GPIOPinTypeGPIOInput (GPIO_PORTC_BASE, GPIO_PIN_6);	//IN  6 C6
    GPIOPinTypeGPIOInput (GPIO_PORTC_BASE, GPIO_PIN_5);	//IN  7 C5

    //RGB LED
    GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_5);	//RED 	N5
    GPIOPinTypeGPIOOutput(GPIO_PORTQ_BASE, GPIO_PIN_7);	//GREEN Q7
    GPIOPinTypeGPIOOutput(GPIO_PORTQ_BASE, GPIO_PIN_4);	//BLUE 	Q4

    //Initialize the UART
    	QUT_UART_Init( ui32SysClock );


    //Initialize AIN0
    	QUT_ADC0_Init();


    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "FestoTester");

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit(ui32SysClock);

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground);
	
    //
    // Paint the widget tree to make sure they all appear on the display.
    //
    WidgetPaint(WIDGET_ROOT);

    QUT_UART_Send( (uint8_t *)"FestoTester", 11 );

    //
    // Loop forever, processing widget messages.
    //
    while(1)
    {
        //
        // Process any messages from or for the widgets.
        //
        WidgetMessageQueueProcess();


        //Turn on RED LED
        GPIO_PORTN_DATA_R |= 0x20;
		
    	//Check GPIO Inputs
    	for( i = 0; i < 8; i++ )
    	{
    		input_status[i] = 0;
    		reg_read		= qut_get_gpio( i );

			if ( reg_read != 0 ){
				input_status[i] = INPUT_STATUS_IS_ONE;
			}
    	}


    	//Read the ADC0
    	adc0_read = QUT_ADC0_Read();

        QUT_UART_Send( (uint8_t *)"\n\radc0_read=", 12 );
        QUT_UART_Send_uint32_t( adc0_read );

        //Relimit the ADC read from 0 to 4096 into a pixel limit from 0 to 280
        num_analog_pixels = (adc0_read * 280 ) / 4096;





        //UARTprintf("num_analog_pixels = %4d\r", num_analog_pixels );

        //QUT_UART_Send( (uint8_t *)"\rnum_analog_pixels=", 19 );
        //QUT_UART_Send_uint32_t( num_analog_pixels );



		//qut_delay_secs(1);

		
		//Repaint the screen
    	WidgetPaint(WIDGET_ROOT);
    }
}