Example #1
0
int
main (int argc, char** argv)
{
  QMP_status_t status;
  int this_node;
  QMP_thread_level_t req, prv;

  /* Start QMP */
  req = QMP_THREAD_SINGLE;
  status = QMP_init_msg_passing (&argc, &argv, req, &prv);

  if (status != QMP_SUCCESS) {
    QMP_error ("QMP_init failed: %s\n", QMP_error_string(status));
    QMP_abort(1);
  }

  /* Get my logical node number */
  this_node = QMP_get_node_number();

  /* Print the result */
  printf("%04d",this_node);

  /* Quit */
  QMP_finalize_msg_passing ();

  return 0;
}
Example #2
0
void endCommsQuda() {
#ifdef MULTI_GPU

#ifdef QMP_COMMS
  QMP_finalize_msg_passing();
#elif defined MPI_COMMS
  comm_cleanup();
#endif 

#endif
}
Example #3
0
int main (int argc, char** argv)
{
  int verbose;
  QMP_status_t status;
  QMP_thread_level_t req, prv;

  verbose = 0;
  if (argc > 1 && strcmp (argv[1], "-v") == 0)
    verbose = 1;
  
  QMP_verbose (verbose);
  req = QMP_THREAD_SINGLE;
  status = QMP_init_msg_passing (&argc, &argv, req, &prv);

  if (status != QMP_SUCCESS) {
    QMP_fprintf(stderr, "QMP_init failed\n");
    return -1;
  }

  {
    char p[288];
    int i;

    for(i=0; i < 288;++i)
      p[i] = 0;

    if (QMP_is_primary_node())
      for(i=0; i < 288;++i)
	p[i] = 65;

#if 1
    for(i=0; i < 10; ++i)
      QMP_broadcast(p, 288);
#else
    for(i=0; i < 10; ++i)
      stupid_broadcast(p, 288);
#endif

    QMP_info("result = %c",p[0]);
  }


  QMP_finalize_msg_passing ();

  return 0;
}
Example #4
0
int main(int argc, char **argv) {

#ifdef QMP_COMMS
  int ndim=4, dims[4];
  QMP_thread_level_t tl;
  QMP_init_msg_passing(&argc, &argv, QMP_THREAD_SINGLE, &tl);
  dims[0] = dims[1] = dims[2] = 1;
  dims[3] = QMP_get_number_of_nodes();
  QMP_declare_logical_topology(dims, ndim);
#endif  

  SU3Test();

#ifdef QMP_COMMS
  QMP_finalize_msg_passing();
#endif

  return 0;
}
int qio_test(int output_volfmt, int output_serpar, int ildgstyle, 
	     int input_volfmt, int input_serpar, int argc, char *argv[]){

  float array_in[NARRAY], array_out[NARRAY];
  float *field_in[NREAL], *subset_in[NREAL], 
    *field_out[NREAL], *subset_out[NREAL];
  suN_matrix *field_su3_out[NMATRIX], *field_su3_in[NMATRIX];
  QIO_Writer *outfile;
  QIO_Reader *infile;
  float diff_field = 0, diff_array = 0, diff_su3 = 0, diff_subset = 0;
  QMP_thread_level_t provided;
  int status;
  int sites_on_node = 0;
  int i,volume;
  char filename[] = "binary_test";
  int dim = 4;
  int lower[4] = {1, 0, 0, 2};
  int upper[4] = {2, 3, 3, 2};
  char myname[] = "qio_test";
  
  /* Start message passing */
  QMP_init_msg_passing(&argc, &argv, QMP_THREAD_SINGLE, &provided);

  this_node = mynode();
  printf("%s(%d) QMP_init_msg_passing done\n",myname,this_node);

  /* Lattice dimensions */
  lattice_dim = 4;
  lattice_size[0] = 8;
  lattice_size[1] = 4;
  lattice_size[2] = 4;
  lattice_size[3] = 4;

  volume = 1;
  for(i = 0; i < lattice_dim; i++){
    volume *= lattice_size[i];
  }

  /* Set the mapping of coordinates to nodes */
  if(setup_layout(lattice_size, 4, QMP_get_number_of_nodes())!=0)
    return 1;
  printf("%s(%d) layout set for %d nodes\n",myname,this_node,
	 QMP_get_number_of_nodes());
  sites_on_node = num_sites(this_node);

  /* Build the layout structure */
  layout.node_number     = node_number;
  layout.node_index      = node_index;
  layout.get_coords      = get_coords;
  layout.num_sites       = num_sites;
  layout.latsize         = lattice_size;
  layout.latdim          = lattice_dim;
  layout.volume          = volume;
  layout.sites_on_node   = sites_on_node;
  layout.this_node       = this_node;
  layout.number_of_nodes = QMP_get_number_of_nodes();

  /* Open the test output file */
  outfile = open_test_output(filename, output_volfmt, output_serpar, 
			     ildgstyle, myname);
  if(outfile == NULL)return 1;

  /* If this is not the ILDG file test */
  if(ildgstyle == QIO_ILDGNO){
    /* Create the test output field */
    status = vcreate_R(field_out, NREAL);
    if(status)return status;
    
    /* Set some values for the field */
    vset_R(field_out, NREAL);
    
    /* Write the real test field */
    status = write_real_field(outfile, NREAL, field_out, myname);
    if(status)return status;
    
    /* Write a subset of the real test field */
    status = write_real_field_subset(outfile, NREAL, field_out, 
				     lower, upper, dim, myname);
    if(status)return status;
    
    /* Set some values for the global array */
    for(i = 0; i < NARRAY; i++)
      array_out[i] = i;
    
    /* Write the real global array */
    status = write_real_global(outfile, NARRAY, array_out, myname);
    if(status)return status;
  }

  /* Create the test output su3 field */
  status = vcreate_M(field_su3_out, NMATRIX);
  if(status)return status;

  /* Set some values for the su3 field */
  vset_M(field_su3_out, NMATRIX);

  /* Write the su3 test field */
  status = write_su3_field(outfile, NMATRIX, field_su3_out, myname);
  if(status)return status;

  /* Close the file */
  QIO_close_write(outfile);
  printf("%s(%d): Closed file for writing\n",myname,this_node);

  /* Set up a dummy input field */
  status = vcreate_R(field_in, NREAL);
  if(status)return status;
    
  /* Set up a dummy input field for subset */
  status = vcreate_R(subset_in, NREAL);
  if(status)return status;
    
  /* Set up a dummy input SU(N) field */
  status = vcreate_M(field_su3_in, NMATRIX);
  if(status)return status;

  /* Open the test file for reading */
  infile = open_test_input(filename, input_volfmt, input_serpar, myname);
  if(infile == NULL)return 1;

  if(ildgstyle == QIO_ILDGNO){
    /* Peek at the field record */
    status = peek_record_info(infile, myname);
    if(status != QIO_SUCCESS)return status;
    /* Skip the record */

#if(0)
    
    /* Skip the field */
    status = QIO_next_record(infile);
    if(status != QIO_SUCCESS)return status;
    
#else
    
    /* Read the field record */
    printf("%s(%d) reading real field\n",myname,this_node); fflush(stdout);
    status = read_real_field(infile, NREAL, field_in, myname);
    if(status)return status;
    
#endif

    /* Read the subset of the field */
    printf("%s(%d) reading subset of real field\n",
	   myname,this_node); fflush(stdout);
    status = read_real_field_subset(infile, NREAL, subset_in, myname);
    if(status)return status;
    
    /* Read the global array record */
    printf("%s(%d) reading global field\n",myname,this_node); fflush(stdout);
    status = read_real_global(infile, NARRAY, array_in, myname);
    if(status)return status;

  }    

  /* Read the su3 field record */
  printf("%s(%d) reading su3 field\n",myname,this_node); fflush(stdout);
  status = read_su3_field(infile, NMATRIX, field_su3_in, myname);
  if(status)return status;

  /* Close the file */
  QIO_close_read(infile);
  printf("%s(%d): Closed file for reading\n",myname,this_node);

  if(ildgstyle == QIO_ILDGNO){

    /* Compare the input and output fields */
    diff_field = vcompare_R(field_out, field_in, NREAL);
    if(this_node == 0){
      printf("%s(%d): Comparison of in and out real fields |in - out|^2 = %e\n",
	     myname,this_node,diff_field);
    }
    
    /* Create the subset output field */
    status = vcreate_R(subset_out, NREAL);
    if(status)return status;

    /* Copy the subset */
    vsubset_R(subset_out, field_out, lower, upper, NREAL);
    
    /* Compare the input and output subsets */
    diff_subset = vcompare_R(subset_out, subset_in, NREAL);
    if(this_node == 0){
      printf("%s(%d): Comparison of subsets of in and out real fields |in - out|^2 = %e\n",
	     myname,this_node,diff_subset);
    }
    
    /* Compare the input and output global arrays */
    diff_array = vcompare_r(array_out, array_in, NREAL);
    if(this_node == 0){
      printf("%s(%d): Comparison of in and out real global arrays |in - out|^2 = %e\n",
	     myname, this_node, diff_array);
    }
  }

  /* Compare the input and output suN fields */
  diff_su3 = vcompare_M(field_su3_out, field_su3_in, NMATRIX);
  if(this_node == 0){
    printf("%s(%d): Comparison of in and out suN fields |in - out|^2 = %e\n",
	   myname, this_node, diff_field);
  }

  /* Clean up */
  if(ildgstyle == QIO_ILDGNO){
    vdestroy_R(field_out, NREAL);
    vdestroy_R(field_in, NREAL);
    vdestroy_R(subset_in, NREAL);
    vdestroy_R(subset_out, NREAL);
  }
  vdestroy_M(field_su3_in, NMATRIX);
  vdestroy_M(field_su3_out, NMATRIX);

  /* Shut down QMP */
  QMP_finalize_msg_passing();

  /* Report result */
  if(diff_field + diff_subset + diff_su3 + diff_array > 0){
    printf("%s(%d): Test failed\n",myname,this_node);
    return 1;
  }
  printf("%s(%d): Test passed\n",myname,this_node);

  return 0;
}
Example #6
0
int
main(int argc, char *argv[])
{
  struct QOP_MDWF_State *mdwf_state = NULL;
  QMP_thread_level_t qt = QMP_THREAD_SINGLE;
  int status = 1;
  int vx[4];
  int i;

  if (QMP_init_msg_passing(&argc, &argv, qt, &qt) != QMP_SUCCESS) {
    fprintf(stderr, "QMP_init() failed\n");
    return 1;
  }

  for (i = 0; i < NELEM(b5); i++) {
    b5[i] = 0.1 * i * (NELEM(b5) - i);
    c5[i] = 0.1 * i * i * (NELEM(b5) - i);
  }

  self = QMP_get_node_number();
  primary = QMP_is_primary_node();
  for (i = 0; i < argc; i++)
    zprint("arg[%d]=%s", i, argv[i]);
  if (argc != 14) {
    zprint("14 arguments expected, found %d", argc);
    QMP_finalize_msg_passing();
    return 1;
  }

  for (i = 0; i < 4; i++) {
    mynetwork[i] = atoi(argv[i+1]);
    mylocal[i] = atoi(argv[i+5]);
    vx[i] = atoi(argv[i+10]);
    mylattice[i] = mylocal[i] * mynetwork[i];
  }
  mylocal[4] = mylattice[4] = atoi(argv[9]);

  zshowv4("network", mynetwork);
  zshowv5("local lattice", mylocal);
  zshowv5("lattice", mylattice);

  getv(mynode, 0, 4, vx);

  xshowv("node", mynode);

  if (QOP_MDWF_init(&mdwf_state,
		    mylattice, mynetwork, mynode, primary,
		    getsub, NULL)) {
    zprint("MDWF_init() failed");
    goto end;
  }

  zprint("MDWF_init() done");

  dump_state(mdwf_state);

  QOP_MDWF_fini(&mdwf_state);

  status = 0;
 end:
  QMP_finalize_msg_passing();
  return status;
}
Example #7
0
int
main(int argc, char *argv[])
{
  struct QOP_MDWF_State *mdwf_state = NULL;
  struct QOP_MDWF_Parameters *mdwf_params = NULL;
  QMP_thread_level_t qt = QMP_THREAD_SINGLE;
  int status = 1;
  int i;

  if (QMP_init_msg_passing(&argc, &argv, qt, &qt) != QMP_SUCCESS) {
    fprintf(stderr, "QMP_init() failed\n");
    return 1;
  }

  for (i = 0; i < NELEM(b5); i++) {
    b5[i] = 0.1 * i * (NELEM(b5) - i);
    c5[i] = 0.1 * i * i * (NELEM(b5) - i);
  }

  self = QMP_get_node_number();
  primary = QMP_is_primary_node();
  if (argc != 7) {
    zprint("7 arguments expected, found %d", argc);
    zprint("usage: localheat Lx Ly Lz Lt Ls time");
    QMP_finalize_msg_passing();
    return 1;
  }

  for (i = 0; i < 4; i++) {
    mynetwork[i] = 1;
    mylocal[i] = atoi(argv[i+1]);
    mylattice[i] = mylocal[i] * mynetwork[i];
  }
  mylocal[4] = mylattice[4] = atoi(argv[5]);
  total_sec = atoi(argv[6]);

  zshowv4("network", mynetwork);
  zshowv5("local lattice", mylocal);
  zshowv5("lattice", mylattice);
  zprint("total requested runtime %.0f sec", total_sec);

#if 0
  if (QMP_declare_logical_topology(mynetwork, 4) != QMP_SUCCESS) {
    zprint("declare_logical_top failed");
    goto end;
  }

  getv(mynode, 0, QMP_get_logical_number_of_dimensions(),
       QMP_get_logical_coordinates());
#else
  { int i;
    for (i = 0; i < 4; i++)
       mynode[i] = 0;
  }
#endif

  if (QOP_MDWF_init(&mdwf_state,
		    mylattice, mynetwork, mynode, primary,
		    getsub, NULL)) {
    zprint("MDWF_init() failed");
    goto end;
  }

  zprint("MDWF_init() done");

  if (QOP_MDWF_set_generic(&mdwf_params, mdwf_state, b5, c5, 0.123, 0.05)) {
    zprint("MDW_set_generic() failed");
    goto end;
  }
  zprint("MDWF_set_generic() done");

  if (do_run(mdwf_state, mdwf_params)) {
    zprint("float test failed");
    goto end;
  }

  QOP_MDWF_fini(&mdwf_state);

  zprint("Heater test finished");
  status = 0;
 end:
  QMP_finalize_msg_passing();
  return status;
}
Example #8
0
 //Clean up resources used by QMP
 void destroy_qmp() {
   QMP_finalize_msg_passing();
 }
int main(int argc, char** argv)
{
  for (int i = 1; i < argc; i++) {

    if(process_command_line_option(argc, argv, &i) == 0){
      continue;
    }   

    if( strcmp(argv[i], "--tol") == 0){
      float tmpf;
      if (i+1 >= argc){
        usage(argv);
      }
      sscanf(argv[i+1], "%f", &tmpf);
      if (tmpf <= 0){
        printf("ERROR: invalid tol(%f)\n", tmpf);
        usage(argv);
      }
      tol = tmpf;
      i++;
      continue;
    }

    if( strcmp(argv[i], "--cpu_prec") == 0){
      if (i+1 >= argc){
        usage(argv);
      }
      cpu_prec= get_prec(argv[i+1]);
      i++;
      continue;
    }

    printf("ERROR: Invalid option:%s\n", argv[i]);
    usage(argv);
  }

  if (prec_sloppy == QUDA_INVALID_PRECISION){
    prec_sloppy = prec;
  }
  if (link_recon_sloppy == QUDA_RECONSTRUCT_INVALID){
    link_recon_sloppy = link_recon;
  }


  // initialize QMP or MPI
#if defined(QMP_COMMS)
  QMP_thread_level_t tl;
  QMP_init_msg_passing(&argc, &argv, QMP_THREAD_SINGLE, &tl);
#elif defined(MPI_COMMS)
  MPI_Init(&argc, &argv);
#endif

  // call srand() with a rank-dependent seed
  initRand();

  display_test_info();

  int ret = invert_test();

  display_test_info();


  // finalize the communications layer
#if defined(QMP_COMMS)
  QMP_finalize_msg_passing();
#elif defined(MPI_COMMS)
  MPI_Finalize();
#endif

  return ret;
}
Example #10
0
int
main (int argc, char** argv)
{
  int             i, nc;
  QMP_status_t      status;
  int       **smem, **rmem;
  QMP_msgmem_t    *recvmem;
  QMP_msghandle_t *recvh;
  QMP_msgmem_t    *sendmem;
  QMP_msghandle_t *sendh;
  struct perf_argv pargv;
  QMP_thread_level_t req, prv;

  /** 
   * Simple point to point topology 
   */
  int dims[4] = {2,2,2,2};
  int ndims = 1;

  //if(QMP_get_node_number()==0)
  //printf("starting init\n"); fflush(stdout);
  req = QMP_THREAD_SINGLE;
  status = QMP_init_msg_passing (&argc, &argv, req, &prv);
  if (status != QMP_SUCCESS) {
    fprintf (stderr, "QMP_init failed\n");
    return -1;
  }
  if(QMP_get_node_number()==0)
    printf("finished init\n"); fflush(stdout);

  if (parse_options (argc, argv, &pargv) == -1) {
    if(QMP_get_node_number()==0)
      usage (argv[0]);
    exit (1);
  }

  {
    int maxdims = 4;
    int k=0;
    int nodes = QMP_get_number_of_nodes();
    ndims = 0;
    while( (nodes&1) == 0 ) {
      if(ndims<maxdims) ndims++;
      else {
	dims[k] *= 2;
	k++;
	if(k>=maxdims) k = 0;
      }
      nodes /= 2;
    }
    if(nodes != 1) {
      QMP_error("invalid number of nodes %i", QMP_get_number_of_nodes());
      QMP_error(" must power of 2");
      QMP_abort(1);
    }
    pargv.ndims = ndims;
  }

  status = QMP_declare_logical_topology (dims, ndims);
  if (status != QMP_SUCCESS) {
    fprintf (stderr, "Cannot declare logical grid\n");
    return -1;
  }

  /* do a broadcast of parameter */
  if (QMP_broadcast (&pargv, sizeof (pargv)) != QMP_SUCCESS) {
    QMP_printf ("Broadcast parameter failed\n");
    exit (1);
  }

  {
    int k=1;
    const int *lc = QMP_get_logical_coordinates();
    for(i=0; i<ndims; i++) k += lc[i];
    pargv.sender = k&1;
  }

  QMP_printf("%s options: num_channels[%d] verify[%d] option[%d] datasize[%d] numloops[%d] sender[%d] strided_send[%i] strided_recv[%i] strided_array_send[%i] ",
	     argv[0], pargv.num_channels, pargv.verify, 
	     pargv.option, pargv.size, pargv.loops, pargv.sender,
	     strided_send, strided_recv, strided_array_send);
  fflush(stdout);


  /**
   * Create memory
   */
  nc = pargv.num_channels;
  smem = (int **)malloc(nc*sizeof (int *));
  rmem = (int **)malloc(nc*sizeof (int *));
  sendmem = (QMP_msgmem_t *)malloc(ndims*nc*sizeof (QMP_msgmem_t));
  recvmem = (QMP_msgmem_t *)malloc(ndims*nc*sizeof (QMP_msgmem_t));
  sendh = (QMP_msghandle_t *)malloc(nc*sizeof (QMP_msghandle_t));
  recvh = (QMP_msghandle_t *)malloc(nc*sizeof (QMP_msghandle_t));

  QMP_barrier();
  if(QMP_get_node_number()==0) printf("\n"); fflush(stdout);
  if(pargv.option & TEST_SIMUL) {
    int opts = pargv.option;
    pargv.option = TEST_SIMUL;
    if(QMP_get_node_number()==0)
      QMP_printf("starting simultaneous sends"); fflush(stdout);
    for(i=pargv.minsize; i<=pargv.maxsize; i*=pargv.facsize) {
      pargv.size = i;
      create_msgs(smem, rmem, sendmem, recvmem, sendh, recvh, ndims, nc, i, &pargv);
      test_simultaneous_send (smem, rmem, sendh, recvh, &pargv);
      check_mem(rmem, ndims, nc, i);
      free_msgs(smem, rmem, sendmem, recvmem, sendh, recvh, ndims, nc);
    }
    if(QMP_get_node_number()==0)
      QMP_printf("finished simultaneous sends\n"); fflush(stdout);
    pargv.option = opts;
  }

  if(pargv.option & TEST_PINGPONG) {
    int opts = pargv.option;
    pargv.option = TEST_PINGPONG;
    if(QMP_get_node_number()==0)
      QMP_printf("starting ping pong sends"); fflush(stdout);
    for(i=pargv.minsize; i<=pargv.maxsize; i*=pargv.facsize) {
      pargv.size = i;
      create_msgs(smem, rmem, sendmem, recvmem, sendh, recvh, ndims, nc, i, &pargv);
      if(pargv.verify)
	test_pingpong_verify(smem, rmem, sendh, recvh, &pargv);
      else
	test_pingpong(smem, rmem, sendh, recvh, &pargv);
      check_mem(rmem, ndims, nc, i);
      free_msgs(smem, rmem, sendmem, recvmem, sendh, recvh, ndims, nc);
    }
    if(QMP_get_node_number()==0)
      QMP_printf("finished ping pong sends\n"); fflush(stdout);
    pargv.option = opts;
  }

  if(pargv.option & TEST_ONEWAY) {
    int opts = pargv.option;
    pargv.option = TEST_ONEWAY;
    if(QMP_get_node_number()==0)
      QMP_printf("starting one way sends"); fflush(stdout);
    for(i=pargv.minsize; i<=pargv.maxsize; i*=pargv.facsize) {
      pargv.size = i;
      create_msgs(smem, rmem, sendmem, recvmem, sendh, recvh, ndims, nc, i, &pargv);
      test_oneway (smem, rmem, sendh, recvh, &pargv);
      if(!pargv.sender) check_mem(rmem, ndims, nc, i);
      free_msgs(smem, rmem, sendmem, recvmem, sendh, recvh, ndims, nc);
    }
    if(QMP_get_node_number()==0)
      QMP_printf("finished one way sends"); fflush(stdout);
    pargv.option = opts;
  }


  /**
   * Free memory 
   */
  free (smem);
  free (rmem);

  free (sendh);
  free (recvh);

  free (sendmem);
  free (recvmem);

  QMP_finalize_msg_passing ();

  return 0;
}