Example #1
0
void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
			     size_t blk_cnt, size_t byte_cnt_add)
	{ /* do it in C */
	enum {
		WCNT = SKEIN_256_STATE_WORDS
	};
#undef  RCNT
#define RCNT  (SKEIN_256_ROUNDS_TOTAL/8)

#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
#else
#define SKEIN_UNROLL_256 (0)
#endif

#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#endif
	size_t  r;
	u64  kw[WCNT+4+RCNT*2]; /* key schedule: chaining vars + tweak + "rot"*/
#else
	u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
	u64  X0, X1, X2, X3; /* local copy of context vars, for speed */
	u64  w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
	const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */

	X_ptr[0] = &X0;  X_ptr[1] = &X1;  X_ptr[2] = &X2;  X_ptr[3] = &X3;
#endif
	skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
	ts[0] = ctx->h.tweak[0];
	ts[1] = ctx->h.tweak[1];
	do  {
		/*
		 * this implementation only supports 2**64 input bytes
		 * (no carry out here)
		 */
		ts[0] += byte_cnt_add; /* update processed length */

		/* precompute the key schedule for this block */
		ks[0] = ctx->x[0];
		ks[1] = ctx->x[1];
		ks[2] = ctx->x[2];
		ks[3] = ctx->x[3];
		ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;

		ts[2] = ts[0] ^ ts[1];

		/* get input block in little-endian format */
		skein_get64_lsb_first(w, blk_ptr, WCNT);
		debug_save_tweak(ctx);
		skein_show_block(BLK_BITS, &ctx->h, ctx->x, blk_ptr, w, ks, ts);

		X0 = w[0] + ks[0]; /* do the first full key injection */
		X1 = w[1] + ks[1] + ts[0];
		X2 = w[2] + ks[2] + ts[1];
		X3 = w[3] + ks[3];

		/* show starting state values */
		skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
				 x_ptr);

		blk_ptr += SKEIN_256_BLOCK_BYTES;

		/* run the rounds */

#define ROUND256(p0, p1, p2, p3, ROT, r_num)                              \
do { \
	X##p0 += X##p1; X##p1 = rotl_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
	X##p2 += X##p3; X##p3 = rotl_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
} while (0)

#if SKEIN_UNROLL_256 == 0
#define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
do { \
	ROUND256(p0, p1, p2, p3, ROT, r_num); \
	skein_show_r_ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \
} while (0)

#define I256(R) \
do { \
	/* inject the key schedule value */ \
	X0   += ks[((R)+1) % 5]; \
	X1   += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
	X2   += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
	X3   += ks[((R)+4) % 5] +     (R)+1;       \
	skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)
#else /* looping version */
#define R256(p0, p1, p2, p3, ROT, r_num) \
do { \
	ROUND256(p0, p1, p2, p3, ROT, r_num); \
	skein_show_r_ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \
} while (0)

#define I256(R) \
do { \
	/* inject the key schedule value */ \
	X0   += ks[r+(R)+0]; \
	X1   += ks[r+(R)+1] + ts[r+(R)+0]; \
	X2   += ks[r+(R)+2] + ts[r+(R)+1]; \
	X3   += ks[r+(R)+3] +    r+(R);    \
	/* rotate key schedule */ \
	ks[r + (R) + 4]   = ks[r + (R) - 1]; \
	ts[r + (R) + 2]   = ts[r + (R) - 1]; \
	skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \
} while (0)

	for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
#endif
		{
#define R256_8_ROUNDS(R)                  \
do { \
		R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
		R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
		R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
		R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
		I256(2 * (R));                      \
		R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
		R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
		R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
		R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
		I256(2 * (R) + 1); \
} while (0)

		R256_8_ROUNDS(0);

#define R256_UNROLL_R(NN) \
	((SKEIN_UNROLL_256 == 0 && \
	  SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || \
	 (SKEIN_UNROLL_256 > (NN)))

	#if   R256_UNROLL_R(1)
		R256_8_ROUNDS(1);
	#endif
	#if   R256_UNROLL_R(2)
		R256_8_ROUNDS(2);
	#endif
	#if   R256_UNROLL_R(3)
		R256_8_ROUNDS(3);
	#endif
	#if   R256_UNROLL_R(4)
		R256_8_ROUNDS(4);
	#endif
	#if   R256_UNROLL_R(5)
		R256_8_ROUNDS(5);
	#endif
	#if   R256_UNROLL_R(6)
		R256_8_ROUNDS(6);
	#endif
	#if   R256_UNROLL_R(7)
		R256_8_ROUNDS(7);
	#endif
	#if   R256_UNROLL_R(8)
		R256_8_ROUNDS(8);
	#endif
	#if   R256_UNROLL_R(9)
		R256_8_ROUNDS(9);
	#endif
	#if   R256_UNROLL_R(10)
		R256_8_ROUNDS(10);
	#endif
	#if   R256_UNROLL_R(11)
		R256_8_ROUNDS(11);
	#endif
	#if   R256_UNROLL_R(12)
		R256_8_ROUNDS(12);
	#endif
	#if   R256_UNROLL_R(13)
		R256_8_ROUNDS(13);
	#endif
	#if   R256_UNROLL_R(14)
		R256_8_ROUNDS(14);
	#endif
	#if  (SKEIN_UNROLL_256 > 14)
#error  "need more unrolling in skein_256_process_block"
	#endif
		}
		/* do the final "feedforward" xor, update context chaining */
		ctx->x[0] = X0 ^ w[0];
		ctx->x[1] = X1 ^ w[1];
		ctx->x[2] = X2 ^ w[2];
		ctx->x[3] = X3 ^ w[3];

		skein_show_round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->x);

		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
	} while (--blk_cnt);
	ctx->h.tweak[0] = ts[0];
	ctx->h.tweak[1] = ts[1];
}
Example #2
0
void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
			     size_t blk_cnt, size_t byte_cnt_add)
{ /* do it in C */
	enum {
		WCNT = SKEIN_256_STATE_WORDS
	};
	size_t r;
#if SKEIN_UNROLL_256
	/* key schedule: chaining vars + tweak + "rot"*/
	u64  kw[WCNT+4+RCNT*2];
#else
	/* key schedule words : chaining vars + tweak */
	u64  kw[WCNT+4];
#endif
	u64  X0, X1, X2, X3; /* local copy of context vars, for speed */
	u64  w[WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
	const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */

	X_ptr[0] = &X0;
	X_ptr[1] = &X1;
	X_ptr[2] = &X2;
	X_ptr[3] = &X3;
#endif
	skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
	ts[0] = ctx->h.tweak[0];
	ts[1] = ctx->h.tweak[1];
	do  {
		/*
		 * this implementation only supports 2**64 input bytes
		 * (no carry out here)
		 */
		ts[0] += byte_cnt_add; /* update processed length */

		/* precompute the key schedule for this block */
		ks[0] = ctx->x[0];
		ks[1] = ctx->x[1];
		ks[2] = ctx->x[2];
		ks[3] = ctx->x[3];
		ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;

		ts[2] = ts[0] ^ ts[1];

		/* get input block in little-endian format */
		skein_get64_lsb_first(w, blk_ptr, WCNT);
		debug_save_tweak(ctx);

		/* do the first full key injection */
		X0 = w[0] + ks[0];
		X1 = w[1] + ks[1] + ts[0];
		X2 = w[2] + ks[2] + ts[1];
		X3 = w[3] + ks[3];

		blk_ptr += SKEIN_256_BLOCK_BYTES;

		/* run the rounds */
		for (r = 1;
			r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
			r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
			R256_8_ROUNDS(0);
#if   R256_UNROLL_R(1)
			R256_8_ROUNDS(1);
#endif
#if   R256_UNROLL_R(2)
			R256_8_ROUNDS(2);
#endif
#if   R256_UNROLL_R(3)
			R256_8_ROUNDS(3);
#endif
#if   R256_UNROLL_R(4)
			R256_8_ROUNDS(4);
#endif
#if   R256_UNROLL_R(5)
			R256_8_ROUNDS(5);
#endif
#if   R256_UNROLL_R(6)
			R256_8_ROUNDS(6);
#endif
#if   R256_UNROLL_R(7)
			R256_8_ROUNDS(7);
#endif
#if   R256_UNROLL_R(8)
			R256_8_ROUNDS(8);
#endif
#if   R256_UNROLL_R(9)
			R256_8_ROUNDS(9);
#endif
#if   R256_UNROLL_R(10)
			R256_8_ROUNDS(10);
#endif
#if   R256_UNROLL_R(11)
			R256_8_ROUNDS(11);
#endif
#if   R256_UNROLL_R(12)
			R256_8_ROUNDS(12);
#endif
#if   R256_UNROLL_R(13)
			R256_8_ROUNDS(13);
#endif
#if   R256_UNROLL_R(14)
			R256_8_ROUNDS(14);
#endif
		}
		/* do the final "feedforward" xor, update context chaining */
		ctx->x[0] = X0 ^ w[0];
		ctx->x[1] = X1 ^ w[1];
		ctx->x[2] = X2 ^ w[2];
		ctx->x[3] = X3 ^ w[3];

		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
	} while (--blk_cnt);
	ctx->h.tweak[0] = ts[0];
	ctx->h.tweak[1] = ts[1];
}