Example #1
0
/* called at system boot time */
int     
rf_BootRaidframe()
{
	int     rc;

	if (raidframe_booted)
		return (EBUSY);
	raidframe_booted = 1;

#if RF_DEBUG_ATOMIC > 0
	rf_atent_init();
#endif				/* RF_DEBUG_ATOMIC > 0 */

	rf_setup_threadid();
	rf_assign_threadid();

	rc = rf_mutex_init(&configureMutex);
	if (rc) {
		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
		    __LINE__, rc);
		RF_PANIC();
	}
	configureCount = 0;
	isconfigged = 0;
	globalShutdown = NULL;
	return (0);
}
Example #2
0
static int
NodeReady(RF_DagNode_t *node)
{
	int     ready;

	switch (node->dagHdr->status) {
	case rf_enable:
	case rf_rollForward:
		if ((node->status == rf_wait) &&
		    (node->numAntecedents == node->numAntDone))
			ready = RF_TRUE;
		else
			ready = RF_FALSE;
		break;
	case rf_rollBackward:
		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
		if ((node->status == rf_good) &&
		    (node->numSuccDone == node->numSuccedents))
			ready = RF_TRUE;
		else
			ready = RF_FALSE;
		break;
	default:
		printf("Execution engine found illegal DAG status in NodeReady\n");
		RF_PANIC();
		break;
	}

	return (ready);
}
Example #3
0
/* user context: submit dag for execution, return non-zero if we have
 * to wait for completion.  if and only if we return non-zero, we'll
 * cause cbFunc to get invoked with cbArg when the DAG has completed.
 *
 * for now we always return 1.  If the DAG does not cause any I/O,
 * then the callback may get invoked before DispatchDAG returns.
 * There's code in state 5 of ContinueRaidAccess to handle this.
 *
 * All we do here is fire the direct successors of the header node.
 * The DAG execution thread does the rest of the dag processing.  */
int
rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
	       void *cbArg)
{
	RF_Raid_t *raidPtr;

	raidPtr = dag->raidPtr;
#if RF_ACC_TRACE > 0
	if (dag->tracerec) {
		RF_ETIMER_START(dag->tracerec->timer);
	}
#endif
#if DEBUG
#if RF_DEBUG_VALIDATE_DAG
	if (rf_engineDebug || rf_validateDAGDebug) {
		if (rf_ValidateDAG(dag))
			RF_PANIC();
	}
#endif
#endif
#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
	}
#endif
	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
					 * locking */
	dag->cbFunc = cbFunc;
	dag->cbArg = cbArg;
	dag->numNodesCompleted = 0;
	dag->status = rf_enable;
	FireNodeArray(dag->numSuccedents, dag->succedents);
	return (1);
}
Example #4
0
static int
BranchDone(RF_DagNode_t *node)
{
	int     i;

	/* return true if forward execution is completed for a node and it's
	 * succedents */
	switch (node->status) {
	case rf_wait:
		/* should never be called in this state */
		RF_PANIC();
		break;
	case rf_fired:
		/* node is currently executing, so we're not done */
		return (RF_FALSE);
	case rf_good:
		/* for each succedent recursively check branch */
		for (i = 0; i < node->numSuccedents; i++)
			if (!BranchDone(node->succedents[i]))
				return RF_FALSE;
		return RF_TRUE;	/* node and all succedent branches aren't in
				 * fired state */
	case rf_bad:
		/* succedents can't fire */
		return (RF_TRUE);
	case rf_recover:
		/* should never be called in this state */
		RF_PANIC();
		break;
	case rf_undone:
	case rf_panic:
		/* XXX need to fix this case */
		/* for now, assume that we're done */
		return (RF_TRUE);
	default:
		/* illegal node status */
		RF_PANIC();
		break;
	}
}
Example #5
0
/* user context and dag-exec-thread context: Fire a node.  The node's
 * status field determines which function, do or undo, to be fired.
 * This routine assumes that the node's status field has alread been
 * set to "fired" or "recover" to indicate the direction of execution.
 */
static void
FireNode(RF_DagNode_t *node)
{
	switch (node->status) {
	case rf_fired:
		/* fire the do function of a node */
#if RF_DEBUG_ENGINE
		if (rf_engineDebug) {
			printf("raid%d: Firing node 0x%lx (%s)\n",
			       node->dagHdr->raidPtr->raidid,
			       (unsigned long) node, node->name);
		}
#endif
		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
#if defined(__NetBSD__) && defined(_KERNEL)
			/* thread_block(); */
			/* printf("Need to block the thread here...\n");  */
			/* XXX thread_block is actually mentioned in
			 * /usr/include/vm/vm_extern.h */
#else
			thread_block();
#endif
		}
		(*(node->doFunc)) (node);
		break;
	case rf_recover:
		/* fire the undo function of a node */
#if RF_DEBUG_ENGINE
		if (rf_engineDebug) {
			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
			       node->dagHdr->raidPtr->raidid,
			       (unsigned long) node, node->name);
		}
#endif
		if (node->flags & RF_DAGNODE_FLAG_YIELD)
#if defined(__NetBSD__) && defined(_KERNEL)
			/* thread_block(); */
			/* printf("Need to block the thread here...\n"); */
			/* XXX thread_block is actually mentioned in
			 * /usr/include/vm/vm_extern.h */
#else
			thread_block();
#endif
		(*(node->undoFunc)) (node);
		break;
	default:
		RF_PANIC();
		break;
	}
}
Example #6
0
/*
 * The following three states create, execute, and post-process DAGs.
 * The error recovery unit is a single DAG.
 * By default, SelectAlgorithm creates an array of DAGs, one per parity stripe.
 * In some tricky cases, multiple dags per stripe are created.
 *   - DAGs within a parity stripe are executed sequentially (arbitrary order).
 *   - DAGs for distinct parity stripes are executed concurrently.
 *
 * Repeat until all DAGs complete successfully -or- DAG selection fails.
 *
 * while !done
 *   create dag(s) (SelectAlgorithm)
 *   if dag
 *     execute dag (DispatchDAG)
 *     if dag successful
 *       done (SUCCESS)
 *     else
 *       !done (RETRY - start over with new dags)
 *   else
 *     done (FAIL)
 */
int
rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
{
	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
	RF_Etimer_t timer;
	RF_DagHeader_t *dag_h;
	int i, selectStatus;

	/*
	 * Generate a dag for the access, and fire it off. When the dag
	 * completes, we'll get re-invoked in the next state.
	 */
	RF_ETIMER_START(timer);
	/* SelectAlgorithm returns one or more dags. */
	selectStatus = rf_SelectAlgorithm(desc,
	    desc->flags | RF_DAG_SUPPRESS_LOCKS);
	if (rf_printDAGsDebug)
		for (i = 0; i < desc->numStripes; i++)
			rf_PrintDAGList(desc->dagArray[i].dags);
	RF_ETIMER_STOP(timer);
	RF_ETIMER_EVAL(timer);
	/* Update time to create all dags. */
	tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);

	desc->status = 0;	/* Good status. */

	if (selectStatus) {
		/* Failed to create a dag. */
		/*
		 * This happens when there are too many faults or incomplete
		 * dag libraries.
		 */
		printf("[Failed to create a DAG]\n");
		RF_PANIC();
	} else {
		/* Bind dags to desc. */
		for (i = 0; i < desc->numStripes; i++) {
			dag_h = desc->dagArray[i].dags;
			while (dag_h) {
				dag_h->bp = (struct buf *) desc->bp;
				dag_h->tracerec = tracerec;
				dag_h = dag_h->next;
			}
		}
		desc->flags |= RF_DAG_DISPATCH_RETURNED;
		desc->state++;	/* Next state should be rf_State_ExecuteDAG. */
	}
	return RF_FALSE;
}
Example #7
0
/*
 * Process a fired node which has completed
 */
static void
ProcessNode(RF_DagNode_t *node, int context)
{
	RF_Raid_t *raidPtr;

	raidPtr = node->dagHdr->raidPtr;

	switch (node->status) {
	case rf_good:
		/* normal case, don't need to do anything */
		break;
	case rf_bad:
		if ((node->dagHdr->numCommits > 0) ||
		    (node->dagHdr->numCommitNodes == 0)) {
			/* crossed commit barrier */
			node->dagHdr->status = rf_rollForward;
#if RF_DEBUG_ENGINE
			if (rf_engineDebug) {
				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
			}
#endif
		} else {
			/* never reached commit barrier */
			node->dagHdr->status = rf_rollBackward;
#if RF_DEBUG_ENGINE
			if (rf_engineDebug) {
				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
			}
#endif
		}
		break;
	case rf_undone:
		/* normal rollBackward case, don't need to do anything */
		break;
	case rf_panic:
		/* an undo node failed!!! */
		printf("UNDO of a node failed!!!/n");
		break;
	default:
		printf("node finished execution with an illegal status!!!\n");
		RF_PANIC();
		break;
	}

	/* enqueue node's succedents (antecedents if rollBackward) for
	 * execution */
	PropagateResults(node, context);
}
Example #8
0
/* force the array into reconfigured mode without doing reconstruction */
int
rf_SetReconfiguredMode(RF_Raid_t *raidPtr, int col)
{
	if (!(raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
		printf("Can't set reconfigured mode in dedicated-spare array\n");
		RF_PANIC();
	}
	RF_LOCK_MUTEX(raidPtr->mutex);
	raidPtr->numFailures++;
	raidPtr->Disks[col].status = rf_ds_dist_spared;
	raidPtr->status = rf_rs_reconfigured;
	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
	/* install spare table only if declustering + distributed sparing
	 * architecture. */
	if (raidPtr->Layout.map->flags & RF_BD_DECLUSTERED)
		rf_InstallSpareTable(raidPtr, col);
	RF_UNLOCK_MUTEX(raidPtr->mutex);
	return (0);
}
Example #9
0
int
rf_State_Map(RF_RaidAccessDesc_t *desc)
{
	RF_Raid_t *raidPtr = desc->raidPtr;
	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
	RF_Etimer_t timer;

	RF_ETIMER_START(timer);

	if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress,
	     desc->numBlocks, desc->bufPtr, RF_DONT_REMAP)))
		RF_PANIC();

	RF_ETIMER_STOP(timer);
	RF_ETIMER_EVAL(timer);
	tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);

	desc->state++;
	return RF_FALSE;
}
Example #10
0
/*
 * This function is really just for debugging user-level stuff: it
 * frees up all memory, other RAIDframe resources which might otherwise
 * be kept around. This is used with systems like "sentinel" to detect
 * memory leaks.
 */
int 
rf_UnbootRaidframe()
{
	int     rc;

	RF_LOCK_MUTEX(configureMutex);
	if (configureCount) {
		RF_UNLOCK_MUTEX(configureMutex);
		return (EBUSY);
	}
	raidframe_booted = 0;
	RF_UNLOCK_MUTEX(configureMutex);
	rc = rf_mutex_destroy(&configureMutex);
	if (rc) {
		RF_ERRORMSG3("Unable to destroy mutex file %s line %d rc=%d\n", __FILE__,
		    __LINE__, rc);
		RF_PANIC();
	}
#if RF_DEBUG_ATOMIC > 0
	rf_atent_shutdown();
#endif				/* RF_DEBUG_ATOMIC > 0 */
	return (0);
}
Example #11
0
int
rf_PQDoubleRecoveryFunc(RF_DagNode_t *node)
{
	int np = node->numParams;
	RF_AccessStripeMap_t *asmap =
	    (RF_AccessStripeMap_t *) node->params[np - 1].p;
	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
	int d, i;
	unsigned coeff;
	RF_RaidAddr_t sosAddr, suoffset;
	RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
	int two = 0;
	RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
	char *buf;
	int numDataCol = layoutPtr->numDataCol;
	RF_Etimer_t timer;
	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;

	RF_ETIMER_START(timer);

	if (asmap->failedPDAs[1] &&
	    (asmap->failedPDAs[1]->numSector +
	     asmap->failedPDAs[0]->numSector < secPerSU)) {
		RF_ASSERT(0);
		ppda = node->params[np - 6].p;
		ppda2 = node->params[np - 5].p;
		qpda = node->params[np - 4].p;
		qpda2 = node->params[np - 3].p;
		d = (np - 6);
		two = 1;
	} else {
		ppda = node->params[np - 4].p;
		qpda = node->params[np - 3].p;
		d = (np - 4);
	}

	for (i = 0; i < d; i++) {
		pda = node->params[i].p;
		buf = pda->bufPtr;
		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
		len = pda->numSector;
		coeff = rf_RaidAddressToStripeUnitID(layoutPtr,
		    pda->raidAddress);
		/* Compute the data unit offset within the column. */
		coeff = (coeff % raidPtr->Layout.numDataCol);
		/* See if pda intersects a recovery pda. */
		rf_applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
		if (two)
			rf_applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
	}

	/*
	 * Ok, we got the parity back to the point where we can recover. We
	 * now need to determine the coeff of the columns that need to be
	 * recovered. We can also only need to recover a single stripe unit.
	 */

	if (asmap->failedPDAs[1] == NULL) {	/*
						 * Only a single stripe unit
						 * to recover.
						 */
		pda = asmap->failedPDAs[0];
		sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
		    asmap->raidAddress);
		/* Need to determine the column of the other failed disk. */
		coeff = rf_RaidAddressToStripeUnitID(layoutPtr,
		    pda->raidAddress);
		/* Compute the data unit offset within the column. */
		coeff = (coeff % raidPtr->Layout.numDataCol);
		for (i = 0; i < numDataCol; i++) {
			npda.raidAddress = sosAddr + (i * secPerSU);
			(raidPtr->Layout.map->MapSector) (raidPtr,
			    npda.raidAddress, &(npda.row), &(npda.col),
			    &(npda.startSector), 0);
			/* Skip over dead disks. */
			if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col]
			    .status))
				if (i != coeff)
					break;
		}
		RF_ASSERT(i < numDataCol);
		RF_ASSERT(two == 0);
		/*
		 * Recover the data. Since we need only to recover one
		 * column, we overwrite the parity with the other one.
		 */
		if (coeff < i)	/* Recovering 'a'. */
			rf_PQ_recover((unsigned long *) ppda->bufPtr,
			    (unsigned long *) qpda->bufPtr,
			    (unsigned long *) pda->bufPtr,
			    (unsigned long *) ppda->bufPtr,
			    rf_RaidAddressToByte(raidPtr, pda->numSector),
			    coeff, i);
		else		/* Recovering 'b'. */
			rf_PQ_recover((unsigned long *) ppda->bufPtr,
			    (unsigned long *) qpda->bufPtr,
			    (unsigned long *) ppda->bufPtr,
			    (unsigned long *) pda->bufPtr,
			    rf_RaidAddressToByte(raidPtr, pda->numSector),
			    i, coeff);
	} else
		RF_PANIC();

	RF_ETIMER_STOP(timer);
	RF_ETIMER_EVAL(timer);
	if (tracerec)
		tracerec->q_us += RF_ETIMER_VAL_US(timer);
	rf_GenericWakeupFunc(node, 0);
	return (0);
}
Example #12
0
static void
DAGExecutionThread(RF_ThreadArg_t arg)
{
	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
	RF_Raid_t *raidPtr;
	int     ks;
	int     s;

	raidPtr = (RF_Raid_t *) arg;

#if RF_DEBUG_ENGINE
	if (rf_engineDebug) {
		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
	}
#endif
	s = splbio();

	DO_LOCK(raidPtr);
	while (!raidPtr->shutdown_engine) {

		while (raidPtr->node_queue != NULL) {
			local_nq = raidPtr->node_queue;
			fire_nq = NULL;
			term_nq = NULL;
			raidPtr->node_queue = NULL;
			DO_UNLOCK(raidPtr);

			/* first, strip out the terminal nodes */
			while (local_nq) {
				nd = local_nq;
				local_nq = local_nq->next;
				switch (nd->dagHdr->status) {
				case rf_enable:
				case rf_rollForward:
					if (nd->numSuccedents == 0) {
						/* end of the dag, add to
						 * callback list */
						nd->next = term_nq;
						term_nq = nd;
					} else {
						/* not the end, add to the
						 * fire queue */
						nd->next = fire_nq;
						fire_nq = nd;
					}
					break;
				case rf_rollBackward:
					if (nd->numAntecedents == 0) {
						/* end of the dag, add to the
						 * callback list */
						nd->next = term_nq;
						term_nq = nd;
					} else {
						/* not the end, add to the
						 * fire queue */
						nd->next = fire_nq;
						fire_nq = nd;
					}
					break;
				default:
					RF_PANIC();
					break;
				}
			}

			/* execute callback of dags which have reached the
			 * terminal node */
			while (term_nq) {
				nd = term_nq;
				term_nq = term_nq->next;
				nd->next = NULL;
				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
				raidPtr->dags_in_flight--;	/* debug only */
			}

			/* fire remaining nodes */
			FireNodeList(fire_nq);

			DO_LOCK(raidPtr);
		}
		while (!raidPtr->shutdown_engine &&
		       raidPtr->node_queue == NULL) {
			DO_WAIT(raidPtr);
		}
	}
	DO_UNLOCK(raidPtr);

	splx(s);
	kthread_exit(0);
}
Example #13
0
/* interrupt context:
 * for each succedent
 *    propagate required results from node to succedent
 *    increment succedent's numAntDone
 *    place newly-enable nodes on node queue for firing
 *
 * To save context switches, we don't place NIL nodes on the node queue,
 * but rather just process them as if they had fired.  Note that NIL nodes
 * that are the direct successors of the header will actually get fired by
 * DispatchDAG, which is fine because no context switches are involved.
 *
 * Important:  when running at user level, this can be called by any
 * disk thread, and so the increment and check of the antecedent count
 * must be locked.  I used the node queue mutex and locked down the
 * entire function, but this is certainly overkill.
 */
static void
PropagateResults(RF_DagNode_t *node, int context)
{
	RF_DagNode_t *s, *a;
	RF_Raid_t *raidPtr;
	int     i, ks;
	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
						 * finished */
	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
					 * antecedents */
	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
	RF_DagNode_t *q = NULL, *qh = NULL, *next;
	int     j, skipNode;

	raidPtr = node->dagHdr->raidPtr;

	DO_LOCK(raidPtr);

	/* debug - validate fire counts */
	for (i = 0; i < node->numAntecedents; i++) {
		a = *(node->antecedents + i);
		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
		a->numSuccDone++;
	}

	switch (node->dagHdr->status) {
	case rf_enable:
	case rf_rollForward:
		for (i = 0; i < node->numSuccedents; i++) {
			s = *(node->succedents + i);
			RF_ASSERT(s->status == rf_wait);
			(s->numAntDone)++;
			if (s->numAntDone == s->numAntecedents) {
				/* look for NIL nodes */
				if (s->doFunc == rf_NullNodeFunc) {
					/* don't fire NIL nodes, just process
					 * them */
					s->next = finishlist;
					finishlist = s;
				} else {
					/* look to see if the node is to be
					 * skipped */
					skipNode = RF_FALSE;
					for (j = 0; j < s->numAntecedents; j++)
						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
							skipNode = RF_TRUE;
					if (skipNode) {
						/* this node has one or more
						 * failed true data
						 * dependencies, so skip it */
						s->next = skiplist;
						skiplist = s;
					} else
						/* add s to list of nodes (q)
						 * to execute */
						if (context != RF_INTR_CONTEXT) {
							/* we only have to
							 * enqueue if we're at
							 * intr context */
							/* put node on
                                                           a list to
                                                           be fired
                                                           after we
                                                           unlock */
							s->next = firelist;
							firelist = s;
						} else {
							/* enqueue the
							   node for
							   the dag
							   exec thread
							   to fire */
							RF_ASSERT(NodeReady(s));
							if (q) {
								q->next = s;
								q = s;
							} else {
								qh = q = s;
								qh->next = NULL;
							}
						}
				}
			}
		}

		if (q) {
			/* xfer our local list of nodes to the node queue */
			q->next = raidPtr->node_queue;
			raidPtr->node_queue = qh;
			DO_SIGNAL(raidPtr);
		}
		DO_UNLOCK(raidPtr);

		for (; skiplist; skiplist = next) {
			next = skiplist->next;
			skiplist->status = rf_skipped;
			for (i = 0; i < skiplist->numAntecedents; i++) {
				skiplist->antecedents[i]->numSuccFired++;
			}
			if (skiplist->commitNode) {
				skiplist->dagHdr->numCommits++;
			}
			rf_FinishNode(skiplist, context);
		}
		for (; finishlist; finishlist = next) {
			/* NIL nodes: no need to fire them */
			next = finishlist->next;
			finishlist->status = rf_good;
			for (i = 0; i < finishlist->numAntecedents; i++) {
				finishlist->antecedents[i]->numSuccFired++;
			}
			if (finishlist->commitNode)
				finishlist->dagHdr->numCommits++;
			/*
		         * Okay, here we're calling rf_FinishNode() on
		         * nodes that have the null function as their
		         * work proc. Such a node could be the
		         * terminal node in a DAG. If so, it will
		         * cause the DAG to complete, which will in
		         * turn free memory used by the DAG, which
		         * includes the node in question. Thus, we
		         * must avoid referencing the node at all
		         * after calling rf_FinishNode() on it.  */
			rf_FinishNode(finishlist, context);	/* recursive call */
		}
		/* fire all nodes in firelist */
		FireNodeList(firelist);
		break;

	case rf_rollBackward:
		for (i = 0; i < node->numAntecedents; i++) {
			a = *(node->antecedents + i);
			RF_ASSERT(a->status == rf_good);
			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
			RF_ASSERT(a->numSuccDone <= a->numSuccFired);

			if (a->numSuccDone == a->numSuccFired) {
				if (a->undoFunc == rf_NullNodeFunc) {
					/* don't fire NIL nodes, just process
					 * them */
					a->next = finishlist;
					finishlist = a;
				} else {
					if (context != RF_INTR_CONTEXT) {
						/* we only have to enqueue if
						 * we're at intr context */
						/* put node on a list to be
						   fired after we unlock */
						a->next = firelist;

						firelist = a;
					} else {
						/* enqueue the node for the
						   dag exec thread to fire */
						RF_ASSERT(NodeReady(a));
						if (q) {
							q->next = a;
							q = a;
						} else {
							qh = q = a;
							qh->next = NULL;
						}
					}
				}
			}
		}
		if (q) {
			/* xfer our local list of nodes to the node queue */
			q->next = raidPtr->node_queue;
			raidPtr->node_queue = qh;
			DO_SIGNAL(raidPtr);
		}
		DO_UNLOCK(raidPtr);
		for (; finishlist; finishlist = next) {
			/* NIL nodes: no need to fire them */
			next = finishlist->next;
			finishlist->status = rf_good;
			/*
		         * Okay, here we're calling rf_FinishNode() on
		         * nodes that have the null function as their
		         * work proc. Such a node could be the first
		         * node in a DAG. If so, it will cause the DAG
		         * to complete, which will in turn free memory
		         * used by the DAG, which includes the node in
		         * question. Thus, we must avoid referencing
		         * the node at all after calling
		         * rf_FinishNode() on it.  */
			rf_FinishNode(finishlist, context);	/* recursive call */
		}
		/* fire all nodes in firelist */
		FireNodeList(firelist);

		break;
	default:
		printf("Engine found illegal DAG status in PropagateResults()\n");
		RF_PANIC();
		break;
	}
}
Example #14
0
void
rf_CreateNonredundantDAG(
	RF_Raid_t		*raidPtr,
	RF_AccessStripeMap_t	*asmap,
	RF_DagHeader_t		*dag_h,
	void			*bp,
	RF_RaidAccessFlags_t	 flags,
	RF_AllocListElem_t	*allocList,
	RF_IoType_t		 type
)
{
	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
	RF_PhysDiskAddr_t *pda = asmap->physInfo;
	int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
	int i, n, totalNumNodes;
	char *name;

	n = asmap->numStripeUnitsAccessed;
	dag_h->creator = "NonredundantDAG";

	RF_ASSERT(RF_IO_IS_R_OR_W(type));
	switch (type) {
	case RF_IO_TYPE_READ:
		doFunc = rf_DiskReadFunc;
		undoFunc = rf_DiskReadUndoFunc;
		name = "R  ";
		if (rf_dagDebug)
			printf("[Creating non-redundant read DAG]\n");
		break;
	case RF_IO_TYPE_WRITE:
		doFunc = rf_DiskWriteFunc;
		undoFunc = rf_DiskWriteUndoFunc;
		name = "W  ";
		if (rf_dagDebug)
			printf("[Creating non-redundant write DAG]\n");
		break;
	default:
		RF_PANIC();
	}

	/*
	 * For reads, the dag can not commit until the block node is reached.
	 * For writes, the dag commits immediately.
	 */
	dag_h->numCommitNodes = 1;
	dag_h->numCommits = 0;
	dag_h->numSuccedents = 1;

	/*
	 * Node count:
	 * 1 block node
	 * n data reads (or writes)
	 * 1 commit node
	 * 1 terminator node
	 */
	RF_ASSERT(n > 0);
	totalNumNodes = n + 3;
	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
	    (RF_DagNode_t *), allocList);
	i = 0;
	diskNodes = &nodes[i];
	i += n;
	blockNode = &nodes[i];
	i += 1;
	commitNode = &nodes[i];
	i += 1;
	termNode = &nodes[i];
	i += 1;
	RF_ASSERT(i == totalNumNodes);

	/* Initialize nodes. */
	switch (type) {
	case RF_IO_TYPE_READ:
		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
		    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil",
		    allocList);
		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
		    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt",
		    allocList);
		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
		    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm",
		    allocList);
		break;
	case RF_IO_TYPE_WRITE:
		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
		    rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil",
		    allocList);
		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
		    rf_NullNodeUndoFunc, NULL, n, 1, 0, 0, dag_h, "Cmt",
		    allocList);
		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
		    rf_TerminateUndoFunc, NULL, 0, n, 0, 0, dag_h, "Trm",
		    allocList);
		break;
	default:
		RF_PANIC();
	}

	for (i = 0; i < n; i++) {
		RF_ASSERT(pda != NULL);
		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc,
		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList);
		diskNodes[i].params[0].p = pda;
		diskNodes[i].params[1].p = pda->bufPtr;
		/* Parity stripe id is not necessary. */
		diskNodes[i].params[2].v = 0;
		diskNodes[i].params[3].v =
		    RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
		pda = pda->next;
	}

	/*
	 * Connect nodes.
	 */

	/* Connect hdr to block node. */
	RF_ASSERT(blockNode->numAntecedents == 0);
	dag_h->succedents[0] = blockNode;

	if (type == RF_IO_TYPE_READ) {
		/* Connecting a nonredundant read DAG. */
		RF_ASSERT(blockNode->numSuccedents == n);
		RF_ASSERT(commitNode->numAntecedents == n);
		for (i = 0; i < n; i++) {
			/* Connect block node to each read node. */
			RF_ASSERT(diskNodes[i].numAntecedents == 1);
			blockNode->succedents[i] = &diskNodes[i];
			diskNodes[i].antecedents[0] = blockNode;
			diskNodes[i].antType[0] = rf_control;

			/* Connect each read node to the commit node. */
			RF_ASSERT(diskNodes[i].numSuccedents == 1);
			diskNodes[i].succedents[0] = commitNode;
			commitNode->antecedents[i] = &diskNodes[i];
			commitNode->antType[i] = rf_control;
		}
		/* Connect the commit node to the term node. */
		RF_ASSERT(commitNode->numSuccedents == 1);
		RF_ASSERT(termNode->numAntecedents == 1);
		RF_ASSERT(termNode->numSuccedents == 0);
		commitNode->succedents[0] = termNode;
		termNode->antecedents[0] = commitNode;
		termNode->antType[0] = rf_control;
	} else {
		/* Connecting a nonredundant write DAG. */
		/* Connect the block node to the commit node. */
		RF_ASSERT(blockNode->numSuccedents == 1);
		RF_ASSERT(commitNode->numAntecedents == 1);
		blockNode->succedents[0] = commitNode;
		commitNode->antecedents[0] = blockNode;
		commitNode->antType[0] = rf_control;

		RF_ASSERT(commitNode->numSuccedents == n);
		RF_ASSERT(termNode->numAntecedents == n);
		RF_ASSERT(termNode->numSuccedents == 0);
		for (i = 0; i < n; i++) {
			/* Connect the commit node to each write node. */
			RF_ASSERT(diskNodes[i].numAntecedents == 1);
			commitNode->succedents[i] = &diskNodes[i];
			diskNodes[i].antecedents[0] = commitNode;
			diskNodes[i].antType[0] = rf_control;

			/* Connect each write node to the term node. */
			RF_ASSERT(diskNodes[i].numSuccedents == 1);
			diskNodes[i].succedents[0] = termNode;
			termNode->antecedents[i] = &diskNodes[i];
			termNode->antType[i] = rf_control;
		}
	}
}