double igraph_norm_rand(void) { double u1; #define BIG 134217728 /* 2^27 */ /* unif_rand() alone is not of high enough precision */ u1 = RNG_UNIF(0,1); u1 = (int)(BIG*u1) + RNG_UNIF(0,1); return igraph_qnorm5(u1/BIG, 0.0, 1.0, 1, 0); }
int splicing_simulate_paired_reads(const splicing_gff_t *gff, int gene, const splicing_vector_t *expression, int noreads, int readLength, const splicing_vector_t *fragmentProb, int fragmentStart, double normalMean, double normalVar, double numDevs, splicing_vector_int_t *isoform, splicing_vector_int_t *position, splicing_strvector_t *cigar, splicing_vector_t *sampleprob) { size_t i, j, noiso, il, nogenes; splicing_vector_t *mysampleprob=sampleprob, vsampleprob; splicing_vector_t px, cpx; double sumpx, sumpsi=0.0; splicing_vector_int_t isolen; int goodiso=0; splicing_vector_int_t exstart, exend, exidx; splicing_vector_t *myfragmentProb=(splicing_vector_t*) fragmentProb, vfragmentProb; int fs, fl; SPLICING_CHECK(splicing_gff_nogenes(gff, &nogenes)); if (gene < 0 || gene >= nogenes) { SPLICING_ERROR("Invalid gene id", SPLICING_EINVAL); } /* TODO: more error checks */ if (!fragmentProb) { myfragmentProb=&vfragmentProb; SPLICING_CHECK(splicing_vector_init(&vfragmentProb, 0)); SPLICING_FINALLY(splicing_vector_destroy, &vfragmentProb); SPLICING_CHECK(splicing_normal_fragment(normalMean, normalVar, numDevs, readLength, myfragmentProb, &fragmentStart)); splicing_vector_scale(myfragmentProb, 1.0/splicing_vector_sum(myfragmentProb)); } il=splicing_vector_size(myfragmentProb); fs=fragmentStart; fl=fragmentStart+il-1; SPLICING_CHECK(splicing_gff_noiso_one(gff, gene, &noiso)); if ( fabs(splicing_vector_sum(myfragmentProb) - 1.0) > 1e-10 ) { SPLICING_ERROR("Fragment length distribution does not sum up to 1", SPLICING_EINVAL); } SPLICING_CHECK(splicing_vector_int_init(&isolen, noiso)); SPLICING_FINALLY(splicing_vector_int_destroy, &isolen); SPLICING_CHECK(splicing_gff_isolength_one(gff, gene, &isolen)); SPLICING_CHECK(splicing_vector_copy(&px, myfragmentProb)); SPLICING_FINALLY(splicing_vector_destroy, &px); SPLICING_CHECK(splicing_vector_init(&cpx, il)); SPLICING_FINALLY(splicing_vector_destroy, &cpx); if (!sampleprob) { mysampleprob=&vsampleprob; SPLICING_CHECK(splicing_vector_init(mysampleprob, noiso)); SPLICING_FINALLY(splicing_vector_destroy, mysampleprob); } else { SPLICING_CHECK(splicing_vector_resize(mysampleprob, noiso)); } for (sumpx=VECTOR(px)[0], i=1; i<il; i++) { VECTOR(px)[i] += VECTOR(px)[i-1]; sumpx += VECTOR(px)[i]; } VECTOR(cpx)[0] = VECTOR(px)[0]; for (i=1; i<il; i++) { VECTOR(cpx)[i] = VECTOR(cpx)[i-1] + VECTOR(px)[i]; } for (i=0; i<noiso; i++) { int ilen=VECTOR(isolen)[i]; int r1= ilen >= fl ? ilen - fl + 1 : 0; int r2= ilen >= fs ? (ilen >= fl ? fl - fs : ilen - fs + 1) : 0; /* int r3= fs - 1; */ double sp=0.0; if (r1 > 0) { sp += r1; } if (r2 > 0) { sp += VECTOR(cpx)[r2-1]; } VECTOR(*mysampleprob)[i] = sp * VECTOR(*expression)[i]; if (VECTOR(*mysampleprob)[i] != 0) { goodiso += 1; } sumpsi += VECTOR(*mysampleprob)[i]; } if (goodiso == 0) { SPLICING_ERROR("No isoform is possible", SPLICING_FAILURE); } for (i=1; i<noiso; i++) { VECTOR(*mysampleprob)[i] += VECTOR(*mysampleprob)[i-1]; } SPLICING_CHECK(splicing_vector_int_resize(isoform, noreads*2)); for (i=0; i<2*noreads; i+=2) { int w; double rand; if (noiso==1) { w=0; } else if (noiso==2) { rand = RNG_UNIF01() * sumpsi; w = (rand < VECTOR(*mysampleprob)[0]) ? 0 : 1; } else { rand = RNG_UNIF01() * sumpsi; for (w=0; rand > VECTOR(*mysampleprob)[w]; w++) ; } VECTOR(*isoform)[i]=VECTOR(*isoform)[i+1]=w; } if (!sampleprob) { splicing_vector_destroy(mysampleprob); SPLICING_FINALLY_CLEAN(1); } else { for (i=noiso-1; i>0; i--) { VECTOR(*mysampleprob)[i] -= VECTOR(*mysampleprob)[i-1]; } } /* We have the isoforms, now get the read positions. */ SPLICING_CHECK(splicing_vector_int_resize(position, noreads*2)); SPLICING_CHECK(splicing_vector_int_init(&exstart, 0)); SPLICING_FINALLY(splicing_vector_int_destroy, &exstart); SPLICING_CHECK(splicing_vector_int_init(&exend, 0)); SPLICING_FINALLY(splicing_vector_int_destroy, &exend); SPLICING_CHECK(splicing_vector_int_init(&exidx, 0)); SPLICING_FINALLY(splicing_vector_int_destroy, &exidx); SPLICING_CHECK(splicing_gff_exon_start_end(gff, &exstart, &exend, &exidx, gene)); /* Positions in isoform coordinates first. These are sampled based on the fragment length distribution. */ for (i=0, j=0; i<noreads; i++) { int iso=VECTOR(*isoform)[2*i]; int ilen=VECTOR(isolen)[iso]; int r1= ilen >= fl ? ilen - fl + 1 : 0; int r2= ilen >= fs ? (ilen >= fl ? fl - fs : ilen - fs + 1) : 0; /* int r3= fs - 1; */ int pos, fragment; double sp=0.0; if (r1 > 0) { sp += r1; } if (r2 > 0) { sp += VECTOR(cpx)[r2-1]; } double rand=RNG_UNIF(0, sp); if (rand < r1) { pos = ceil(rand); } else { int w; rand -= r1; for (w=0; VECTOR(cpx)[w] < rand; w++) ; pos = r1 + r2 - w; } if (pos <= r1) { rand=RNG_UNIF(0, 1.0); } else { rand=RNG_UNIF(0, VECTOR(px)[r1+r2-pos]); } for (fragment=0; VECTOR(px)[fragment] < rand; fragment++) ; fragment += fragmentStart; VECTOR(*position)[j++] = pos; VECTOR(*position)[j++] = pos+fragment-readLength; } /* Translate positions to genomic coordinates */ /* TODO: some of this is already calculated */ SPLICING_CHECK(splicing_iso_to_genomic(gff, gene, isoform, /*converter=*/ 0, position)); /* CIGAR strings */ splicing_strvector_clear(cigar); SPLICING_CHECK(splicing_strvector_reserve(cigar, 2*noreads)); for (j=0; j<2*noreads; j++) { char tmp[1000], *tmp2=tmp; int iso=VECTOR(*isoform)[j]; size_t rs=VECTOR(*position)[j]; int ex=0; int rl=readLength; for (ex=VECTOR(exidx)[iso]; VECTOR(exend)[ex] < rs; ex++) ; while (rs + rl - 1 > VECTOR(exend)[ex]) { tmp2 += snprintf(tmp2, sizeof(tmp)/sizeof(char)-(tmp2-tmp)-1, "%iM%iN", (int) (VECTOR(exend)[ex]-rs+1), (int) (VECTOR(exstart)[ex+1]-VECTOR(exend)[ex]-1)); if (tmp2 >= tmp + sizeof(tmp)/sizeof(char)) { SPLICING_ERROR("CIGAR string too long", SPLICING_EINVAL); } rl -= (VECTOR(exend)[ex] - rs + 1); rs = VECTOR(exstart)[ex+1]; ex++; } tmp2 += snprintf(tmp2, sizeof(tmp)/sizeof(char)-(tmp2-tmp)-1, "%iM", rl); if (tmp2 >= tmp + sizeof(tmp)/sizeof(char)) { SPLICING_ERROR("CIGAR string too long", SPLICING_EINVAL); } SPLICING_CHECK(splicing_strvector_append(cigar, tmp)); } splicing_vector_int_destroy(&exidx); splicing_vector_int_destroy(&exend); splicing_vector_int_destroy(&exstart); splicing_vector_destroy(&cpx); splicing_vector_destroy(&px); splicing_vector_int_destroy(&isolen); SPLICING_FINALLY_CLEAN(6); if (!fragmentProb) { splicing_vector_destroy(myfragmentProb); SPLICING_FINALLY_CLEAN(1); } return 0; }
int igraph_layout_gem(const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t use_seed, igraph_integer_t maxiter, igraph_real_t temp_max, igraph_real_t temp_min, igraph_real_t temp_init) { igraph_integer_t no_nodes = igraph_vcount(graph); igraph_vector_int_t perm; igraph_vector_float_t impulse_x, impulse_y, temp, skew_gauge; igraph_integer_t i; float temp_global; igraph_integer_t perm_pointer = 0; float barycenter_x = 0.0, barycenter_y = 0.0; igraph_vector_t phi; igraph_vector_t neis; const float elen_des2 = 128 * 128; const float gamma = 1/16.0; const float alpha_o = M_PI; const float alpha_r = M_PI / 3.0; const float sigma_o = 1.0 / 3.0; const float sigma_r = 1.0 / 2.0 / no_nodes; if (maxiter < 0) { IGRAPH_ERROR("Number of iterations must be non-negative in GEM layout", IGRAPH_EINVAL); } if (use_seed && (igraph_matrix_nrow(res) != no_nodes || igraph_matrix_ncol(res) != 2)) { IGRAPH_ERROR("Invalid start position matrix size in GEM layout", IGRAPH_EINVAL); } if (temp_max <= 0) { IGRAPH_ERROR("Maximum temperature should be positive in GEM layout", IGRAPH_EINVAL); } if (temp_min <= 0) { IGRAPH_ERROR("Minimum temperature should be positive in GEM layout", IGRAPH_EINVAL); } if (temp_init <= 0) { IGRAPH_ERROR("Initial temperature should be positive in GEM layout", IGRAPH_EINVAL); } if (temp_max < temp_init || temp_init < temp_min) { IGRAPH_ERROR("Minimum <= Initial <= Maximum temperature is required " "in GEM layout", IGRAPH_EINVAL); } if (no_nodes == 0) { return 0; } IGRAPH_CHECK(igraph_vector_float_init(&impulse_x, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &impulse_x); IGRAPH_CHECK(igraph_vector_float_init(&impulse_y, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &impulse_y); IGRAPH_CHECK(igraph_vector_float_init(&temp, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &temp); IGRAPH_CHECK(igraph_vector_float_init(&skew_gauge, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &skew_gauge); IGRAPH_CHECK(igraph_vector_int_init_seq(&perm, 0, no_nodes-1)); IGRAPH_FINALLY(igraph_vector_int_destroy, &perm); IGRAPH_VECTOR_INIT_FINALLY(&phi, no_nodes); IGRAPH_VECTOR_INIT_FINALLY(&neis, 10); RNG_BEGIN(); /* Initialization */ igraph_degree(graph, &phi, igraph_vss_all(), IGRAPH_ALL, IGRAPH_LOOPS); if (!use_seed) { const igraph_real_t width_half=no_nodes*100, height_half=width_half; IGRAPH_CHECK(igraph_matrix_resize(res, no_nodes, 2)); for (i=0; i<no_nodes; i++) { MATRIX(*res, i, 0) = RNG_UNIF(-width_half, width_half); MATRIX(*res, i, 1) = RNG_UNIF(-height_half, height_half); barycenter_x += MATRIX(*res, i, 0); barycenter_y += MATRIX(*res, i, 1); VECTOR(phi)[i] *= (VECTOR(phi)[i] / 2.0 + 1.0); } } else { for (i=0; i<no_nodes; i++) { barycenter_x += MATRIX(*res, i, 0); barycenter_y += MATRIX(*res, i, 1); VECTOR(phi)[i] *= (VECTOR(phi)[i] / 2.0 + 1.0); } } igraph_vector_float_fill(&temp, temp_init); temp_global = temp_init * no_nodes; while (temp_global > temp_min * no_nodes && maxiter > 0) { /* choose a vertex v to update */ igraph_integer_t u, v, nlen, j; float px, py, pvx, pvy; if (!perm_pointer) { igraph_vector_int_shuffle(&perm); perm_pointer=no_nodes-1; } v=VECTOR(perm)[perm_pointer--]; /* compute v's impulse */ px = (barycenter_x/no_nodes - MATRIX(*res, v, 0)) * gamma * VECTOR(phi)[v]; py = (barycenter_y/no_nodes - MATRIX(*res, v, 1)) * gamma * VECTOR(phi)[v]; px += RNG_UNIF(-32.0, 32.0); py += RNG_UNIF(-32.0, 32.0); for (u = 0; u < no_nodes; u++) { float dx, dy, dist2; if (u == v) { continue; } dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); dist2=dx * dx + dy * dy; if (dist2 != 0) { px += dx * elen_des2 / dist2; py += dy * elen_des2 / dist2; } } IGRAPH_CHECK(igraph_neighbors(graph, &neis, v, IGRAPH_ALL)); nlen=igraph_vector_size(&neis); for (j = 0; j < nlen; j++) { igraph_integer_t u=VECTOR(neis)[j]; float dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); float dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); float dist2= dx * dx + dy * dy; px -= dx * dist2 / (elen_des2 * VECTOR(phi)[v]); py -= dy * dist2 / (elen_des2 * VECTOR(phi)[v]); } /* update v's position and temperature */ if (px != 0 || py != 0) { float plen = sqrtf(px * px + py * py); px *= VECTOR(temp)[v] / plen; py *= VECTOR(temp)[v] / plen; MATRIX(*res, v, 0) += px; MATRIX(*res, v, 1) += py; barycenter_x += px; barycenter_y += py; } pvx=VECTOR(impulse_x)[v]; pvy=VECTOR(impulse_y)[v]; if (pvx != 0 || pvy != 0) { float beta = atan2f(pvy - py, pvx - px); float sin_beta = sinf(beta); float sign_sin_beta = (sin_beta > 0) ? 1 : ((sin_beta < 0) ? -1 : 0); float cos_beta = cosf(beta); float abs_cos_beta = fabsf(cos_beta); float old_temp=VECTOR(temp)[v]; if (sin(beta) >= sin(M_PI_2 + alpha_r / 2.0)) { VECTOR(skew_gauge)[v] += sigma_r * sign_sin_beta; } if (abs_cos_beta >= cosf(alpha_o / 2.0)) { VECTOR(temp)[v] *= sigma_o * cos_beta; } VECTOR(temp)[v] *= (1 - fabsf(VECTOR(skew_gauge)[v])); if (VECTOR(temp)[v] > temp_max) { VECTOR(temp)[v] = temp_max; } VECTOR(impulse_x)[v] = px; VECTOR(impulse_y)[v] = py; temp_global += VECTOR(temp)[v] - old_temp; } maxiter--; } /* while temp && iter */ RNG_END(); igraph_vector_destroy(&neis); igraph_vector_destroy(&phi); igraph_vector_int_destroy(&perm); igraph_vector_float_destroy(&skew_gauge); igraph_vector_float_destroy(&temp); igraph_vector_float_destroy(&impulse_y); igraph_vector_float_destroy(&impulse_x); IGRAPH_FINALLY_CLEAN(7); return 0; }
int igraph_layout_fruchterman_reingold_3d(const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t use_seed, igraph_integer_t niter, igraph_real_t start_temp, const igraph_vector_t *weight, const igraph_vector_t *minx, const igraph_vector_t *maxx, const igraph_vector_t *miny, const igraph_vector_t *maxy, const igraph_vector_t *minz, const igraph_vector_t *maxz) { igraph_integer_t no_nodes=igraph_vcount(graph); igraph_integer_t no_edges=igraph_ecount(graph); igraph_integer_t i; igraph_vector_float_t dispx, dispy, dispz; igraph_real_t temp=start_temp; igraph_real_t difftemp=start_temp / niter; float width=sqrtf(no_nodes), height=width, depth=width; igraph_bool_t conn=1; float C; if (niter < 0) { IGRAPH_ERROR("Number of iterations must be non-negative in " "Fruchterman-Reingold layout", IGRAPH_EINVAL); } if (use_seed && (igraph_matrix_nrow(res) != no_nodes || igraph_matrix_ncol(res) != 3)) { IGRAPH_ERROR("Invalid start position matrix size in " "Fruchterman-Reingold layout", IGRAPH_EINVAL); } if (weight && igraph_vector_size(weight) != igraph_ecount(graph)) { IGRAPH_ERROR("Invalid weight vector length", IGRAPH_EINVAL); } if (minx && igraph_vector_size(minx) != no_nodes) { IGRAPH_ERROR("Invalid minx vector length", IGRAPH_EINVAL); } if (maxx && igraph_vector_size(maxx) != no_nodes) { IGRAPH_ERROR("Invalid maxx vector length", IGRAPH_EINVAL); } if (minx && maxx && !igraph_vector_all_le(minx, maxx)) { IGRAPH_ERROR("minx must not be greater than maxx", IGRAPH_EINVAL); } if (miny && igraph_vector_size(miny) != no_nodes) { IGRAPH_ERROR("Invalid miny vector length", IGRAPH_EINVAL); } if (maxy && igraph_vector_size(maxy) != no_nodes) { IGRAPH_ERROR("Invalid maxy vector length", IGRAPH_EINVAL); } if (miny && maxy && !igraph_vector_all_le(miny, maxy)) { IGRAPH_ERROR("miny must not be greater than maxy", IGRAPH_EINVAL); } if (minz && igraph_vector_size(minz) != no_nodes) { IGRAPH_ERROR("Invalid minz vector length", IGRAPH_EINVAL); } if (maxz && igraph_vector_size(maxz) != no_nodes) { IGRAPH_ERROR("Invalid maxz vector length", IGRAPH_EINVAL); } if (minz && maxz && !igraph_vector_all_le(minz, maxz)) { IGRAPH_ERROR("minz must not be greater than maxz", IGRAPH_EINVAL); } igraph_is_connected(graph, &conn, IGRAPH_WEAK); if (!conn) { C = no_nodes * sqrtf(no_nodes); } RNG_BEGIN(); if (!use_seed) { IGRAPH_CHECK(igraph_matrix_resize(res, no_nodes, 3)); for (i=0; i<no_nodes; i++) { igraph_real_t x1=minx ? VECTOR(*minx)[i] : -width/2; igraph_real_t x2=maxx ? VECTOR(*maxx)[i] : width/2; igraph_real_t y1=miny ? VECTOR(*miny)[i] : -height/2; igraph_real_t y2=maxy ? VECTOR(*maxy)[i] : height/2; igraph_real_t z1=minz ? VECTOR(*minz)[i] : -depth/2; igraph_real_t z2=maxz ? VECTOR(*maxz)[i] : depth/2; MATRIX(*res, i, 0) = RNG_UNIF(x1, x2); MATRIX(*res, i, 1) = RNG_UNIF(y1, y2); MATRIX(*res, i, 2) = RNG_UNIF(z1, z2); } } IGRAPH_CHECK(igraph_vector_float_init(&dispx, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispx); IGRAPH_CHECK(igraph_vector_float_init(&dispy, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispy); IGRAPH_CHECK(igraph_vector_float_init(&dispz, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispz); for (i=0; i<niter; i++) { igraph_integer_t v, u, e; /* calculate repulsive forces, we have a special version for unconnected graphs */ igraph_vector_float_null(&dispx); igraph_vector_float_null(&dispy); igraph_vector_float_null(&dispz); if (conn) { for (v=0; v<no_nodes; v++) { for (u=v+1; u<no_nodes; u++) { float dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); float dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); float dz=MATRIX(*res, v, 2) - MATRIX(*res, u, 2); float dlen=dx * dx + dy * dy + dz * dz; if (dlen == 0) { dx = RNG_UNIF01() * 1e-9; dy = RNG_UNIF01() * 1e-9; dz = RNG_UNIF01() * 1e-9; dlen = dx * dx + dy * dy + dz * dz; } VECTOR(dispx)[v] += dx/dlen; VECTOR(dispy)[v] += dy/dlen; VECTOR(dispz)[v] += dz/dlen; VECTOR(dispx)[u] -= dx/dlen; VECTOR(dispy)[u] -= dy/dlen; VECTOR(dispz)[u] -= dz/dlen; } } } else { for (v=0; v<no_nodes; v++) { for (u=v+1; u<no_nodes; u++) { float dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); float dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); float dz=MATRIX(*res, v, 2) - MATRIX(*res, u, 2); float dlen, rdlen; dlen=dx * dx + dy * dy + dz * dz; if (dlen == 0) { dx = RNG_UNIF01() * 1e-9; dy = RNG_UNIF01() * 1e-9; dz = RNG_UNIF01() * 1e-9; dlen = dx * dx + dy * dy + dz * dz; } rdlen=sqrt(dlen); VECTOR(dispx)[v] += dx * (C-dlen * rdlen) / (dlen*C); VECTOR(dispy)[v] += dy * (C-dlen * rdlen) / (dlen*C); VECTOR(dispy)[v] += dz * (C-dlen * rdlen) / (dlen*C); VECTOR(dispx)[u] -= dx * (C-dlen * rdlen) / (dlen*C); VECTOR(dispy)[u] -= dy * (C-dlen * rdlen) / (dlen*C); VECTOR(dispz)[u] -= dz * (C-dlen * rdlen) / (dlen*C); } } } /* calculate attractive forces */ for (e=0; e<no_edges; e++) { /* each edges is an ordered pair of vertices v and u */ igraph_integer_t v=IGRAPH_FROM(graph, e); igraph_integer_t u=IGRAPH_TO(graph, e); igraph_real_t dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); igraph_real_t dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); igraph_real_t dz=MATRIX(*res, v, 2) - MATRIX(*res, u, 2); igraph_real_t w=weight ? VECTOR(*weight)[e] : 1.0; igraph_real_t dlen=sqrt(dx * dx + dy * dy + dz * dz) * w; VECTOR(dispx)[v] -= (dx * dlen); VECTOR(dispy)[v] -= (dy * dlen); VECTOR(dispz)[v] -= (dz * dlen); VECTOR(dispx)[u] += (dx * dlen); VECTOR(dispy)[u] += (dy * dlen); VECTOR(dispz)[u] += (dz * dlen); } /* limit max displacement to temperature t and prevent from displacement outside frame */ for (v=0; v<no_nodes; v++) { igraph_real_t dx=VECTOR(dispx)[v] + RNG_UNIF01() * 1e-9; igraph_real_t dy=VECTOR(dispy)[v] + RNG_UNIF01() * 1e-9; igraph_real_t dz=VECTOR(dispz)[v] + RNG_UNIF01() * 1e-9; igraph_real_t displen=sqrt(dx * dx + dy * dy + dz * dz); igraph_real_t mx=fabs(dx) < temp ? dx : temp; igraph_real_t my=fabs(dy) < temp ? dy : temp; igraph_real_t mz=fabs(dz) < temp ? dz : temp; if (displen > 0) { MATRIX(*res, v, 0) += (dx / displen) * mx; MATRIX(*res, v, 1) += (dy / displen) * my; MATRIX(*res, v, 2) += (dz / displen) * mz; } if (minx && MATRIX(*res, v, 0) < VECTOR(*minx)[v]) { MATRIX(*res, v, 0) = VECTOR(*minx)[v]; } if (maxx && MATRIX(*res, v, 0) > VECTOR(*maxx)[v]) { MATRIX(*res, v, 0) = VECTOR(*maxx)[v]; } if (miny && MATRIX(*res, v, 1) < VECTOR(*miny)[v]) { MATRIX(*res, v, 1) = VECTOR(*miny)[v]; } if (maxy && MATRIX(*res, v, 1) > VECTOR(*maxy)[v]) { MATRIX(*res, v, 1) = VECTOR(*maxy)[v]; } if (minz && MATRIX(*res, v, 2) < VECTOR(*minz)[v]) { MATRIX(*res, v, 2) = VECTOR(*minz)[v]; } if (maxz && MATRIX(*res, v, 2) > VECTOR(*maxz)[v]) { MATRIX(*res, v, 2) = VECTOR(*maxz)[v]; } } temp -= difftemp; } RNG_END(); igraph_vector_float_destroy(&dispx); igraph_vector_float_destroy(&dispy); igraph_vector_float_destroy(&dispz); IGRAPH_FINALLY_CLEAN(3); return 0; }
int igraph_layout_i_fr(const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t use_seed, igraph_integer_t niter, igraph_real_t start_temp, const igraph_vector_t *weight, const igraph_vector_t *minx, const igraph_vector_t *maxx, const igraph_vector_t *miny, const igraph_vector_t *maxy) { igraph_integer_t no_nodes=igraph_vcount(graph); igraph_integer_t no_edges=igraph_ecount(graph); igraph_integer_t i; igraph_vector_float_t dispx, dispy; igraph_real_t temp=start_temp; igraph_real_t difftemp=start_temp / niter; float width=sqrtf(no_nodes), height=width; igraph_bool_t conn=1; float C; igraph_is_connected(graph, &conn, IGRAPH_WEAK); if (!conn) { C = no_nodes * sqrtf(no_nodes); } RNG_BEGIN(); if (!use_seed) { IGRAPH_CHECK(igraph_matrix_resize(res, no_nodes, 2)); for (i=0; i<no_nodes; i++) { igraph_real_t x1=minx ? VECTOR(*minx)[i] : -width/2; igraph_real_t x2=maxx ? VECTOR(*maxx)[i] : width/2; igraph_real_t y1=miny ? VECTOR(*miny)[i] : -height/2; igraph_real_t y2=maxy ? VECTOR(*maxy)[i] : height/2; if (!igraph_finite(x1)) { x1 = -sqrt(no_nodes)/2; } if (!igraph_finite(x2)) { x2 = sqrt(no_nodes)/2; } if (!igraph_finite(y1)) { y1 = -sqrt(no_nodes)/2; } if (!igraph_finite(y2)) { y2 = sqrt(no_nodes)/2; } MATRIX(*res, i, 0) = RNG_UNIF(x1, x2); MATRIX(*res, i, 1) = RNG_UNIF(y1, y2); } } IGRAPH_CHECK(igraph_vector_float_init(&dispx, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispx); IGRAPH_CHECK(igraph_vector_float_init(&dispy, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispy); for (i=0; i<niter; i++) { igraph_integer_t v, u, e; /* calculate repulsive forces, we have a special version for unconnected graphs */ igraph_vector_float_null(&dispx); igraph_vector_float_null(&dispy); if (conn) { for (v=0; v<no_nodes; v++) { for (u=v+1; u<no_nodes; u++) { float dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); float dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); float dlen=dx * dx + dy * dy; if (dlen == 0) { dx = RNG_UNIF01() * 1e-9; dy = RNG_UNIF01() * 1e-9; dlen = dx * dx + dy * dy; } VECTOR(dispx)[v] += dx/dlen; VECTOR(dispy)[v] += dy/dlen; VECTOR(dispx)[u] -= dx/dlen; VECTOR(dispy)[u] -= dy/dlen; } } } else { for (v=0; v<no_nodes; v++) { for (u=v+1; u<no_nodes; u++) { float dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); float dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); float dlen, rdlen; dlen=dx * dx + dy * dy; if (dlen == 0) { dx = RNG_UNIF(0, 1e-6); dy = RNG_UNIF(0, 1e-6); dlen = dx * dx + dy * dy; } rdlen=sqrt(dlen); VECTOR(dispx)[v] += dx * (C-dlen * rdlen) / (dlen*C); VECTOR(dispy)[v] += dy * (C-dlen * rdlen) / (dlen*C); VECTOR(dispx)[u] -= dx * (C-dlen * rdlen) / (dlen*C); VECTOR(dispy)[u] -= dy * (C-dlen * rdlen) / (dlen*C); } } } /* calculate attractive forces */ for (e=0; e<no_edges; e++) { /* each edges is an ordered pair of vertices v and u */ igraph_integer_t v=IGRAPH_FROM(graph, e); igraph_integer_t u=IGRAPH_TO(graph, e); igraph_real_t dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); igraph_real_t dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); igraph_real_t w=weight ? VECTOR(*weight)[e] : 1.0; igraph_real_t dlen=sqrt(dx * dx + dy * dy) * w; VECTOR(dispx)[v] -= (dx * dlen); VECTOR(dispy)[v] -= (dy * dlen); VECTOR(dispx)[u] += (dx * dlen); VECTOR(dispy)[u] += (dy * dlen); } /* limit max displacement to temperature t and prevent from displacement outside frame */ for (v=0; v<no_nodes; v++) { igraph_real_t dx=VECTOR(dispx)[v] + RNG_UNIF01() * 1e-9; igraph_real_t dy=VECTOR(dispy)[v] + RNG_UNIF01() * 1e-9; igraph_real_t displen=sqrt(dx * dx + dy * dy); igraph_real_t mx=fabs(dx) < temp ? dx : temp; igraph_real_t my=fabs(dy) < temp ? dy : temp; if (displen > 0) { MATRIX(*res, v, 0) += (dx / displen) * mx; MATRIX(*res, v, 1) += (dy / displen) * my; } if (minx && MATRIX(*res, v, 0) < VECTOR(*minx)[v]) { MATRIX(*res, v, 0) = VECTOR(*minx)[v]; } if (maxx && MATRIX(*res, v, 0) > VECTOR(*maxx)[v]) { MATRIX(*res, v, 0) = VECTOR(*maxx)[v]; } if (miny && MATRIX(*res, v, 1) < VECTOR(*miny)[v]) { MATRIX(*res, v, 1) = VECTOR(*miny)[v]; } if (maxy && MATRIX(*res, v, 1) > VECTOR(*maxy)[v]) { MATRIX(*res, v, 1) = VECTOR(*maxy)[v]; } } temp -= difftemp; } RNG_END(); igraph_vector_float_destroy(&dispx); igraph_vector_float_destroy(&dispy); IGRAPH_FINALLY_CLEAN(2); return 0; }
int igraph_layout_i_grid_fr(const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t use_seed, igraph_integer_t niter, igraph_real_t start_temp, const igraph_vector_t *weight, const igraph_vector_t *minx, const igraph_vector_t *maxx, const igraph_vector_t *miny, const igraph_vector_t *maxy) { igraph_integer_t no_nodes=igraph_vcount(graph); igraph_integer_t no_edges=igraph_ecount(graph); float width=sqrtf(no_nodes), height=width; igraph_2dgrid_t grid; igraph_vector_float_t dispx, dispy; igraph_real_t temp=start_temp; igraph_real_t difftemp=start_temp / niter; igraph_2dgrid_iterator_t vidit; igraph_integer_t i; const float cellsize=2.0; RNG_BEGIN(); if (!use_seed) { IGRAPH_CHECK(igraph_matrix_resize(res, no_nodes, 2)); for (i=0; i<no_nodes; i++) { igraph_real_t x1=minx ? VECTOR(*minx)[i] : -width/2; igraph_real_t x2=maxx ? VECTOR(*maxx)[i] : width/2; igraph_real_t y1=miny ? VECTOR(*miny)[i] : -height/2; igraph_real_t y2=maxy ? VECTOR(*maxy)[i] : height/2; if (!igraph_finite(x1)) { x1 = -sqrt(no_nodes)/2; } if (!igraph_finite(x2)) { x2 = sqrt(no_nodes)/2; } if (!igraph_finite(y1)) { y1 = -sqrt(no_nodes)/2; } if (!igraph_finite(y2)) { y2 = sqrt(no_nodes)/2; } MATRIX(*res, i, 0) = RNG_UNIF(x1, x2); MATRIX(*res, i, 1) = RNG_UNIF(y1, y2); } } /* make grid */ IGRAPH_CHECK(igraph_2dgrid_init(&grid, res, -width/2, width/2, cellsize, -height/2, height/2, cellsize)); IGRAPH_FINALLY(igraph_2dgrid_destroy, &grid); /* place vertices on grid */ for (i=0; i<no_nodes; i++) { igraph_2dgrid_add2(&grid, i); } IGRAPH_CHECK(igraph_vector_float_init(&dispx, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispx); IGRAPH_CHECK(igraph_vector_float_init(&dispy, no_nodes)); IGRAPH_FINALLY(igraph_vector_float_destroy, &dispy); for (i=0; i<niter; i++) { igraph_integer_t v, u, e; igraph_vector_float_null(&dispx); igraph_vector_float_null(&dispy); /* repulsion */ igraph_2dgrid_reset(&grid, &vidit); while ( (v=igraph_2dgrid_next(&grid, &vidit)-1) != -1) { while ( (u=igraph_2dgrid_next_nei(&grid, &vidit)-1) != -1) { float dx=MATRIX(*res, v, 0)-MATRIX(*res, u, 0); float dy=MATRIX(*res, v, 1)-MATRIX(*res, u, 1); float dlen=dx * dx + dy * dy; if (dlen < cellsize * cellsize) { VECTOR(dispx)[v] += dx/dlen; VECTOR(dispy)[v] += dy/dlen; VECTOR(dispx)[u] -= dx/dlen; VECTOR(dispy)[u] -= dy/dlen; } } } /* attraction */ for (e=0; e<no_edges; e++) { igraph_integer_t v=IGRAPH_FROM(graph, e); igraph_integer_t u=IGRAPH_TO(graph, e); igraph_real_t dx=MATRIX(*res, v, 0) - MATRIX(*res, u, 0); igraph_real_t dy=MATRIX(*res, v, 1) - MATRIX(*res, u, 1); igraph_real_t w=weight ? VECTOR(*weight)[e] : 1.0; igraph_real_t dlen=sqrt(dx * dx + dy * dy) * w; VECTOR(dispx)[v] -= (dx * dlen); VECTOR(dispy)[v] -= (dy * dlen); VECTOR(dispx)[u] += (dx * dlen); VECTOR(dispy)[u] += (dy * dlen); } /* update */ for (v=0; v<no_nodes; v++) { igraph_real_t dx=VECTOR(dispx)[v] + RNG_UNIF01() * 1e-9; igraph_real_t dy=VECTOR(dispy)[v] + RNG_UNIF01() * 1e-9; igraph_real_t displen=sqrt(dx * dx + dy * dy); igraph_real_t mx=fabs(dx) < temp ? dx : temp; igraph_real_t my=fabs(dy) < temp ? dy : temp; if (displen > 0) { MATRIX(*res, v, 0) += (dx / displen) * mx; MATRIX(*res, v, 1) += (dy / displen) * my; } if (minx && MATRIX(*res, v, 0) < VECTOR(*minx)[v]) { MATRIX(*res, v, 0) = VECTOR(*minx)[v]; } if (maxx && MATRIX(*res, v, 0) > VECTOR(*maxx)[v]) { MATRIX(*res, v, 0) = VECTOR(*maxx)[v]; } if (miny && MATRIX(*res, v, 1) < VECTOR(*miny)[v]) { MATRIX(*res, v, 1) = VECTOR(*miny)[v]; } if (maxy && MATRIX(*res, v, 1) > VECTOR(*maxy)[v]) { MATRIX(*res, v, 1) = VECTOR(*maxy)[v]; } } temp -= difftemp; } igraph_vector_float_destroy(&dispx); igraph_vector_float_destroy(&dispy); igraph_2dgrid_destroy(&grid); IGRAPH_FINALLY_CLEAN(3); return 0; }
int igraph_layout_kamada_kawai(const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t use_seed, igraph_integer_t maxiter, igraph_real_t epsilon, igraph_real_t kkconst, const igraph_vector_t *weights, const igraph_vector_t *minx, const igraph_vector_t *maxx, const igraph_vector_t *miny, const igraph_vector_t *maxy) { igraph_integer_t no_nodes=igraph_vcount(graph); igraph_integer_t no_edges=igraph_ecount(graph); igraph_real_t L, L0=sqrt(no_nodes); igraph_matrix_t dij, lij, kij; igraph_real_t max_dij; igraph_vector_t D1, D2; igraph_integer_t i, j, m; if (maxiter < 0) { IGRAPH_ERROR("Number of iterations must be non-negatice in " "Kamada-Kawai layout", IGRAPH_EINVAL); } if (kkconst <= 0) { IGRAPH_ERROR("`K' constant must be positive in Kamada-Kawai layout", IGRAPH_EINVAL); } if (use_seed && (igraph_matrix_nrow(res) != no_nodes || igraph_matrix_ncol(res) != 2)) { IGRAPH_ERROR("Invalid start position matrix size in " "Kamada-Kawai layout", IGRAPH_EINVAL); } if (weights && igraph_vector_size(weights) != no_edges) { IGRAPH_ERROR("Invalid weight vector length", IGRAPH_EINVAL); } if (minx && igraph_vector_size(minx) != no_nodes) { IGRAPH_ERROR("Invalid minx vector length", IGRAPH_EINVAL); } if (maxx && igraph_vector_size(maxx) != no_nodes) { IGRAPH_ERROR("Invalid maxx vector length", IGRAPH_EINVAL); } if (minx && maxx && !igraph_vector_all_le(minx, maxx)) { IGRAPH_ERROR("minx must not be greater than maxx", IGRAPH_EINVAL); } if (miny && igraph_vector_size(miny) != no_nodes) { IGRAPH_ERROR("Invalid miny vector length", IGRAPH_EINVAL); } if (maxy && igraph_vector_size(maxy) != no_nodes) { IGRAPH_ERROR("Invalid maxy vector length", IGRAPH_EINVAL); } if (miny && maxy && !igraph_vector_all_le(miny, maxy)) { IGRAPH_ERROR("miny must not be greater than maxy", IGRAPH_EINVAL); } if (!use_seed) { if (minx || maxx || miny || maxy) { const igraph_real_t width=sqrt(no_nodes), height=width; IGRAPH_CHECK(igraph_matrix_resize(res, no_nodes, 2)); RNG_BEGIN(); for (i=0; i<no_nodes; i++) { igraph_real_t x1=minx ? VECTOR(*minx)[i] : -width/2; igraph_real_t x2=maxx ? VECTOR(*maxx)[i] : width/2; igraph_real_t y1=miny ? VECTOR(*miny)[i] : -height/2; igraph_real_t y2=maxy ? VECTOR(*maxy)[i] : height/2; if (!igraph_finite(x1)) { x1 = -width/2; } if (!igraph_finite(x2)) { x2 = width/2; } if (!igraph_finite(y1)) { y1 = -height/2; } if (!igraph_finite(y2)) { y2 = height/2; } MATRIX(*res, i, 0) = RNG_UNIF(x1, x2); MATRIX(*res, i, 1) = RNG_UNIF(y1, y2); } RNG_END(); } else { igraph_layout_circle(graph, res, /* order= */ igraph_vss_all()); } } if (no_nodes <= 1) { return 0; } IGRAPH_MATRIX_INIT_FINALLY(&dij, no_nodes, no_nodes); IGRAPH_MATRIX_INIT_FINALLY(&kij, no_nodes, no_nodes); IGRAPH_MATRIX_INIT_FINALLY(&lij, no_nodes, no_nodes); IGRAPH_CHECK(igraph_shortest_paths_dijkstra(graph, &dij, igraph_vss_all(), igraph_vss_all(), weights, IGRAPH_ALL)); max_dij = 0.0; for (i=0; i<no_nodes; i++) { for (j=i+1; j<no_nodes; j++) { if (!igraph_finite(MATRIX(dij, i, j))) { continue; } if (MATRIX(dij, i, j) > max_dij) { max_dij = MATRIX(dij, i, j); } } } for (i=0; i<no_nodes; i++) { for (j=0; j<no_nodes; j++) { if (MATRIX(dij, i, j) > max_dij) { MATRIX(dij, i, j) = max_dij; } } } L = L0 / max_dij; for (i=0; i<no_nodes; i++) { for (j=0; j<no_nodes; j++) { igraph_real_t tmp=MATRIX(dij, i, j) * MATRIX(dij, i, j); if (i==j) { continue; } MATRIX(kij, i, j) = kkconst / tmp; MATRIX(lij, i, j) = L * MATRIX(dij, i, j); } } /* Initialize delta */ IGRAPH_VECTOR_INIT_FINALLY(&D1, no_nodes); IGRAPH_VECTOR_INIT_FINALLY(&D2, no_nodes); for (m=0; m<no_nodes; m++) { igraph_real_t myD1=0.0, myD2=0.0; for (i=0; i<no_nodes; i++) { if (i==m) { continue; } igraph_real_t dx=MATRIX(*res, m, 0) - MATRIX(*res, i, 0); igraph_real_t dy=MATRIX(*res, m, 1) - MATRIX(*res, i, 1); igraph_real_t mi_dist=sqrt(dx * dx + dy * dy); myD1 += MATRIX(kij, m, i) * (dx - MATRIX(lij, m, i) * dx / mi_dist); myD2 += MATRIX(kij, m, i) * (dy - MATRIX(lij, m, i) * dy / mi_dist); } VECTOR(D1)[m] = myD1; VECTOR(D2)[m] = myD2; } for (j=0; j<maxiter; j++) { igraph_real_t myD1=0.0, myD2=0.0, A=0.0, B=0.0, C=0.0; igraph_real_t max_delta, delta_x, delta_y; igraph_real_t old_x, old_y, new_x, new_y; /* Select maximal delta */ m=0; max_delta=-1; for (i=0; i<no_nodes; i++) { igraph_real_t delta=(VECTOR(D1)[i] * VECTOR(D1)[i] + VECTOR(D2)[i] * VECTOR(D2)[i]); if (delta > max_delta) { m=i; max_delta=delta; } } if (max_delta < epsilon) { break; } old_x=MATRIX(*res, m, 0); old_y=MATRIX(*res, m, 1); /* Calculate D1 and D2, A, B, C */ for (i=0; i<no_nodes; i++) { if (i==m) { continue; } igraph_real_t dx=old_x - MATRIX(*res, i, 0); igraph_real_t dy=old_y - MATRIX(*res, i, 1); igraph_real_t dist=sqrt(dx * dx + dy * dy); igraph_real_t den=dist * (dx * dx + dy * dy); A += MATRIX(kij, m, i) * (1 - MATRIX(lij, m, i) * dy * dy / den); B += MATRIX(kij, m, i) * MATRIX(lij, m, i) * dx * dy / den; C += MATRIX(kij, m, i) * (1 - MATRIX(lij, m, i) * dx * dx / den); } myD1 = VECTOR(D1)[m]; myD2 = VECTOR(D2)[m]; /* Need to solve some linear equations */ delta_y = (B * myD1 - myD2 * A) / (C * A - B * B); delta_x = - (myD1 + B * delta_y) / A; new_x = old_x + delta_x; new_y = old_y + delta_y; /* Limits, if given */ if (minx && new_x < VECTOR(*minx)[m]) { new_x = VECTOR(*minx)[m]; } if (maxx && new_x > VECTOR(*maxx)[m]) { new_x = VECTOR(*maxx)[m]; } if (miny && new_y < VECTOR(*miny)[m]) { new_y = VECTOR(*miny)[m]; } if (maxy && new_y > VECTOR(*maxy)[m]) { new_y = VECTOR(*maxy)[m]; } /* Update delta, only with/for the affected node */ VECTOR(D1)[m] = VECTOR(D2)[m] = 0.0; for (i=0; i<no_nodes; i++) { if (i==m) { continue; } igraph_real_t old_dx=old_x - MATRIX(*res, i, 0); igraph_real_t old_dy=old_y - MATRIX(*res, i, 1); igraph_real_t old_mi_dist=sqrt(old_dx * old_dx + old_dy * old_dy); igraph_real_t new_dx=new_x - MATRIX(*res, i, 0); igraph_real_t new_dy=new_y - MATRIX(*res, i, 1); igraph_real_t new_mi_dist=sqrt(new_dx * new_dx + new_dy * new_dy); VECTOR(D1)[i] -= MATRIX(kij, m, i) * (-old_dx + MATRIX(lij, m, i) * old_dx / old_mi_dist); VECTOR(D2)[i] -= MATRIX(kij, m, i) * (-old_dy + MATRIX(lij, m, i) * old_dy / old_mi_dist); VECTOR(D1)[i] += MATRIX(kij, m, i) * (-new_dx + MATRIX(lij, m, i) * new_dx / new_mi_dist); VECTOR(D2)[i] += MATRIX(kij, m, i) * (-new_dy + MATRIX(lij, m, i) * new_dy / new_mi_dist); VECTOR(D1)[m] += MATRIX(kij, m, i) * (new_dx - MATRIX(lij, m, i) * new_dx / new_mi_dist); VECTOR(D2)[m] += MATRIX(kij, m, i) * (new_dy - MATRIX(lij, m, i) * new_dy / new_mi_dist); } /* Update coordinates*/ MATRIX(*res, m, 0) = new_x; MATRIX(*res, m, 1) = new_y; } igraph_vector_destroy(&D2); igraph_vector_destroy(&D1); igraph_matrix_destroy(&lij); igraph_matrix_destroy(&kij); igraph_matrix_destroy(&dij); IGRAPH_FINALLY_CLEAN(5); return 0; }
int igraph_layout_kamada_kawai_3d(const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t use_seed, igraph_integer_t maxiter, igraph_real_t epsilon, igraph_real_t kkconst, const igraph_vector_t *weights, const igraph_vector_t *minx, const igraph_vector_t *maxx, const igraph_vector_t *miny, const igraph_vector_t *maxy, const igraph_vector_t *minz, const igraph_vector_t *maxz) { igraph_integer_t no_nodes=igraph_vcount(graph); igraph_integer_t no_edges=igraph_ecount(graph); igraph_real_t L, L0=sqrt(no_nodes); igraph_matrix_t dij, lij, kij; igraph_real_t max_dij; igraph_vector_t D1, D2, D3; igraph_integer_t i, j, m; if (maxiter < 0) { IGRAPH_ERROR("Number of iterations must be non-negatice in " "Kamada-Kawai layout", IGRAPH_EINVAL); } if (kkconst <= 0) { IGRAPH_ERROR("`K' constant must be positive in Kamada-Kawai layout", IGRAPH_EINVAL); } if (use_seed && (igraph_matrix_nrow(res) != no_nodes || igraph_matrix_ncol(res) != 3)) { IGRAPH_ERROR("Invalid start position matrix size in " "3d Kamada-Kawai layout", IGRAPH_EINVAL); } if (weights && igraph_vector_size(weights) != no_edges) { IGRAPH_ERROR("Invalid weight vector length", IGRAPH_EINVAL); } if (minx && igraph_vector_size(minx) != no_nodes) { IGRAPH_ERROR("Invalid minx vector length", IGRAPH_EINVAL); } if (maxx && igraph_vector_size(maxx) != no_nodes) { IGRAPH_ERROR("Invalid maxx vector length", IGRAPH_EINVAL); } if (minx && maxx && !igraph_vector_all_le(minx, maxx)) { IGRAPH_ERROR("minx must not be greater than maxx", IGRAPH_EINVAL); } if (miny && igraph_vector_size(miny) != no_nodes) { IGRAPH_ERROR("Invalid miny vector length", IGRAPH_EINVAL); } if (maxy && igraph_vector_size(maxy) != no_nodes) { IGRAPH_ERROR("Invalid maxy vector length", IGRAPH_EINVAL); } if (miny && maxy && !igraph_vector_all_le(miny, maxy)) { IGRAPH_ERROR("miny must not be greater than maxy", IGRAPH_EINVAL); } if (minz && igraph_vector_size(minz) != no_nodes) { IGRAPH_ERROR("Invalid minz vector length", IGRAPH_EINVAL); } if (maxz && igraph_vector_size(maxz) != no_nodes) { IGRAPH_ERROR("Invalid maxz vector length", IGRAPH_EINVAL); } if (minz && maxz && !igraph_vector_all_le(minz, maxz)) { IGRAPH_ERROR("minz must not be greater than maxz", IGRAPH_EINVAL); } if (!use_seed) { if (minx || maxx || miny || maxy || minz || maxz) { const igraph_real_t width=sqrt(no_nodes), height=width, depth=width; IGRAPH_CHECK(igraph_matrix_resize(res, no_nodes, 3)); RNG_BEGIN(); for (i=0; i<no_nodes; i++) { igraph_real_t x1=minx ? VECTOR(*minx)[i] : -width/2; igraph_real_t x2=maxx ? VECTOR(*maxx)[i] : width/2; igraph_real_t y1=miny ? VECTOR(*miny)[i] : -height/2; igraph_real_t y2=maxy ? VECTOR(*maxy)[i] : height/2; igraph_real_t z1=minz ? VECTOR(*minz)[i] : -depth/2; igraph_real_t z2=maxz ? VECTOR(*maxz)[i] : depth/2; if (!igraph_finite(x1)) { x1 = -width/2; } if (!igraph_finite(x2)) { x2 = width/2; } if (!igraph_finite(y1)) { y1 = -height/2; } if (!igraph_finite(y2)) { y2 = height/2; } if (!igraph_finite(z1)) { z1 = -depth/2; } if (!igraph_finite(z2)) { z2 = depth/2; } MATRIX(*res, i, 0) = RNG_UNIF(x1, x2); MATRIX(*res, i, 1) = RNG_UNIF(y1, y2); MATRIX(*res, i, 2) = RNG_UNIF(z1, z2); } RNG_END(); } else { igraph_layout_sphere(graph, res); } } if (no_nodes <= 1) { return 0; } IGRAPH_MATRIX_INIT_FINALLY(&dij, no_nodes, no_nodes); IGRAPH_MATRIX_INIT_FINALLY(&kij, no_nodes, no_nodes); IGRAPH_MATRIX_INIT_FINALLY(&lij, no_nodes, no_nodes); IGRAPH_CHECK(igraph_shortest_paths_dijkstra(graph, &dij, igraph_vss_all(), igraph_vss_all(), weights, IGRAPH_ALL)); max_dij = 0.0; for (i=0; i<no_nodes; i++) { for (j=i+1; j<no_nodes; j++) { if (!igraph_finite(MATRIX(dij, i, j))) { continue; } if (MATRIX(dij, i, j) > max_dij) { max_dij = MATRIX(dij, i, j); } } } for (i=0; i<no_nodes; i++) { for (j=0; j<no_nodes; j++) { if (MATRIX(dij, i, j) > max_dij) { MATRIX(dij, i, j) = max_dij; } } } L = L0 / max_dij; for (i=0; i<no_nodes; i++) { for (j=0; j<no_nodes; j++) { igraph_real_t tmp=MATRIX(dij, i, j) * MATRIX(dij, i, j); if (i==j) { continue; } MATRIX(kij, i, j) = kkconst / tmp; MATRIX(lij, i, j) = L * MATRIX(dij, i, j); } } /* Initialize delta */ IGRAPH_VECTOR_INIT_FINALLY(&D1, no_nodes); IGRAPH_VECTOR_INIT_FINALLY(&D2, no_nodes); IGRAPH_VECTOR_INIT_FINALLY(&D3, no_nodes); for (m=0; m<no_nodes; m++) { igraph_real_t myD1=0.0, myD2=0.0, myD3=0.0; for (i=0; i<no_nodes; i++) { if (i==m) { continue; } igraph_real_t dx=MATRIX(*res, m, 0) - MATRIX(*res, i, 0); igraph_real_t dy=MATRIX(*res, m, 1) - MATRIX(*res, i, 1); igraph_real_t dz=MATRIX(*res, m, 2) - MATRIX(*res, i, 2); igraph_real_t mi_dist=sqrt(dx * dx + dy * dy + dz * dz); myD1 += MATRIX(kij, m, i) * (dx - MATRIX(lij, m, i) * dx / mi_dist); myD2 += MATRIX(kij, m, i) * (dy - MATRIX(lij, m, i) * dy / mi_dist); myD3 += MATRIX(kij, m, i) * (dz - MATRIX(lij, m, i) * dz / mi_dist); } VECTOR(D1)[m] = myD1; VECTOR(D2)[m] = myD2; VECTOR(D3)[m] = myD3; } for (j=0; j<maxiter; j++) { igraph_real_t Ax=0.0, Ay=0.0, Az=0.0; igraph_real_t Axx=0.0, Axy=0.0, Axz=0.0, Ayy=0.0, Ayz=0.0, Azz=0.0; igraph_real_t max_delta, delta_x, delta_y, delta_z; igraph_real_t old_x, old_y, old_z, new_x, new_y, new_z; igraph_real_t detnum; /* Select maximal delta */ m=0; max_delta=-1; for (i=0; i<no_nodes; i++) { igraph_real_t delta=(VECTOR(D1)[i] * VECTOR(D1)[i] + VECTOR(D2)[i] * VECTOR(D2)[i] + VECTOR(D3)[i] * VECTOR(D3)[i]); if (delta > max_delta) { m=i; max_delta=delta; } } if (max_delta < epsilon) { break; } old_x=MATRIX(*res, m, 0); old_y=MATRIX(*res, m, 1); old_z=MATRIX(*res, m, 2); /* Calculate D1, D2 and D3, and other coefficients */ for (i=0; i<no_nodes; i++) { if (i==m) { continue; } igraph_real_t dx=old_x - MATRIX(*res, i, 0); igraph_real_t dy=old_y - MATRIX(*res, i, 1); igraph_real_t dz=old_z - MATRIX(*res, i, 2); igraph_real_t dist=sqrt(dx * dx + dy * dy + dz *dz); igraph_real_t den=dist * (dx * dx + dy * dy + dz * dz); igraph_real_t k_mi=MATRIX(kij, m, i); igraph_real_t l_mi=MATRIX(lij, m, i); Axx += k_mi * (1 - l_mi * (dy*dy + dz*dz) / den); Ayy += k_mi * (1 - l_mi * (dx*dx + dz*dz) / den); Azz += k_mi * (1 - l_mi * (dx*dx + dy*dy) / den); Axy += k_mi * l_mi * dx * dy / den; Axz += k_mi * l_mi * dx * dz / den; Ayz += k_mi * l_mi * dy * dz / den; } Ax = -VECTOR(D1)[m]; Ay = -VECTOR(D2)[m]; Az = -VECTOR(D3)[m]; /* Need to solve some linear equations, we just use Cramer's rule */ #define DET(a,b,c,d,e,f,g,h,i) ((a*e*i+b*f*g+c*d*h)-(c*e*g+b*d*i+a*f*h)) detnum = DET(Axx,Axy,Axz, Axy,Ayy,Ayz, Axz,Ayz,Azz); delta_x = DET(Ax ,Ay ,Az , Axy,Ayy,Ayz, Axz,Ayz,Azz) / detnum; delta_y = DET(Axx,Axy,Axz, Ax ,Ay ,Az , Axz,Ayz,Azz) / detnum; delta_z = DET(Axx,Axy,Axz, Axy,Ayy,Ayz, Ax ,Ay ,Az ) / detnum; new_x = old_x + delta_x; new_y = old_y + delta_y; new_z = old_z + delta_z; /* Limits, if given */ if (minx && new_x < VECTOR(*minx)[m]) { new_x = VECTOR(*minx)[m]; } if (maxx && new_x > VECTOR(*maxx)[m]) { new_x = VECTOR(*maxx)[m]; } if (miny && new_y < VECTOR(*miny)[m]) { new_y = VECTOR(*miny)[m]; } if (maxy && new_y > VECTOR(*maxy)[m]) { new_y = VECTOR(*maxy)[m]; } if (minz && new_z < VECTOR(*minz)[m]) { new_z = VECTOR(*minz)[m]; } if (maxz && new_z > VECTOR(*maxz)[m]) { new_z = VECTOR(*maxz)[m]; } /* Update delta, only with/for the affected node */ VECTOR(D1)[m] = VECTOR(D2)[m] = VECTOR(D3)[m] = 0.0; for (i=0; i<no_nodes; i++) { if (i==m) { continue; } igraph_real_t old_dx=old_x - MATRIX(*res, i, 0); igraph_real_t old_dy=old_y - MATRIX(*res, i, 1); igraph_real_t old_dz=old_z - MATRIX(*res, i, 2); igraph_real_t old_mi_dist=sqrt(old_dx * old_dx + old_dy * old_dy + old_dz * old_dz); igraph_real_t new_dx=new_x - MATRIX(*res, i, 0); igraph_real_t new_dy=new_y - MATRIX(*res, i, 1); igraph_real_t new_dz=new_z - MATRIX(*res, i, 2); igraph_real_t new_mi_dist=sqrt(new_dx * new_dx + new_dy * new_dy + new_dz * new_dz); VECTOR(D1)[i] -= MATRIX(kij, m, i) * (-old_dx + MATRIX(lij, m, i) * old_dx / old_mi_dist); VECTOR(D2)[i] -= MATRIX(kij, m, i) * (-old_dy + MATRIX(lij, m, i) * old_dy / old_mi_dist); VECTOR(D3)[i] -= MATRIX(kij, m, i) * (-old_dz + MATRIX(lij, m, i) * old_dz / old_mi_dist); VECTOR(D1)[i] += MATRIX(kij, m, i) * (-new_dx + MATRIX(lij, m, i) * new_dx / new_mi_dist); VECTOR(D2)[i] += MATRIX(kij, m, i) * (-new_dy + MATRIX(lij, m, i) * new_dy / new_mi_dist); VECTOR(D3)[i] += MATRIX(kij, m, i) * (-new_dz + MATRIX(lij, m, i) * new_dz / new_mi_dist); VECTOR(D1)[m] += MATRIX(kij, m, i) * (new_dx - MATRIX(lij, m, i) * new_dx / new_mi_dist); VECTOR(D2)[m] += MATRIX(kij, m, i) * (new_dy - MATRIX(lij, m, i) * new_dy / new_mi_dist); VECTOR(D3)[m] += MATRIX(kij, m, i) * (new_dz - MATRIX(lij, m, i) * new_dz / new_mi_dist); } /* Update coordinates*/ MATRIX(*res, m, 0) = new_x; MATRIX(*res, m, 1) = new_y; MATRIX(*res, m, 2) = new_z; } igraph_vector_destroy(&D3); igraph_vector_destroy(&D2); igraph_vector_destroy(&D1); igraph_matrix_destroy(&lij); igraph_matrix_destroy(&kij); igraph_matrix_destroy(&dij); IGRAPH_FINALLY_CLEAN(6); return 0; }