Example #1
0
Sweep *RSL_sweep_z_to_r(Sweep *z_sweep, float k, float a)
{
	Sweep 	*r_sweep;
	int		i;
	if(z_sweep == NULL) return NULL;
	r_sweep = RSL_new_sweep(z_sweep->h.nrays);
	r_sweep->h = z_sweep->h;
	for(i=0; i<z_sweep->h.nrays; i++) {
		r_sweep->ray[i] = RSL_ray_z_to_r(z_sweep->ray[i], k, a);
	}
	return r_sweep;
}
Example #2
0
int wsr88d_load_sweep_into_volume(Wsr88d_sweep ws,
					   Volume *v, int nsweep, unsigned int vmask)
{
  int i;
  int iray;
  float v_data[1000];
  Range  c_data[1000];
  int n;

  int mon, day, year;
  int hh, mm, ss;
  float fsec;
  int vol_cpat;

  Ray *ray_ptr;
  Range (*invf)(float x);
  float (*f)(Range x);

  /* Allocate memory for MAX_RAYS_IN_SWEEP rays. */
  v->sweep[nsweep] = RSL_new_sweep(MAX_RAYS_IN_SWEEP);
  if (v->sweep[nsweep] == NULL) {
	perror("wsr88d_load_sweep_into_volume: RSL_new_sweep");
	return -1;
  }
	
  v->sweep[nsweep]->h.nrays = 0;
  f = (float (*)(Range x))NULL;
  invf = (Range (*)(float x))NULL;
  if (vmask & WSR88D_DZ) { invf = DZ_INVF; f = DZ_F; }
  if (vmask & WSR88D_VR) { invf = VR_INVF; f = VR_F; }
  if (vmask & WSR88D_SW) { invf = SW_INVF; f = SW_F; }
  
  v->h.invf = invf;
  v->h.f    = f;
  v->sweep[nsweep]->h.invf = invf;
  v->sweep[nsweep]->h.f    = f;

  for (i=0,iray=0; i<MAX_RAYS_IN_SWEEP; i++) {
	if (ws.ray[i] != NULL) {
	  wsr88d_ray_to_float(ws.ray[i], vmask, v_data, &n);
	  float_to_range(v_data, c_data, n, invf);
	  if (n > 0) {
		wsr88d_get_date(ws.ray[i], &mon, &day, &year);
		wsr88d_get_time(ws.ray[i], &hh, &mm, &ss, &fsec);
		/*
	  fprintf(stderr,"n %d, mon %d, day %d, year %d,  hour %d, min %d, sec %d, fsec %f\n",
			n, mon, day, year, hh, mm, ss, fsec);
			*/
		/*
		 * Load the sweep/ray headar information.
		 */
		
		v->sweep[nsweep]->ray[iray] = RSL_new_ray(n);
		/*(Range *)calloc(n, sizeof(Range)); */
		
		ray_ptr = v->sweep[nsweep]->ray[iray]; /* Make code below readable. */
		ray_ptr->h.f        = f;
		ray_ptr->h.invf     = invf;
		ray_ptr->h.month    = mon;
		ray_ptr->h.day      = day;
		ray_ptr->h.year     = year + 1900; /* Yes 1900 makes this year 2000 compliant, due to wsr88d using unix time(). */
		ray_ptr->h.hour     = hh;
		ray_ptr->h.minute   = mm;
		ray_ptr->h.sec      = ss + fsec;
		ray_ptr->h.unam_rng = wsr88d_get_range   (ws.ray[i]);
		ray_ptr->h.azimuth  = wsr88d_get_azimuth (ws.ray[i]);
/* -180 to +180 is converted to 0 to 360 */
		if (ray_ptr->h.azimuth < 0) ray_ptr->h.azimuth += 360;
		ray_ptr->h.ray_num  = ws.ray[i]->ray_num;
		ray_ptr->h.elev       = wsr88d_get_elevation_angle(ws.ray[i]);
		ray_ptr->h.elev_num   = ws.ray[i]->elev_num;
		if (vmask & WSR88D_DZ) {
		  ray_ptr->h.range_bin1 = ws.ray[i]->refl_rng;
		  ray_ptr->h.gate_size  = ws.ray[i]->refl_size;
		} else {
		  ray_ptr->h.range_bin1 = ws.ray[i]->dop_rng;
		  ray_ptr->h.gate_size  = ws.ray[i]->dop_size;
		}
		ray_ptr->h.vel_res  = wsr88d_get_velocity_resolution(ws.ray[i]);
		vol_cpat = wsr88d_get_volume_coverage(ws.ray[i]);
		switch (vol_cpat) {
		case 11: ray_ptr->h.sweep_rate = 16.0/5.0;  break;
		case 12: ray_ptr->h.sweep_rate = 17.0/4.2;  break;
		case 21: ray_ptr->h.sweep_rate = 11.0/6.0;  break;
		case 31: ray_ptr->h.sweep_rate =  8.0/10.0; break;
		case 32: ray_ptr->h.sweep_rate =  7.0/10.0; break;
		case 121:ray_ptr->h.sweep_rate = 20.0/5.5;  break;
		default: ray_ptr->h.sweep_rate =  0.0; break;
		}

		ray_ptr->h.nyq_vel  = wsr88d_get_nyquist(ws.ray[i]);
		ray_ptr->h.azim_rate   = wsr88d_get_azimuth_rate(ws.ray[i]);
		ray_ptr->h.fix_angle   = wsr88d_get_fix_angle(ws.ray[i]);
		ray_ptr->h.pulse_count = wsr88d_get_pulse_count(ws.ray[i]);
		ray_ptr->h.pulse_width = wsr88d_get_pulse_width(ws.ray[i]);
		ray_ptr->h.beam_width  = .95;
		ray_ptr->h.prf         = wsr88d_get_prf(ws.ray[i]);
		ray_ptr->h.frequency   = wsr88d_get_frequency(ws.ray[i]);
		ray_ptr->h.wavelength = 0.1071; /* Previously called
		                             * wsr88d_get_wavelength(ws.ray[i]).
		                             * See wsr88d.c for explanation.
					     */

		/* It is no coincidence that the 'vmask' and wsr88d datatype
		 * values are the same.  We expect 'vmask' to be one of
		 * REFL_MASK, VEL_MASK, or SW_MASK.  These match WSR88D_DZ,
		 * WSR88D_VR, and WSR88D_SW in the wsr88d library.
		 */
		ray_ptr->h.nbins = n;
		memcpy(ray_ptr->range, c_data, n*sizeof(Range));
		v->sweep[nsweep]->h.nrays = iray+1;
		v->sweep[nsweep]->h.elev += ray_ptr->h.elev;
		v->sweep[nsweep]->h.sweep_num = ray_ptr->h.elev_num;
		iray++;
	  }
	}
  }
  v->sweep[nsweep]->h.beam_width = .95;
  v->sweep[nsweep]->h.vert_half_bw = .475;
  v->sweep[nsweep]->h.horz_half_bw = .475;
  /* Now calculate the mean elevation angle for this sweep. */
  if (v->sweep[nsweep]->h.nrays > 0)
	v->sweep[nsweep]->h.elev /= v->sweep[nsweep]->h.nrays;
  else {
	free(v->sweep[nsweep]);  /* No rays loaded, free this sweep. */
	v->sweep[nsweep] = NULL;
  }
  
  return 0;
}
Example #3
0
int uf_into_radar(UF_buffer uf, Radar **the_radar)
{
  
/* Missing data flag : -32768 when a signed short. */
#define UF_NO_DATA 0X8000
  
  /* Any convensions may be observed, however, Radial Velocity must be VE. */
  /* Typically:
   *    DM = Reflectivity (dB(mW)).
   *    DZ = Reflectivity (dBZ).
   *    VR = Radial Velocity.
   *    CZ = Corrected Reflectivity. (Quality controlled: AP removed, etc.)
   *    SW = Spectrum Width.
   *    DR = Differential Reflectivity.
   *    XZ = X-band Reflectivity.
   *
   * These fields may appear in any order in the UF file.
   *
   * RETURN:
   *   UF_DONE if we're done with the UF ingest.
   *   UF_MORE if we need more UF data.
   */
  
  /* These are pointers to various locations within the UF buffer 'uf'.
   * They are used to index the different components of the UF structure in
   * a manor consistant with the UF documentation.  For instance, uf_ma[1]
   * will be equivalenced to the second word (2 bytes/each) of the UF
   * buffer.
   */
  short *uf_ma;  /* Mandatory header block. */
  short *uf_lu;  /* Local Use header block.  */
  short *uf_dh;  /* Data header.  */
  short *uf_fh;  /* Field header. */
  short *uf_data; /* Data. */
  
  /* The length of each header. */
  int len_data, len_lu;
  
  int current_fh_index; 
  float scale_factor;
  
  int nfields, isweep, ifield, iray, i, m;
  static int pulled_time_from_first_ray = 0;
  char *field_type; /* For printing the field type upon error. */
	short proj_name[4];
  Ray *ray;
  Sweep *sweep;
  Radar *radar;
  float x;
  short missing_data;
  Volume *new_volume;
  int nbins;
  extern int rsl_qfield[];
  extern int *rsl_qsweep; /* See RSL_read_these_sweeps in volume.c */
  extern int rsl_qsweep_max;

  radar = *the_radar;

/*
 * The organization of the Radar structure is by volumes, then sweeps, then
 * rays, then gates.  This is different from the UF file organization.
 * The UF format is sweeps, rays, then gates for all field types (volumes).
 */


/* Set up all the UF pointers. */
  uf_ma = uf;
  uf_lu = uf + uf_ma[3] - 1;
  uf_dh = uf + uf_ma[4] - 1;

  nfields =  uf_dh[0];
  isweep = uf_ma[9] - 1;

  if (rsl_qsweep != NULL) {
	if (isweep > rsl_qsweep_max) return UF_DONE;
	if (rsl_qsweep[isweep] == 0) return UF_MORE;
  }


/* Here is a sticky part.  We must make sure that if we encounter any
 * additional fields that were not previously present, that we are able
 * to load them.  This will require us to copy the entire radar structure
 * and whack off the old one.  But, we must be sure that it really is a
 * new field.  This is not so trivial as a couple of lines of code; I will
 * have to think about this a little bit more.  See STICKYSOLVED below.
 */
#ifdef STICKYSOLVED
  if (radar == NULL) radar = RSL_new_radar(nfields);
  /* Sticky solution here. */
#else
  if (radar == NULL) {
	radar = RSL_new_radar(MAX_RADAR_VOLUMES);
	*the_radar = radar;
	pulled_time_from_first_ray = 0;
	for (i=0; i<MAX_RADAR_VOLUMES; i++)
	  if (rsl_qfield[i]) /* See RSL_select_fields in volume.c */
		radar->v[i] = RSL_new_volume(20);
  }
  
#endif
/* For LITTLE ENDIAN:
 * WE "UNSWAP" character strings.  Because there are so few of them,
 * it is easier to catch them here.  The entire UF buffer is swapped prior
 * to entry to here, therefore, undo-ing these swaps; sets the
 * character strings right.
 */

  for (i=0; i<nfields; i++) {
	if (little_endian()) swap_2_bytes(&uf_dh[3+2*i]); /* Unswap. */
	if (strncmp((char *)&uf_dh[3+2*i], "DZ", 2) == 0) ifield = DZ_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "VR", 2) == 0) ifield = VR_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "SW", 2) == 0) ifield = SW_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "CZ", 2) == 0) ifield = CZ_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "UZ", 2) == 0) ifield = ZT_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "ZT", 2) == 0) ifield = ZT_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "DR", 2) == 0) ifield = DR_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "ZD", 2) == 0) ifield = ZD_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "DM", 2) == 0) ifield = DM_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "RH", 2) == 0) ifield = RH_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "PH", 2) == 0) ifield = PH_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "XZ", 2) == 0) ifield = XZ_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "CD", 2) == 0) ifield = CD_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "MZ", 2) == 0) ifield = MZ_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "MD", 2) == 0) ifield = MD_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "ZE", 2) == 0) ifield = ZE_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "VE", 2) == 0) ifield = VE_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "KD", 2) == 0) ifield = KD_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "TI", 2) == 0) ifield = TI_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "DX", 2) == 0) ifield = DX_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "CH", 2) == 0) ifield = CH_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "AH", 2) == 0) ifield = AH_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "CV", 2) == 0) ifield = CV_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "AV", 2) == 0) ifield = AV_INDEX;
	else if (strncmp((char *)&uf_dh[3+2*i], "SQ", 2) == 0) ifield = SQ_INDEX;
	else { /* etc.  DON'T know how to handle this yet. */
	  field_type = (char *)&uf_dh[3+2*i];
	  fprintf(stderr, "Unknown field type %c%c\n", (char)field_type[0], (char)field_type[1]);
	  continue;
	}
	switch (ifield) {
	case DZ_INDEX: f = DZ_F; invf = DZ_INVF; break;
	case VR_INDEX: f = VR_F; invf = VR_INVF; break;
	case SW_INDEX: f = SW_F; invf = SW_INVF; break;
	case CZ_INDEX: f = CZ_F; invf = CZ_INVF; break;
	case ZT_INDEX: f = ZT_F; invf = ZT_INVF; break;
	case DR_INDEX: f = DR_F; invf = DR_INVF; break;
	case ZD_INDEX: f = ZD_F; invf = ZD_INVF; break;
	case DM_INDEX: f = DM_F; invf = DM_INVF; break;
	case RH_INDEX: f = RH_F; invf = RH_INVF; break;
	case PH_INDEX: f = PH_F; invf = PH_INVF; break;
	case XZ_INDEX: f = XZ_F; invf = XZ_INVF; break;
	case CD_INDEX: f = CD_F; invf = CD_INVF; break;
	case MZ_INDEX: f = MZ_F; invf = MZ_INVF; break;
	case MD_INDEX: f = MD_F; invf = MD_INVF; break;
	case ZE_INDEX: f = ZE_F; invf = ZE_INVF; break;
	case VE_INDEX: f = VE_F; invf = VE_INVF; break;
	case KD_INDEX: f = KD_F; invf = KD_INVF; break;
	case TI_INDEX: f = TI_F; invf = TI_INVF; break;
	case DX_INDEX: f = DX_F; invf = DX_INVF; break;
	case CH_INDEX: f = CH_F; invf = CH_INVF; break;
	case AH_INDEX: f = AH_F; invf = AH_INVF; break;
	case CV_INDEX: f = CV_F; invf = CV_INVF; break;
	case AV_INDEX: f = AV_F; invf = AV_INVF; break;
	case SQ_INDEX: f = SQ_F; invf = SQ_INVF; break;
	default: f = DZ_F; invf = DZ_INVF; break;
	}

	/* Do we place the data into this volume? */
	if (radar->v[ifield] == NULL) continue; /* Nope. */

	if (isweep >= radar->v[ifield]->h.nsweeps) { /* Exceeded sweep limit.
						      * Allocate more sweeps.
						      * Copy all previous sweeps.
						      */
	  if (radar_verbose_flag)
		fprintf(stderr,"Exceeded sweep allocation of %d. Adding 20 more.\n", isweep);
	  new_volume = RSL_new_volume(radar->v[ifield]->h.nsweeps+20);
	  new_volume = copy_sweeps_into_volume(new_volume, radar->v[ifield]);
	  radar->v[ifield] = new_volume;
	}

	if (radar->v[ifield]->sweep[isweep] == NULL) {
	  if (radar_verbose_flag)
		fprintf(stderr,"Allocating new sweep for field %d, isweep %d\n", ifield, isweep);
	  radar->v[ifield]->sweep[isweep] = RSL_new_sweep(1000);
	  radar->v[ifield]->sweep[isweep]->h.nrays = 0; /* Increment this for each
							 * ray encountered.
							 */
	  radar->v[ifield]->h.f = f;
	  radar->v[ifield]->h.invf = invf;
	  radar->v[ifield]->sweep[isweep]->h.f = f;
	  radar->v[ifield]->sweep[isweep]->h.invf = invf;
		radar->v[ifield]->sweep[isweep]->h.sweep_num = uf_ma[9];
		radar->v[ifield]->sweep[isweep]->h.elev = uf_ma[35] / 64.0;
	}
	
	

	current_fh_index = uf_dh[4+2*i];
	uf_fh = uf + current_fh_index - 1;
	sweep =	radar->v[ifield]->sweep[isweep];
	iray = 	sweep->h.nrays;
	nbins = uf_fh[5];
	radar->v[ifield]->sweep[isweep]->ray[iray] = RSL_new_ray(nbins);
	ray   =	radar->v[ifield]->sweep[isweep]->ray[iray];
	sweep->h.nrays += 1;


	if (ray) {
		/* 
		 * ---- Beginning of MANDATORY HEADER BLOCK.
		 */
	  ray->h.ray_num = uf_ma[7];
	  if (little_endian()) swap2(&uf_ma[10], 8);
	  memcpy(radar->h.radar_name, &uf_ma[10], 8);
	  if (little_endian()) swap2(&uf_ma[10], 8/2);
	  memcpy(radar->h.name, &uf_ma[14], 8);
	  if (little_endian()) swap2(&uf_ma[14], 8/2);
		
      /* All components of lat/lon are the same sign.  If not, then
       * what ever wrote the UF was in error.  A simple RSL program
       * can repair the damage, however, not here.
       */
	  ray->h.lat = uf_ma[18] + uf_ma[19]/60.0 + uf_ma[20]/64.0/3600;
	  ray->h.lon = uf_ma[21] + uf_ma[22]/60.0 + uf_ma[23]/64.0/3600;
	  ray->h.alt      = uf_ma[24];
	  ray->h.year     = uf_ma[25];
	  if (ray->h.year < 1900) {
	    ray->h.year += 1900;
	    if (ray->h.year < 1980) ray->h.year += 100; /* Year >= 2000. */
	  }
	  ray->h.month    = uf_ma[26];
	  ray->h.day      = uf_ma[27];
	  ray->h.hour     = uf_ma[28];
	  ray->h.minute   = uf_ma[29];
	  ray->h.sec      = uf_ma[30];
	  ray->h.azimuth  = uf_ma[32] / 64.0;

	  /* If Local Use Header is present and contains azimuth, use that
	   * azimuth for VR and SW. This is for WSR-88D, which runs separate
	   * scans for DZ and VR/SW at the lower elevations, which means DZ
	   * VR/SW and have different azimuths in the "same" ray.
	   */
	  len_lu = uf_ma[4] - uf_ma[3];
	  if (len_lu == 2 && (ifield == VR_INDEX || ifield == SW_INDEX)) {
	      if (strncmp(uf_lu,"ZA",2) == 0 || strncmp(uf_lu,"AZ",2) == 0)
		  ray->h.azimuth = uf_lu[1] / 64.0;
	  }
	  if (ray->h.azimuth < 0.) ray->h.azimuth += 360.; /* make it 0 to 360. */
	  ray->h.elev     = uf_ma[33] / 64.0;
	  ray->h.elev_num = sweep->h.sweep_num;
	  ray->h.fix_angle  = sweep->h.elev = uf_ma[35] / 64.0;
	  ray->h.azim_rate  = uf_ma[36] / 64.0;
	  ray->h.sweep_rate = ray->h.azim_rate * (60.0/360.0);
	  missing_data      = uf_ma[44];

	  if (pulled_time_from_first_ray == 0) {
	    radar->h.height = uf_ma[24];
		radar->h.latd = uf_ma[18];
		radar->h.latm = uf_ma[19];
		radar->h.lats = uf_ma[20] / 64.0;
		radar->h.lond = uf_ma[21];
		radar->h.lonm = uf_ma[22];
		radar->h.lons = uf_ma[23] / 64.0;
		radar->h.year  = ray->h.year;
		radar->h.month = ray->h.month;
		radar->h.day   = ray->h.day;
		radar->h.hour  = ray->h.hour;
		radar->h.minute = ray->h.minute;
		radar->h.sec    = ray->h.sec;
		strcpy(radar->h.radar_type, "uf");
		pulled_time_from_first_ray = 1;
	  }
	  /*
	   * ---- End of MANDATORY HEADER BLOCK.
	   */
	  
	  /* ---- Optional header used for MCTEX files. */
		/* If this is a MCTEX file, the first 4 words following the
			 mandatory header contain the string 'MCTEX'. */
	  memcpy(proj_name, (short *)(uf + uf_ma[2] - 1), 8);
	  if (little_endian()) swap2(proj_name, 4);


	  /* ---- Local Use Header (if present) was checked during Mandatory
	   *      Header processing above.
	   */
	  
	  /* ---- Begining of FIELD HEADER. */
	  uf_fh = uf+current_fh_index - 1;
	  scale_factor      = uf_fh[1];
	  ray->h.range_bin1 = uf_fh[2] * 1000.0 + uf_fh[3]; 
	  ray->h.gate_size  = uf_fh[4];

	  ray->h.nbins      = uf_fh[5];
	  ray->h.pulse_width  = uf_fh[6]/(RSL_SPEED_OF_LIGHT/1.0e6);

		if (strncmp((char *)proj_name, "MCTEX", 5) == 0)  /* MCTEX? */
		{
			/* The beamwidth values are not correct in Mctex UF files. */
			ray->h.beam_width = 1.0;
			sweep->h.beam_width = ray->h.beam_width;
			sweep->h.horz_half_bw = ray->h.beam_width/2.0;
			sweep->h.vert_half_bw = ray->h.beam_width/2.0;
		}
		else  /* Not MCTEX */
		{
			ray->h.beam_width = uf_fh[7] / 64.0;
			sweep->h.beam_width = uf_fh[7]  / 64.0;
			sweep->h.horz_half_bw = uf_fh[7] / 128.0; /* DFF 4/4/95 */
			sweep->h.vert_half_bw = uf_fh[8] / 128.0; /* DFF 4/4/95 */
		}			
		/*		fprintf (stderr, "uf_fh[7] = %d, [8] = %d\n", (int)uf_fh[7], (int)uf_fh[8]); */
		if((int)uf_fh[7] == -32768) {
			ray->h.beam_width     = 1;
			sweep->h.beam_width   = 1;
			sweep->h.horz_half_bw = .5;
			sweep->h.vert_half_bw = .5;
		}
		  
	  ray->h.frequency    = uf_fh[9]  / 64.0;
	  ray->h.wavelength   = uf_fh[11] / 64.0 / 100.0;  /* cm to m. */
	  ray->h.pulse_count  = uf_fh[12];
	  if (ifield == DZ_INDEX || ifield == ZT_INDEX) {
	    radar->v[ifield]->h.calibr_const  = uf_fh[16] / 100.0;
						    /* uf value scaled by 100 */
	  }
	  else {
	    radar->v[ifield]->h.calibr_const  = 0.0;
	  }
	  if (uf_fh[17] == (short)UF_NO_DATA) x = 0;
	  else x = uf_fh[17] / 1000000.0;  /* PRT in seconds. */
	  if (x != 0) {
	    ray->h.prf = 1/x;
	    ray->h.unam_rng = RSL_SPEED_OF_LIGHT / (2.0 * ray->h.prf * 1000.0);
	  }
	  else {
	    ray->h.prf = 0.0;
	    ray->h.unam_rng = 0.0;
	  }

	  if (VR_INDEX == ifield || VE_INDEX == ifield) {
		ray->h.nyq_vel = uf_fh[19] / scale_factor;
	  }
	  
	  /* ---- End of FIELD HEADER. */
	  
	  ray->h.f = f;
	  ray->h.invf = invf;

	  /* ---- Begining of FIELD DATA. */
	  uf_data = uf+uf_fh[0] - 1;

	  len_data = ray->h.nbins;  /* Known because of RSL_new_ray. */
	  for (m=0; m<len_data; m++) {
		if (uf_data[m] == (short)UF_NO_DATA)
		  ray->range[m] = invf(BADVAL); /* BADVAL */
		else {
		  if(uf_data[m] == missing_data)
			ray->range[m] = invf(NOECHO); /* NOECHO */
		  else
			ray->range[m] = invf((float)uf_data[m]/scale_factor);
		}
	  }
	}
  }
  return UF_MORE;
}