Example #1
0
File: qf.c Project: Maxsl/r-source
double qf(double p, double df1, double df2, int lower_tail, int log_p)
{
#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(df1) || ISNAN(df2))
	return p + df1 + df2;
#endif
    if (df1 <= 0. || df2 <= 0.) ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

    /* fudge the extreme DF cases -- qbeta doesn't do this well.
       But we still need to fudge the infinite ones.
     */

    if (df1 <= df2 && df2 > 4e5) {
	if(!R_FINITE(df1)) /* df1 == df2 == Inf : */
	    return 1.;
 	/* else */
	return qchisq(p, df1, lower_tail, log_p) / df1;
    }
    if (df1 > 4e5) { /* and so  df2 < df1 */
	return df2 / qchisq(p, df2, !lower_tail, log_p);
    }

    p = (1. / qbeta(p, df2/2, df1/2, !lower_tail, log_p) - 1.) * (df2 / df1);
    return ML_VALID(p) ? p : ML_NAN;
}
Example #2
0
double qlnorm(double p, double meanlog, double sdlog, int lower_tail, int log_p)
{
#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(meanlog) || ISNAN(sdlog))
	return p + meanlog + sdlog;
#endif
    R_Q_P01_boundaries(p, 0, ML_POSINF);

    return exp(qnorm(p, meanlog, sdlog, lower_tail, log_p));
}
Example #3
0
double qpois(double p, double lambda, int lower_tail, int log_p)
{
    double mu, sigma, gamma, z, y;
#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(lambda))
	return p + lambda;
#endif
    if(!R_FINITE(lambda))
	ML_ERR_return_NAN;
    if(lambda < 0) ML_ERR_return_NAN;
    if(lambda == 0) return 0;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

    mu = lambda;
    sigma = sqrt(lambda);
    /* gamma = sigma; PR#8058 should be kurtosis which is mu^-0.5 */
    gamma = 1.0/sigma;

    /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c --
     * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */
    if(!lower_tail || log_p) {
	p = R_DT_qIv(p); /* need check again (cancellation!): */
	if (p == 0.) return 0;
	if (p == 1.) return ML_POSINF;
    }
    /* temporary hack --- FIXME --- */
    if (p + 1.01*DBL_EPSILON >= 1.) return ML_POSINF;

    /* y := approx.value (Cornish-Fisher expansion) :  */
    z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
#ifdef HAVE_NEARBYINT
    y = nearbyint(mu + sigma * (z + gamma * (z*z - 1) / 6));
#else
    y = round(mu + sigma * (z + gamma * (z*z - 1) / 6));
#endif

    z = ppois(y, lambda, /*lower_tail*/TRUE, /*log_p*/FALSE);

    /* fuzz to ensure left continuity; 1 - 1e-7 may lose too much : */
    p *= 1 - 64*DBL_EPSILON;

    /* If the mean is not too large a simple search is OK */
    if(lambda < 1e5) return do_search(y, &z, p, lambda, 1);
    /* Otherwise be a bit cleverer in the search */
    {
	double incr = floor(y * 0.001), oldincr;
	do {
	    oldincr = incr;
	    y = do_search(y, &z, p, lambda, incr);
	    incr = fmax2(1, floor(incr/100));
	} while(oldincr > 1 && incr > lambda*1e-15);
	return y;
    }
}
Example #4
0
double qnbinom(double p, double size, double prob, int lower_tail, int log_p)
{
    double P, Q, mu, sigma, gamma, z, y;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(size) || ISNAN(prob))
	return p + size + prob;
#endif
    if (prob <= 0 || prob > 1 || size <= 0) ML_ERR_return_NAN;
    /* FIXME: size = 0 is well defined ! */
    if (prob == 1) return 0;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

    Q = 1.0 / prob;
    P = (1.0 - prob) * Q;
    mu = size * P;
    sigma = sqrt(size * P * Q);
    gamma = (Q + P)/sigma;

    /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c --
     * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */
    if(!lower_tail || log_p) {
	p = R_DT_qIv(p); /* need check again (cancellation!): */
	if (p == R_DT_0) return 0;
	if (p == R_DT_1) return ML_POSINF;
    }
    /* temporary hack --- FIXME --- */
    if (p + 1.01*DBL_EPSILON >= 1.) return ML_POSINF;

    /* y := approx.value (Cornish-Fisher expansion) :  */
    z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
    y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5);

    z = pnbinom(y, size, prob, /*lower_tail*/TRUE, /*log_p*/FALSE);

    /* fuzz to ensure left continuity: */
    p *= 1 - 64*DBL_EPSILON;

    /* If the C-F value is not too large a simple search is OK */
    if(y < 1e5) return do_search(y, &z, p, size, prob, 1);
    /* Otherwise be a bit cleverer in the search */
    {
	double incr = floor(y * 0.001), oldincr;
	do {
	    oldincr = incr;
	    y = do_search(y, &z, p, size, prob, incr);
	    incr = fmax2(1, floor(incr/100));
	} while(oldincr > 1 && incr > y*1e-15);
	return y;
    }
}
Example #5
0
File: qgeom.c Project: csilles/cxxr
double qgeom(double p, double prob, int lower_tail, int log_p)
{
    if (prob <= 0 || prob > 1) ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(prob))
	return p + prob;
#endif

    if (prob == 1) return(0);
/* add a fuzz to ensure left continuity, but value must be >= 0 */
    return fmax2(0, ceil(R_DT_Clog(p) / log1p(- prob) - 1 - 1e-12));
}
Example #6
0
File: qnt.c Project: csilles/cxxr
double qnt(double p, double df, double ncp, int lower_tail, int log_p)
{
    const static double accu = 1e-13;
    const static double Eps = 1e-11; /* must be > accu */

    double ux, lx, nx, pp;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(df) || ISNAN(ncp))
	return p + df + ncp;
#endif
    if (!R_FINITE(df)) ML_ERR_return_NAN;

    /* Was
     * df = floor(df + 0.5);
     * if (df < 1 || ncp < 0) ML_ERR_return_NAN;
     */
    if (df <= 0.0) ML_ERR_return_NAN;

    if(ncp == 0.0 && df >= 1.0) return qt(p, df, lower_tail, log_p);

    R_Q_P01_boundaries(p, ML_NEGINF, ML_POSINF);

    p = R_DT_qIv(p);

    /* Invert pnt(.) :
     * 1. finding an upper and lower bound */
    if(p > 1 - DBL_EPSILON) return ML_POSINF;
    pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
    for(ux = fmax2(1., ncp);
	ux < DBL_MAX && pnt(ux, df, ncp, TRUE, FALSE) < pp;
	ux *= 2);
    pp = p * (1 - Eps);
    for(lx = fmin2(-1., -ncp);
	lx > -DBL_MAX && pnt(lx, df, ncp, TRUE, FALSE) > pp;
	lx *= 2);

    /* 2. interval (lx,ux)  halving : */
    do {
	nx = 0.5 * (lx + ux);
	if (pnt(nx, df, ncp, TRUE, FALSE) > p) ux = nx; else lx = nx;
    }
    while ((ux - lx) / fabs(nx) > accu);

    return 0.5 * (lx + ux);
}
Example #7
0
File: qnf.c Project: Bgods/r-source
double qnf(double p, double df1, double df2, double ncp, int lower_tail, 
	   int log_p)
{
    double y;
    
#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(df1) || ISNAN(df2) || ISNAN(ncp))
	return p + df1 + df2 + ncp;
#endif
    if (df1 <= 0. || df2 <= 0. || ncp < 0) ML_ERR_return_NAN;
    if (!R_FINITE(ncp)) ML_ERR_return_NAN;
    if (!R_FINITE(df1) && !R_FINITE(df2)) ML_ERR_return_NAN;
    R_Q_P01_boundaries(p, 0, ML_POSINF);

    if (df2 > 1e8) /* avoid problems with +Inf and loss of accuracy */
	return qnchisq(p, df1, ncp, lower_tail, log_p)/df1;

    y = qnbeta(p, df1 / 2., df2 / 2., ncp, lower_tail, log_p);
    return y/(1-y) * (df2/df1);
}
Example #8
0
double qnbeta(double p, double a, double b, double ncp,
	      int lower_tail, int log_p)
{
    const static double accu = 1e-15;
    const static double Eps = 1e-14; /* must be > accu */

    double ux, lx, nx, pp;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(a) || ISNAN(b) || ISNAN(ncp))
	return p + a + b + ncp;
#endif
    if (!R_FINITE(a)) ML_ERR_return_NAN;

    if (ncp < 0. || a <= 0. || b <= 0.) ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, 1);

    p = R_DT_qIv(p);

    /* Invert pnbeta(.) :
     * 1. finding an upper and lower bound */
    if(p > 1 - DBL_EPSILON) return 1.0;
    pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
    for(ux = 0.5;
	ux < 1 - DBL_EPSILON && pnbeta(ux, a, b, ncp, TRUE, FALSE) < pp;
	ux = 0.5*(1+ux));
    pp = p * (1 - Eps);
    for(lx = 0.5;
	lx > DBL_MIN && pnbeta(lx, a, b, ncp, TRUE, FALSE) > pp;
	lx *= 0.5);

    /* 2. interval (lx,ux)  halving : */
    do {
	nx = 0.5 * (lx + ux);
	if (pnbeta(nx, a, b, ncp, TRUE, FALSE) > p) ux = nx; else lx = nx;
    }
    while ((ux - lx) / nx > accu);

    return 0.5 * (ux + lx);
}
Example #9
0
double qbinom(double p, double n, double pr, int lower_tail, int log_p)
{
    double q, mu, sigma, gamma, z, y;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(n) || ISNAN(pr))
	return p + n + pr;
#endif
    if(!R_FINITE(n) || !R_FINITE(pr))
	ML_ERR_return_NAN;
    /* if log_p is true, p = -Inf is a legitimate value */
    if(!R_FINITE(p) && !log_p)
	ML_ERR_return_NAN;

    if(n != floor(n + 0.5)) ML_ERR_return_NAN;
    if (pr < 0 || pr > 1 || n < 0)
	ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, n);

    if (pr == 0. || n == 0) return 0.;

    q = 1 - pr;
    if(q == 0.) return n; /* covers the full range of the distribution */
    mu = n * pr;
    sigma = sqrt(n * pr * q);
    gamma = (q - pr) / sigma;

#ifdef DEBUG_qbinom
    REprintf("qbinom(p=%7g, n=%g, pr=%7g, l.t.=%d, log=%d): sigm=%g, gam=%g\n",
	     p,n,pr, lower_tail, log_p, sigma, gamma);
#endif
    /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c --
     * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */
    if(!lower_tail || log_p) {
	p = R_DT_qIv(p); /* need check again (cancellation!): */
	if (p == 0.) return 0.;
	if (p == 1.) return n;
    }
    /* temporary hack --- FIXME --- */
    if (p + 1.01*DBL_EPSILON >= 1.) return n;

    /* y := approx.value (Cornish-Fisher expansion) :  */
    z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE);
    y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5);

    if(y > n) /* way off */ y = n;

#ifdef DEBUG_qbinom
    REprintf("  new (p,1-p)=(%7g,%7g), z=qnorm(..)=%7g, y=%5g\n", p, 1-p, z, y);
#endif
    z = pbinom(y, n, pr, /*lower_tail*/TRUE, /*log_p*/FALSE);

    /* fuzz to ensure left continuity: */
    p *= 1 - 64*DBL_EPSILON;

    if(n < 1e5) return do_search(y, &z, p, n, pr, 1);
    /* Otherwise be a bit cleverer in the search */
    {
	double incr = floor(n * 0.001), oldincr;
	do {
	    oldincr = incr;
	    y = do_search(y, &z, p, n, pr, incr);
	    incr = fmax2(1, floor(incr/100));
	} while(oldincr > 1 && incr > n*1e-15);
	return y;
    }
}
Example #10
0
double qnorm5(double p, double mu, double sigma, int lower_tail, int log_p)
{
    double p_, q, r, val;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(mu) || ISNAN(sigma))
	return p + mu + sigma;
#endif
    R_Q_P01_boundaries(p, ML_NEGINF, ML_POSINF);

    if(sigma  < 0)	ML_ERR_return_NAN;
    if(sigma == 0)	return mu;

    p_ = R_DT_qIv(p);/* real lower_tail prob. p */
    q = p_ - 0.5;

#ifdef DEBUG_qnorm
    REprintf("qnorm(p=%10.7g, m=%g, s=%g, l.t.= %d, log= %d): q = %g\n",
	     p,mu,sigma, lower_tail, log_p, q);
#endif


/*-- use AS 241 --- */
/* double ppnd16_(double *p, long *ifault)*/
/*      ALGORITHM AS241  APPL. STATIST. (1988) VOL. 37, NO. 3

        Produces the normal deviate Z corresponding to a given lower
        tail area of P; Z is accurate to about 1 part in 10**16.

        (original fortran code used PARAMETER(..) for the coefficients
         and provided hash codes for checking them...)
*/
    if (fabs(q) <= .425) {/* 0.075 <= p <= 0.925 */
        r = .180625 - q * q;
	val =
            q * (((((((r * 2509.0809287301226727 +
                       33430.575583588128105) * r + 67265.770927008700853) * r +
                     45921.953931549871457) * r + 13731.693765509461125) * r +
                   1971.5909503065514427) * r + 133.14166789178437745) * r +
                 3.387132872796366608)
            / (((((((r * 5226.495278852854561 +
                     28729.085735721942674) * r + 39307.89580009271061) * r +
                   21213.794301586595867) * r + 5394.1960214247511077) * r +
                 687.1870074920579083) * r + 42.313330701600911252) * r + 1.);
    }
    else { /* closer than 0.075 from {0,1} boundary */

	/* r = min(p, 1-p) < 0.075 */
	if (q > 0)
	    r = R_DT_CIv(p);/* 1-p */
	else
	    r = p_;/* = R_DT_Iv(p) ^=  p */

	r = sqrt(- ((log_p &&
		     ((lower_tail && q <= 0) || (!lower_tail && q > 0))) ?
		    p : /* else */ log(r)));
        /* r = sqrt(-log(r))  <==>  min(p, 1-p) = exp( - r^2 ) */
#ifdef DEBUG_qnorm
	REprintf("\t close to 0 or 1: r = %7g\n", r);
#endif

        if (r <= 5.) { /* <==> min(p,1-p) >= exp(-25) ~= 1.3888e-11 */
            r += -1.6;
            val = (((((((r * 7.7454501427834140764e-4 +
                       .0227238449892691845833) * r + .24178072517745061177) *
                     r + 1.27045825245236838258) * r +
                    3.64784832476320460504) * r + 5.7694972214606914055) *
                  r + 4.6303378461565452959) * r +
                 1.42343711074968357734)
                / (((((((r *
                         1.05075007164441684324e-9 + 5.475938084995344946e-4) *
                        r + .0151986665636164571966) * r +
                       .14810397642748007459) * r + .68976733498510000455) *
                     r + 1.6763848301838038494) * r +
                    2.05319162663775882187) * r + 1.);
        }
        else { /* very close to  0 or 1 */
            r += -5.;
            val = (((((((r * 2.01033439929228813265e-7 +
                       2.71155556874348757815e-5) * r +
                      .0012426609473880784386) * r + .026532189526576123093) *
                    r + .29656057182850489123) * r +
                   1.7848265399172913358) * r + 5.4637849111641143699) *
                 r + 6.6579046435011037772)
                / (((((((r *
                         2.04426310338993978564e-15 + 1.4215117583164458887e-7)*
                        r + 1.8463183175100546818e-5) * r +
                       7.868691311456132591e-4) * r + .0148753612908506148525)
                     * r + .13692988092273580531) * r +
                    .59983220655588793769) * r + 1.);
        }

	if(q < 0.0)
	    val = -val;
        /* return (q >= 0.)? r : -r ;*/
    }
    return mu + sigma * val;
}
Example #11
0
double qnchisq(double p, double df, double ncp, int lower_tail, int log_p)
{
    const static double accu = 1e-13;
    const static double racc = 4*DBL_EPSILON;
    /* these two are for the "search" loops, can have less accuracy: */
    const static double Eps = 1e-11; /* must be > accu */
    const static double rEps= 1e-10; /* relative tolerance ... */

    double ux, lx, ux0, nx, pp;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(df) || ISNAN(ncp))
	return p + df + ncp;
#endif
    if (!R_FINITE(df)) ML_ERR_return_NAN;

    /* Was
     * df = floor(df + 0.5);
     * if (df < 1 || ncp < 0) ML_ERR_return_NAN;
     */
    if (df < 0 || ncp < 0) ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

    /* Invert pnchisq(.) :
     * 1. finding an upper and lower bound */
    {
       /* This is Pearson's (1959) approximation,
          which is usually good to 4 figs or so.  */
	double b, c, ff;
	b = (ncp*ncp)/(df + 3*ncp);
	c = (df + 3*ncp)/(df + 2*ncp);
	ff = (df + 2 * ncp)/(c*c);
	ux = b + c * qchisq(p, ff, lower_tail, log_p);
	if(ux < 0) ux = 1;
	ux0 = ux;
    }
    p = R_D_qIv(p);

    if(!lower_tail && ncp >= 80) {
	/* pnchisq is only for lower.tail = TRUE */
	if(p < 1e-10) ML_ERROR(ME_PRECISION, "qnchisq");
	p = 1. - p;
	lower_tail = TRUE;
    }

    if(lower_tail) {
	if(p > 1 - DBL_EPSILON) return ML_POSINF;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
        for(; ux < DBL_MAX &&
		pnchisq_raw(ux, df, ncp, Eps, rEps, 10000, TRUE) < pp;
	    ux *= 2);
	pp = p * (1 - Eps);
        for(lx = fmin2(ux0, DBL_MAX);
	    lx > DBL_MIN &&
		pnchisq_raw(lx, df, ncp, Eps, rEps, 10000, TRUE) > pp;
	    lx *= 0.5);
    }
    else {
	if(p > 1 - DBL_EPSILON) return 0.0;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
        for(; ux < DBL_MAX &&
		pnchisq_raw(ux, df, ncp, Eps, rEps, 10000, FALSE) > pp;
	    ux *= 2);
	pp = p * (1 - Eps);
        for(lx = fmin2(ux0, DBL_MAX);
	    lx > DBL_MIN &&
		pnchisq_raw(lx, df, ncp, Eps, rEps, 10000, FALSE) < pp;
	    lx *= 0.5);
    }

    /* 2. interval (lx,ux)  halving : */
    if(lower_tail) {
	do {
	    nx = 0.5 * (lx + ux);
	    if (pnchisq_raw(nx, df, ncp, accu, racc, 100000, TRUE) > p)
		ux = nx;
	    else
		lx = nx;
	}
	while ((ux - lx) / nx > accu);
    } else {
	do {
	    nx = 0.5 * (lx + ux);
	    if (pnchisq_raw(nx, df, ncp, accu, racc, 100000, FALSE) < p)
		ux = nx;
	    else
		lx = nx;
	}
	while ((ux - lx) / nx > accu);
    }
    return 0.5 * (ux + lx);
}
Example #12
0
double qbeta(double alpha, double p, double q, int lower_tail, int log_p)
{
    int swap_tail, i_pb, i_inn;
    double a, adj, logbeta, g, h, pp, p_, prev, qq, r, s, t, tx, w, y, yprev;
    double acu;
    volatile double xinbta;

    /* test for admissibility of parameters */

    if (isnan(p) || isnan(q) || isnan(alpha)){
        return p + q + alpha;
    }

    if(p < 0. || q < 0.){
      report_error("shape parameters for qbeta must be > 0.");
    }

    R_Q_P01_boundaries(alpha, 0, 1);

    p_ = R_DT_qIv(alpha);/* lower_tail prob (in any case) */

    if(log_p && (p_ == 0. || p_ == 1.))
        return p_; /* better than NaN or infinite loop;
                      FIXME: suboptimal, since -Inf < alpha ! */

    /* initialize */
    logbeta = lbeta(p, q);

    /* change tail if necessary;  afterwards   0 < a <= 1/2      */
    if (p_ <= 0.5) {
        a = p_; pp = p; qq = q; swap_tail = 0;
    } else { /* change tail, swap  p <-> q :*/
        a = (!lower_tail && !log_p)? alpha : 1 - p_;
        pp = q; qq = p; swap_tail = 1;
    }

    /* calculate the initial approximation */

    /* y := {fast approximation of} qnorm(1 - a) :*/
    r = sqrt(-2 * log(a));
    y = r - (const1 + const2 * r) / (1. + (const3 + const4 * r) * r);
    if (pp > 1 && qq > 1) {
        r = (y * y - 3.) / 6.;
        s = 1. / (pp + pp - 1.);
        t = 1. / (qq + qq - 1.);
        h = 2. / (s + t);
        w = y * sqrt(h + r) / h - (t - s) * (r + 5. / 6. - 2. / (3. * h));
        xinbta = pp / (pp + qq * exp(w + w));
    } else {
        r = qq + qq;
        t = 1. / (9. * qq);
        t = r * pow(1. - t + y * sqrt(t), 3.0);
        if (t <= 0.)
            xinbta = 1. - exp((log1p(-a)+ log(qq) + logbeta) / qq);
        else {
            t = (4. * pp + r - 2.) / t;
            if (t <= 1.)
                xinbta = exp((log(a * pp) + logbeta) / pp);
            else
                xinbta = 1. - 2. / (t + 1.);
        }
    }

    /* solve for x by a modified newton-raphson method, */
    /* using the function pbeta_raw */

    r = 1 - pp;
    t = 1 - qq;
    yprev = 0.;
    adj = 1;
    /* Sometimes the approximation is negative! */
    if (xinbta < lower)
        xinbta = 0.5;
    else if (xinbta > upper)
        xinbta = 0.5;

    /* Desired accuracy should depend on  (a,p)
     * This is from Remark .. on AS 109, adapted.
     * However, it's not clear if this is "optimal" for IEEE double prec.

     * acu = std::max<double>(acu_min, pow(10., -25. - 5./(pp * pp) - 1./(a * a)));

     * NEW: 'acu' accuracy NOT for squared adjustment, but simple;
     * ---- i.e.,  "new acu" = sqrt(old acu)

    */
    acu = std::max<double>(acu_min, pow(10., -13 - 2.5/(pp * pp) - 0.5/(a * a)));
    tx = prev = 0.;     /* keep -Wall happy */

    for (i_pb=0; i_pb < 1000; i_pb++) {
        y = pbeta_raw(xinbta, pp, qq, /*lower_tail = */ true, false);
        if(!std::isfinite(y)){
          report_error("algorithm blew up ni qbeta");
        }

        y = (y - a) *
            exp(logbeta + r * log(xinbta) + t * log1p(-xinbta));
        if (y * yprev <= 0.)
            prev = std::max<double>(fabs(adj),fpu);
        g = 1;
        for (i_inn=0; i_inn < 1000;i_inn++) {
            adj = g * y;
            if (fabs(adj) < prev) {
                tx = xinbta - adj; /* trial new x */
                if (tx >= 0. && tx <= 1) {
                    if (prev <= acu)    goto L_converged;
                    if (fabs(y) <= acu) goto L_converged;
                    if (tx != 0. && tx != 1)
                        break;
                }
            }
            g /= 3;
        }
        if (fabs(tx - xinbta) < 1e-15*xinbta) goto L_converged;
        xinbta = tx;
        yprev = y;
    }
    /*-- NOT converged: Iteration count --*/
    report_error("algorithm did not converge in qbeta");

L_converged:
    return swap_tail ? 1 - xinbta : xinbta;
}
Example #13
0
double qtukey(double p, double rr, double cc, double df,
	      int lower_tail, int log_p)
{
    const static double eps = 0.0001;
    const int maxiter = 50;

    double ans = 0.0, valx0, valx1, x0, x1, xabs;
    int iter;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(rr) || ISNAN(cc) || ISNAN(df)) {
	ML_ERROR(ME_DOMAIN, "qtukey");
	return p + rr + cc + df;
    }
#endif

    /* df must be > 1 ; there must be at least two values */
    if (df < 2 || rr < 1 || cc < 2) ML_ERR_return_NAN;

    R_Q_P01_boundaries(p, 0, ML_POSINF);

    p = R_DT_qIv(p); /* lower_tail,non-log "p" */

    /* Initial value */

    x0 = qinv(p, cc, df);

    /* Find prob(value < x0) */

    valx0 = ptukey(x0, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p;

    /* Find the second iterate and prob(value < x1). */
    /* If the first iterate has probability value */
    /* exceeding p then second iterate is 1 less than */
    /* first iterate; otherwise it is 1 greater. */

    if (valx0 > 0.0)
	x1 = fmax2(0.0, x0 - 1.0);
    else
	x1 = x0 + 1.0;
    valx1 = ptukey(x1, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p;

    /* Find new iterate */

    for(iter=1 ; iter < maxiter ; iter++) {
	ans = x1 - ((valx1 * (x1 - x0)) / (valx1 - valx0));
	valx0 = valx1;

	/* New iterate must be >= 0 */

	x0 = x1;
	if (ans < 0.0) {
	    ans = 0.0;
	    valx1 = -p;
	}
	/* Find prob(value < new iterate) */

	valx1 = ptukey(ans, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p;
	x1 = ans;

	/* If the difference between two successive */
	/* iterates is less than eps, stop */

	xabs = fabs(x1 - x0);
	if (xabs < eps)
	    return ans;
    }

    /* The process did not converge in 'maxiter' iterations */
    ML_ERROR(ME_NOCONV, "qtukey");
    return ans;
}
Example #14
0
File: qt.c Project: 6e441f9c/julia
double qt(double p, double ndf, int lower_tail, int log_p)
{
    const static double eps = 1.e-12;

    double P, q;
    Rboolean neg;

#ifdef IEEE_754
    if (ISNAN(p) || ISNAN(ndf))
	return p + ndf;
#endif

    R_Q_P01_boundaries(p, ML_NEGINF, ML_POSINF);

    if (ndf <= 0) ML_ERR_return_NAN;

    if (ndf < 1) { /* based on qnt */
	const static double accu = 1e-13;
	const static double Eps = 1e-11; /* must be > accu */

	double ux, lx, nx, pp;
	
	int iter = 0;

	p = R_DT_qIv(p);

	/* Invert pt(.) :
	 * 1. finding an upper and lower bound */
	if(p > 1 - DBL_EPSILON) return ML_POSINF;
	pp = fmin2(1 - DBL_EPSILON, p * (1 + Eps));
	for(ux = 1.; ux < DBL_MAX && pt(ux, ndf, TRUE, FALSE) < pp; ux *= 2);
	pp = p * (1 - Eps);
	for(lx =-1.; lx > -DBL_MAX && pt(lx, ndf, TRUE, FALSE) > pp; lx *= 2);

	/* 2. interval (lx,ux)  halving
	   regula falsi failed on qt(0.1, 0.1)
	 */
	do {
	    nx = 0.5 * (lx + ux);
	    if (pt(nx, ndf, TRUE, FALSE) > p) ux = nx; else lx = nx;
	} while ((ux - lx) / fabs(nx) > accu && ++iter < 1000);

	if(iter >= 1000) ML_ERROR(ME_PRECISION, "qt");

	return 0.5 * (lx + ux);
    }

    /* Old comment:
     * FIXME: "This test should depend on  ndf  AND p  !!
     * -----  and in fact should be replaced by
     * something like Abramowitz & Stegun 26.7.5 (p.949)"
     *
     * That would say that if the qnorm value is x then
     * the result is about x + (x^3+x)/4df + (5x^5+16x^3+3x)/96df^2
     * The differences are tiny even if x ~ 1e5, and qnorm is not
     * that accurate in the extreme tails.
     */
    if (ndf > 1e20) return qnorm(p, 0., 1., lower_tail, log_p);

    P = R_D_qIv(p); /* if exp(p) underflows, we fix below */

    neg = (!lower_tail || P < 0.5) && (lower_tail || P > 0.5);
    if(neg)
	P = 2 * (log_p ? (lower_tail ? P : -expm1(p)) : R_D_Lval(p));
    else
	P = 2 * (log_p ? (lower_tail ? -expm1(p) : P) : R_D_Cval(p));
    /* 0 <= P <= 1 ; P = 2*min(P', 1 - P')  in all cases */

/* Use this if(log_p) only : */
#define P_is_exp_2p (lower_tail == neg) /* both TRUE or FALSE == !xor */

     if (fabs(ndf - 2) < eps) {	/* df ~= 2 */
	if(P > DBL_MIN) {
	    if(3* P < DBL_EPSILON) /* P ~= 0 */
		q = 1 / sqrt(P);
	    else if (P > 0.9)	   /* P ~= 1 */
		q = (1 - P) * sqrt(2 /(P * (2 - P)));
	    else /* eps/3 <= P <= 0.9 */
		q = sqrt(2 / (P * (2 - P)) - 2);
	}
	else { /* P << 1, q = 1/sqrt(P) = ... */
	    if(log_p)
		q = P_is_exp_2p ? exp(- p/2) / M_SQRT2 : 1/sqrt(-expm1(p));
	    else
		q = ML_POSINF;
	}
    }
    else if (ndf < 1 + eps) { /* df ~= 1  (df < 1 excluded above): Cauchy */
	if(P > 0)
	    q = 1/tan(P * M_PI_2);/* == - tan((P+1) * M_PI_2) -- suffers for P ~= 0 */

	else { /* P = 0, but maybe = 2*exp(p) ! */
	    if(log_p) /* 1/tan(e) ~ 1/e */
		q = P_is_exp_2p ? M_1_PI * exp(-p) : -1./(M_PI * expm1(p));
	    else
		q = ML_POSINF;
	}
    }
    else {		/*-- usual case;  including, e.g.,  df = 1.1 */
	double x = 0., y, log_P2 = 0./* -Wall */,
	    a = 1 / (ndf - 0.5),
	    b = 48 / (a * a),
	    c = ((20700 * a / b - 98) * a - 16) * a + 96.36,
	    d = ((94.5 / (b + c) - 3) / b + 1) * sqrt(a * M_PI_2) * ndf;

	Rboolean P_ok1 = P > DBL_MIN || !log_p,  P_ok = P_ok1;
	if(P_ok1) {
	    y = pow(d * P, 2 / ndf);
	    P_ok = (y >= DBL_EPSILON);
	}
	if(!P_ok) { /* log_p && P very small */
	    log_P2 = P_is_exp_2p ? p : R_Log1_Exp(p); /* == log(P / 2) */
	    x = (log(d) + M_LN2 + log_P2) / ndf;
	    y = exp(2 * x);
	}

	if ((ndf < 2.1 && P > 0.5) || y > 0.05 + a) { /* P > P0(df) */
	    /* Asymptotic inverse expansion about normal */
	    if(P_ok)
		x = qnorm(0.5 * P, 0., 1., /*lower_tail*/TRUE,  /*log_p*/FALSE);
	    else /* log_p && P underflowed */
		x = qnorm(log_P2,  0., 1., lower_tail,	        /*log_p*/ TRUE);

	    y = x * x;
	    if (ndf < 5)
		c += 0.3 * (ndf - 4.5) * (x + 0.6);
	    c = (((0.05 * d * x - 5) * x - 7) * x - 2) * x + b + c;
	    y = (((((0.4 * y + 6.3) * y + 36) * y + 94.5) / c
		  - y - 3) / b + 1) * x;
	    y = expm1(a * y * y);
	    q = sqrt(ndf * y);
	} else { /* re-use 'y' from above */

	    if(!P_ok && x < - M_LN2 * DBL_MANT_DIG) {/* 0.5* log(DBL_EPSILON) */
		/* y above might have underflown */
		q = sqrt(ndf) * exp(-x);
	    }
	    else {
		y = ((1 / (((ndf + 6) / (ndf * y) - 0.089 * d - 0.822)
			   * (ndf + 2) * 3) + 0.5 / (ndf + 4))
		     * y - 1) * (ndf + 1) / (ndf + 2) + 1 / y;
		q = sqrt(ndf * y);
	    }
	}


	/* Now apply 2-term Taylor expansion improvement (1-term = Newton):
	 * as by Hill (1981) [ref.above] */

	/* FIXME: This can be far from optimal when log_p = TRUE
	 *      but is still needed, e.g. for qt(-2, df=1.01, log=TRUE).
	 *	Probably also improvable when  lower_tail = FALSE */

	if(P_ok1) {
	    int it=0;
	    while(it++ < 10 && (y = dt(q, ndf, FALSE)) > 0 &&
		  R_FINITE(x = (pt(q, ndf, FALSE, FALSE) - P/2) / y) &&
		  fabs(x) > 1e-14*fabs(q))
		/* Newton (=Taylor 1 term):
		 *  q += x;
		 * Taylor 2-term : */
		q += x * (1. + x * q * (ndf + 1) / (2 * (q * q + ndf)));
	}
    }
    if(neg) q = -q;
    return q;
}