Example #1
0
int output_raster(int fd)
{
    int i;

    for (i = 0; i < page.rows; i++, at_row++) {
	G_percent(i, page.rows, 2);
	switch (format) {
	case USE_CELL:
	    cell = raster.cell[i];

	    /* insert the NULL values */
	    Rast_insert_c_null_values(cell, null_flags[i], page.cols);
	    Rast_put_c_row(fd, cell);
	    break;
	case USE_DCELL:
	    dcell = raster.dcell[i];

	    /* insert the NULL values */
	    Rast_insert_d_null_values(dcell, null_flags[i], page.cols);
	    Rast_put_d_row(fd, dcell);
	    break;
	}
    }
    G_percent(1, 1, 1);
    
    return configure_plot();
}
Example #2
0
int randsurf(char *out,		/* Name of raster maps to be opened.    */
	     int min, int max,	/* Minimum and maximum cell values.     */
	     int int_map)
{				/* if map is to be written as a CELL map */
    int nrows, ncols;		/* Number of cell rows and columns      */

    DCELL *row_out_D;		/* Buffer just large enough to hold one */
    CELL *row_out_C;		/* row of the raster map layer.         */

    int fd_out;			/* File descriptor - used to identify   */

    /* open raster maps.                    */
    int row_count, col_count;

	/****** INITIALISE RANDOM NUMBER GENERATOR ******/
    G_math_rand(-1 * getpid());

	/****** OPEN CELL FILES AND GET CELL DETAILS ******/
    fd_out = Rast_open_new(out, int_map ? CELL_TYPE : DCELL_TYPE);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    if (int_map)
	row_out_C = Rast_allocate_c_buf();
    else
	row_out_D = Rast_allocate_d_buf();

	/****** PASS THROUGH EACH CELL ASSIGNING RANDOM VALUE ******/
    for (row_count = 0; row_count < nrows; row_count++) {
	G_percent(row_count, nrows, 2);
	for (col_count = 0; col_count < ncols; col_count++) {
	    if (int_map)
		*(row_out_C + col_count) =
		    (CELL) (G_math_rand(2742) * (max + 1 - min) + min);
	    /* under represents first and last bin */
	    /*                  *(row_out_C + col_count) = (CELL) floor(rand1(2742)*(max-min)+min +0.5); */
	    else
		*(row_out_D + col_count) =
		    (DCELL) (G_math_rand(2742) * (max - min) + min);
	}

	/* Write contents row by row */
	if (int_map)
	    Rast_put_c_row(fd_out, (CELL *) row_out_C);
	else
	    Rast_put_d_row(fd_out, (DCELL *) row_out_D);
    }
    G_percent(1, 1, 1);
    
    Rast_close(fd_out);

    return 0;
}
Example #3
0
static void convert_and_write_fd(int fd, const void *vbuf)
{
    const FCELL *buf = vbuf;
    struct fileinfo *fcb = &R__.fileinfo[fd];
    DCELL *p = (DCELL *) fcb->data;
    int i;

    for (i = 0; i < fcb->cellhd.cols; i++)
	if (Rast_is_f_null_value(&buf[i]))
	    Rast_set_d_null_value(&p[i], 1);
	else
	    p[i] = (DCELL) buf[i];

    Rast_put_d_row(fd, p);
}
Example #4
0
static void do_output(int base_fd, char **outputs, const char *covermap)
{
    int *out_fd = G_malloc(num_quants * sizeof(int));
    CELL *base_buf = Rast_allocate_c_buf();
    DCELL *out_buf = Rast_allocate_d_buf();
    const char *mapset = G_mapset();
    struct Colors colors;
    int have_colors;
    int quant;
    int row, col;

    G_message(_("Writing output maps"));

    for (quant = 0; quant < num_quants; quant++) {
	const char *output = outputs[quant];

	out_fd[quant] = Rast_open_fp_new(output);
    }

    have_colors = Rast_read_colors(covermap, "", &colors) > 0;

    for (row = 0; row < rows; row++) {
	Rast_get_c_row(base_fd, base_buf, row);

	for (quant = 0; quant < num_quants; quant++) {
	    for (col = 0; col < cols; col++)
		if (Rast_is_c_null_value(&base_buf[col]))
		    Rast_set_d_null_value(&out_buf[col], 1);
		else
		    out_buf[col] = basecats[base_buf[col] - min].quants[quant];

	    Rast_put_d_row(out_fd[quant], out_buf);
	}

	G_percent(row, rows, 2);
    }

    G_percent(row, rows, 2);

    for (quant = 0; quant < num_quants; quant++) {
	Rast_close(out_fd[quant]);
	if (have_colors)
	    Rast_write_colors(outputs[quant], mapset, &colors);
    }
}
Example #5
0
/*---------------------------------------------------------------------------------------*/
void P_Aux_to_Raster(double **matrix, int fd)
{
    int ncols, col, nrows, row;
    void *ptr, *raster;

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    raster = Rast_allocate_buf(DCELL_TYPE);

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);

	Rast_set_d_null_value(raster, ncols);

	for (col = 0, ptr = raster; col < ncols;
	     col++, ptr = G_incr_void_ptr(ptr, Rast_cell_size(DCELL_TYPE))) {
	    Rast_set_d_value(ptr, (DCELL) (matrix[row][col]), DCELL_TYPE);
	}
	Rast_put_d_row(fd, raster);
    }
    G_percent(row, nrows, 2);
}
Example #6
0
int main(int argc, char *argv[])
{
    /* buffer for input-output rasters */
    void *inrast_TEMPKA, *inrast_PATM, *inrast_RNET, *inrast_G0;
    DCELL *outrast;

    /* pointers to input-output raster files */
    int infd_TEMPKA, infd_PATM, infd_RNET, infd_G0;
    int outfd;

    /* names of input-output raster files */
    char *RNET, *TEMPKA, *PATM, *G0;
    char *ETa;

    /* input-output cell values */
    DCELL d_tempka, d_pt_patm, d_rnet, d_g0;
    DCELL d_pt_alpha, d_pt_delta, d_pt_ghamma, d_daily_et;

    /* region information and handler */
    struct Cell_head cellhd;
    int nrows, ncols;
    int row, col;

    /* parser stuctures definition */
    struct GModule *module;
    struct Option *input_RNET, *input_TEMPKA, *input_PATM, *input_G0,
	*input_PT;
    struct Option *output;
    struct Flag *zero;
    struct Colors color;
    struct History history;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("evapotranspiration"));
    module->description =
	_("Computes evapotranspiration calculation "
	  "Priestley and Taylor formulation, 1972.");
    
    /* Define different options */
    input_RNET = G_define_standard_option(G_OPT_R_INPUT);
    input_RNET->key = "net_radiation";
    input_RNET->description = _("Name of input net radiation raster map [W/m2]");

    input_G0 = G_define_standard_option(G_OPT_R_INPUT);
    input_G0->key = "soil_heatflux";
    input_G0->description = _("Name of input soil heat flux raster map [W/m2]");

    input_TEMPKA = G_define_standard_option(G_OPT_R_INPUT);
    input_TEMPKA->key = "air_temperature";
    input_TEMPKA->description = _("Name of input air temperature raster map [K]");

    input_PATM = G_define_standard_option(G_OPT_R_INPUT);
    input_PATM->key = "atmospheric_pressure";
    input_PATM->description = _("Name of input atmospheric pressure raster map [millibars]");

    input_PT = G_define_option();
    input_PT->key = "priestley_taylor_coeff";
    input_PT->type = TYPE_DOUBLE;
    input_PT->required = YES;
    input_PT->description = _("Priestley-Taylor coefficient");
    input_PT->answer = "1.26";

    output = G_define_standard_option(G_OPT_R_OUTPUT);
    output->description = _("Name of output evapotranspiration raster map [mm/d]");

    /* Define the different flags */
    zero = G_define_flag();
    zero->key = 'z';
    zero->description = _("Set negative ETa to zero");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    RNET = input_RNET->answer;
    TEMPKA = input_TEMPKA->answer;
    PATM = input_PATM->answer;
    G0 = input_G0->answer;
    d_pt_alpha = atof(input_PT->answer);

    ETa = output->answer;

    /* open pointers to input raster files */
    infd_RNET = Rast_open_old(RNET, "");
    infd_TEMPKA = Rast_open_old(TEMPKA, "");
    infd_PATM = Rast_open_old(PATM, "");
    infd_G0 = Rast_open_old(G0, "");

    /* read headers of raster files */
    Rast_get_cellhd(RNET, "", &cellhd);
    Rast_get_cellhd(TEMPKA, "", &cellhd);
    Rast_get_cellhd(PATM, "", &cellhd);
    Rast_get_cellhd(G0, "", &cellhd);

    /* Allocate input buffer */
    inrast_RNET = Rast_allocate_d_buf();
    inrast_TEMPKA = Rast_allocate_d_buf();
    inrast_PATM = Rast_allocate_d_buf();
    inrast_G0 = Rast_allocate_d_buf();

    /* get rows and columns number of the current region */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* allocate output buffer */
    outrast = Rast_allocate_d_buf();

    /* open pointers to output raster files */
    outfd = Rast_open_new(ETa, DCELL_TYPE);

    /* start the loop through cells */
    for (row = 0; row < nrows; row++) {

	G_percent(row, nrows, 2);
	/* read input raster row into line buffer */
	Rast_get_d_row(infd_RNET, inrast_RNET, row);
	Rast_get_d_row(infd_TEMPKA, inrast_TEMPKA, row);
	Rast_get_d_row(infd_PATM, inrast_PATM, row);
	Rast_get_d_row(infd_G0, inrast_G0, row);

	for (col = 0; col < ncols; col++) {
	    /* read current cell from line buffer */
            d_rnet = ((DCELL *) inrast_RNET)[col];
            d_tempka = ((DCELL *) inrast_TEMPKA)[col];
            d_pt_patm = ((DCELL *) inrast_PATM)[col];
            d_g0 = ((DCELL *) inrast_G0)[col];

	    /*Delta_pt and Ghamma_pt */
	    d_pt_delta = pt_delta(d_tempka);
	    d_pt_ghamma = pt_ghamma(d_tempka, d_pt_patm);

	    /*Calculate ET */
	    d_daily_et =
		pt_daily_et(d_pt_alpha, d_pt_delta, d_pt_ghamma, d_rnet, d_g0,
			    d_tempka);
	    if (zero->answer && d_daily_et < 0)
		d_daily_et = 0.0;

	    /* write calculated ETP to output line buffer */
	    outrast[col] = d_daily_et;
	}

	/* write output line buffer to output raster file */
	Rast_put_d_row(outfd, outrast);
    }
    /* free buffers and close input maps */

    G_free(inrast_RNET);
    G_free(inrast_TEMPKA);
    G_free(inrast_PATM);
    G_free(inrast_G0);
    Rast_close(infd_RNET);
    Rast_close(infd_TEMPKA);
    Rast_close(infd_PATM);
    Rast_close(infd_G0);

    /* generate color table between -20 and 20 */
    Rast_make_rainbow_colors(&color, -20, 20);
    Rast_write_colors(ETa, G_mapset(), &color);

    Rast_short_history(ETa, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(ETa, &history);

    /* free buffers and close output map */
    G_free(outrast);
    Rast_close(outfd);

    return (EXIT_SUCCESS);
}
Example #7
0
int main(int argc, char *argv[]) 
{
    int nrows, ncols;
    int row, col;
    struct GModule *module;
    struct Option *input1, *input2, *input3, *input4, *input5, *input6;
    struct Option *output1;
    struct History history;	/*metadata */
    struct Colors colors;
    char *result1;	/*output raster name */
    int infd_fpar, infd_luf, infd_lat;
    int infd_doy, infd_tsw, infd_wa;
    int outfd1;
    char *fpar, *luf, *lat, *doy, *tsw, *wa;
    void *inrast_fpar, *inrast_luf, *inrast_lat;
    void *inrast_doy, *inrast_tsw, *inrast_wa;
    DCELL * outrast1;
    CELL val1, val2;
    
    /************************************/ 
    G_gisinit(argv[0]);
    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("biomass"));
    G_add_keyword(_("fpar"));
    G_add_keyword(_("yield"));
    module->description =
	_("Computes biomass growth, precursor of crop yield calculation.");
    
    /* Define the different options */ 
    input1 = G_define_standard_option(G_OPT_R_INPUT);
    input1->key = "fpar";
    input1->description = _("Name of fPAR raster map");

    input2 = G_define_standard_option(G_OPT_R_INPUT);
    input2->key = "lightuseefficiency";
    input2->description =
	_("Name of light use efficiency raster map (UZB:cotton=1.9)");

    input3 = G_define_standard_option(G_OPT_R_INPUT);
    input3->key = "latitude";
    input3->description = _("Name of degree latitude raster map [dd.ddd]");

    input4 = G_define_standard_option(G_OPT_R_INPUT);
    input4->key = "dayofyear";
    input4->description = _("Name of Day of Year raster map [1-366]");

    input5 = G_define_standard_option(G_OPT_R_INPUT);
    input5->key = "transmissivitysingleway";
    input5->description =
	_("Name of single-way transmissivity raster map [0.0-1.0]");

    input6 = G_define_standard_option(G_OPT_R_INPUT);
    input6->key = "wateravailability";
    input6->description =
	_("Value of water availability raster map [0.0-1.0]");

    output1 = G_define_standard_option(G_OPT_R_OUTPUT);
    output1->description =
	_("Name for output daily biomass growth raster map [kg/ha/d]");
    
    /********************/ 
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    fpar = input1->answer;
    luf = input2->answer;
    lat = input3->answer;
    doy = input4->answer;
    tsw = input5->answer;
    wa = input6->answer;
    result1 = output1->answer;
    
    /***************************************************/ 
    infd_fpar = Rast_open_old(fpar, "");
    inrast_fpar = Rast_allocate_d_buf();

    infd_luf = Rast_open_old(luf, "");
    inrast_luf = Rast_allocate_d_buf();
    
    infd_lat = Rast_open_old(lat, "");
    inrast_lat = Rast_allocate_d_buf();
    
    infd_doy = Rast_open_old(doy, "");
    inrast_doy = Rast_allocate_d_buf();

    infd_tsw = Rast_open_old(tsw, "");
    inrast_tsw = Rast_allocate_d_buf();
    
    infd_wa = Rast_open_old(wa, "");
    inrast_wa = Rast_allocate_d_buf();
    
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    outrast1 = Rast_allocate_d_buf();
    
    /* Create New raster files */ 
    outfd1 = Rast_open_new(result1, DCELL_TYPE);
     
    /* Process pixels */ 
    for (row = 0; row < nrows; row++)
    {
	DCELL d;
	DCELL d_fpar;
	DCELL d_luf;
	DCELL d_lat;
	DCELL d_doy;
	DCELL d_tsw;
	DCELL d_solar;
	DCELL d_wa;
	G_percent(row, nrows, 2);
	
        /* read input maps */ 
        Rast_get_d_row(infd_fpar, inrast_fpar, row);
	Rast_get_d_row(infd_luf,inrast_luf,row);
	Rast_get_d_row(infd_lat, inrast_lat, row);
	Rast_get_d_row(infd_doy, inrast_doy, row);
	Rast_get_d_row(infd_tsw, inrast_tsw, row);
	Rast_get_d_row(infd_wa,inrast_wa,row); 
        /*process the data */ 
        for (col = 0; col < ncols; col++)
        {
            d_fpar = ((DCELL *) inrast_fpar)[col];
            d_luf = ((DCELL *) inrast_luf)[col];
            d_lat = ((DCELL *) inrast_lat)[col];
            d_doy = ((DCELL *) inrast_doy)[col];
            d_tsw = ((DCELL *) inrast_tsw)[col];
            d_wa = ((DCELL *) inrast_wa)[col];
	    if (Rast_is_d_null_value(&d_fpar) ||
		 Rast_is_d_null_value(&d_luf) ||
		 Rast_is_d_null_value(&d_lat) || 
                 Rast_is_d_null_value(&d_doy) ||
		 Rast_is_d_null_value(&d_tsw) ||
		 Rast_is_d_null_value(&d_wa)) 
		Rast_set_d_null_value(&outrast1[col], 1);
	    else {
		d_solar = solar_day(d_lat, d_doy, d_tsw);
		d = biomass(d_fpar,d_solar,d_wa,d_luf);
		outrast1[col] = d;
	    }
        }
	Rast_put_d_row(outfd1, outrast1);
    }
    
    /* Color table for biomass */ 
    Rast_init_colors(&colors);
    val1 = 0;
    val2 = 1;
    Rast_add_c_color_rule(&val1, 0, 0, 0, &val2, 255, 255, 255, &colors);
    G_free(inrast_fpar);
    G_free(inrast_luf);
    G_free(inrast_lat);
    G_free(inrast_doy);
    G_free(inrast_tsw);
    G_free(inrast_wa);
    G_free(outrast1);
    Rast_close(infd_fpar);
    Rast_close(infd_luf);
    Rast_close(infd_lat);
    Rast_close(infd_doy);
    Rast_close(infd_tsw);
    Rast_close(infd_wa);
    Rast_close(outfd1);
    Rast_short_history(result1, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(result1, &history);

    exit(EXIT_SUCCESS);
}
Example #8
0
/* ************************************************************************* */
void g3d_to_raster(void *map, RASTER3D_Region region, int *fd)
{
    DCELL d1 = 0;
    FCELL f1 = 0;
    int x, y, z;
    int rows, cols, depths, typeIntern, pos = 0;
    FCELL *fcell = NULL;
    DCELL *dcell = NULL;

    rows = region.rows;
    cols = region.cols;
    depths = region.depths;


    G_debug(2, "g3d_to_raster: Writing %i raster maps with %i rows %i cols.",
            depths, rows, cols);

    typeIntern = Rast3d_tile_type_map(map);

    if (typeIntern == FCELL_TYPE)
        fcell = Rast_allocate_f_buf();
    else if (typeIntern == DCELL_TYPE)
        dcell = Rast_allocate_d_buf();

    pos = 0;
    /*Every Rastermap */
    for (z = 0; z < depths; z++) { /*From the bottom to the top */
        G_debug(2, "Writing raster map %d of %d", z + 1, depths);
        for (y = 0; y < rows; y++) {
            G_percent(y, rows - 1, 10);

            for (x = 0; x < cols; x++) {
                if (typeIntern == FCELL_TYPE) {
                    Rast3d_get_value(map, x, y, z, &f1, typeIntern);
                    if (Rast3d_is_null_value_num(&f1, FCELL_TYPE))
                        Rast_set_null_value(&fcell[x], 1, FCELL_TYPE);
                    else
                        fcell[x] = f1;
                } else {
                    Rast3d_get_value(map, x, y, z, &d1, typeIntern);
                    if (Rast3d_is_null_value_num(&d1, DCELL_TYPE))
                        Rast_set_null_value(&dcell[x], 1, DCELL_TYPE);
                    else
                        dcell[x] = d1;
                }
            }
            if (typeIntern == FCELL_TYPE)
                Rast_put_f_row(fd[pos], fcell);

            if (typeIntern == DCELL_TYPE)
                Rast_put_d_row(fd[pos], dcell);
        }
        G_debug(2, "Finished writing map %d.", z + 1);
        pos++;
    }


    if (dcell)
        G_free(dcell);
    if (fcell)
        G_free(fcell);

}
Example #9
0
/*--------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Variable declarations */
    int nsply, nsplx, nrows, ncols, nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row, subregion_row, subregion_col;
    int subregion = 0, nsubregions = 0;
    int last_row, last_column, grid, bilin, ext, flag_auxiliar, cross;	/* booleans */
    double stepN, stepE, lambda, mean;
    double N_extension, E_extension, edgeE, edgeN;

    const char *mapset, *drv, *db, *vector, *map;
    char table_name[GNAME_MAX], title[64];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];

    int dim_vect, nparameters, BW;
    int *lineVect;		/* Vector restoring primitive's ID */
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect;	/* Interpolation and least-square matrix */

    SEGMENT out_seg, mask_seg;
    const char *out_file, *mask_file;
    int out_fd, mask_fd;
    double seg_size;
    int seg_mb, segments_in_memory;
    int have_mask;

    /* Structs declarations */
    int raster;
    struct Map_info In, In_ext, Out;
    struct History history;

    struct GModule *module;
    struct Option *in_opt, *in_ext_opt, *out_opt, *out_map_opt, *stepE_opt,
               *stepN_opt, *lambda_f_opt, *type_opt, *dfield_opt, *col_opt, *mask_opt,
               *memory_opt, *solver, *error, *iter;
    struct Flag *cross_corr_flag, *spline_step_flag;

    struct Reg_dimens dims;
    struct Cell_head elaboration_reg, original_reg;
    struct bound_box general_box, overlap_box, original_box;

    struct Point *observ;
    struct line_cats *Cats;
    dbCatValArray cvarr;

    int with_z;
    int nrec, ctype = 0;
    struct field_info *Fi;
    dbDriver *driver, *driver_cats;

    /*----------------------------------------------------------------*/
    /* Options declarations */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    G_add_keyword(_("LIDAR"));
    module->description =
        _("Performs bicubic or bilinear spline interpolation with Tykhonov regularization.");

    cross_corr_flag = G_define_flag();
    cross_corr_flag->key = 'c';
    cross_corr_flag->description =
        _("Find the best Tykhonov regularizing parameter using a \"leave-one-out\" cross validation method");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
        _("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_opt->label = _("Name of input vector point map");

    dfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    dfield_opt->guisection = _("Settings");

    col_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    col_opt->required = NO;
    col_opt->label =
        _("Name of the attribute column with values to be used for approximation");
    col_opt->description = _("If not given and input is 3D vector map then z-coordinates are used.");
    col_opt->guisection = _("Settings");

    in_ext_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_ext_opt->key = "sparse_input";
    in_ext_opt->required = NO;
    in_ext_opt->label =
        _("Name of input vector map with sparse points");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->required = NO;
    out_opt->guisection = _("Outputs");

    out_map_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    out_map_opt->key = "raster_output";
    out_map_opt->required = NO;
    out_map_opt->guisection = _("Outputs");

    mask_opt = G_define_standard_option(G_OPT_R_INPUT);
    mask_opt->key = "mask";
    mask_opt->label = _("Raster map to use for masking (applies to raster output only)");
    mask_opt->description = _("Only cells that are not NULL and not zero are interpolated");
    mask_opt->required = NO;

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "4";
    stepE_opt->description =
        _("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "4";
    stepN_opt->description =
        _("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    type_opt = G_define_option();
    type_opt->key = "method";
    type_opt->description = _("Spline interpolation algorithm");
    type_opt->type = TYPE_STRING;
    type_opt->options = "bilinear,bicubic";
    type_opt->answer = "bilinear";
    type_opt->guisection = _("Settings");
    G_asprintf((char **) &(type_opt->descriptions),
               "bilinear;%s;bicubic;%s",
               _("Bilinear interpolation"),
               _("Bicubic interpolation"));

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda_i";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description = _("Tykhonov regularization parameter (affects smoothing)");
    lambda_f_opt->answer = "0.01";
    lambda_f_opt->guisection = _("Settings");

    solver = N_define_standard_option(N_OPT_SOLVER_SYMM);
    solver->options = "cholesky,cg";
    solver->answer = "cholesky";

    iter = N_define_standard_option(N_OPT_MAX_ITERATIONS);

    error = N_define_standard_option(N_OPT_ITERATION_ERROR);

    memory_opt = G_define_option();
    memory_opt->key = "memory";
    memory_opt->type = TYPE_INTEGER;
    memory_opt->required = NO;
    memory_opt->answer = "300";
    memory_opt->label = _("Maximum memory to be used (in MB)");
    memory_opt->description = _("Cache size for raster rows");

    /*----------------------------------------------------------------*/
    /* Parsing */
    G_gisinit(argv[0]);
    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    vector = out_opt->answer;
    map = out_map_opt->answer;

    if (vector && map)
        G_fatal_error(_("Choose either vector or raster output, not both"));

    if (!vector && !map && !cross_corr_flag->answer)
        G_fatal_error(_("No raster or vector or cross-validation output"));

    if (!strcmp(type_opt->answer, "linear"))
        bilin = P_BILINEAR;
    else
        bilin = P_BICUBIC;

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);

    flag_auxiliar = FALSE;

    drv = db_get_default_driver_name();
    if (!drv) {
        if (db_set_default_connection() != DB_OK)
            G_fatal_error(_("Unable to set default DB connection"));
        drv = db_get_default_driver_name();
    }
    db = db_get_default_database_name();
    if (!db)
        G_fatal_error(_("No default DB defined"));

    /* Set auxiliary table's name */
    if (vector) {
        if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
            sprintf(table_name, "%s_aux", xname);
        }
        else
            sprintf(table_name, "%s_aux", out_opt->answer);
    }

    /* Something went wrong in a previous v.surf.bspline execution */
    if (db_table_exists(drv, db, table_name)) {
        /* Start driver and open db */
        driver = db_start_driver_open_database(drv, db);
        if (driver == NULL)
            G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
                          drv);
        db_set_error_handler_driver(driver);

        if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
            G_fatal_error(_("Old auxiliary table could not be dropped"));
        db_close_database_shutdown_driver(driver);
    }

    /* Open input vector */
    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL)
        G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);

    Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
        G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
                      in_opt->answer);

    bspline_field = 0; /* assume 3D input */
    bspline_column = col_opt->answer;

    with_z = !bspline_column && Vect_is_3d(&In);

    if (Vect_is_3d(&In)) {
        if (!with_z)
            G_verbose_message(_("Input is 3D: using attribute values instead of z-coordinates for approximation"));
        else
            G_verbose_message(_("Input is 3D: using z-coordinates for approximation"));
    }
    else { /* 2D */
        if (!bspline_column)
            G_fatal_error(_("Input vector map is 2D. Parameter <%s> required."), col_opt->key);
    }

    if (!with_z) {
        bspline_field = Vect_get_field_number(&In, dfield_opt->answer);
    }

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
        double dens, dist;
        if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
            fprintf(stdout, _("Estimated point density: %.4g"), dens);
            fprintf(stdout, _("Estimated mean distance between points: %.4g"), dist);
        }
        else {
            fprintf(stdout, _("No points in current region"));
        }

        Vect_close(&In);
        exit(EXIT_SUCCESS);
    }

    /*----------------------------------------------------------------*/
    /* Cross-correlation begins */
    if (cross_corr_flag->answer) {
        G_debug(1, "CrossCorrelation()");
        cross = cross_correlation(&In, stepE, stepN);

        if (cross != TRUE)
            G_fatal_error(_("Cross validation didn't finish correctly"));
        else {
            G_debug(1, "Cross validation finished correctly");

            Vect_close(&In);

            G_done_msg(_("Cross validation finished for ew_step = %f and ns_step = %f"), stepE, stepN);
            exit(EXIT_SUCCESS);
        }
    }

    /* Open input ext vector */
    ext = FALSE;
    if (in_ext_opt->answer) {
        ext = TRUE;
        G_message(_("Vector map <%s> of sparse points will be interpolated"),
                  in_ext_opt->answer);

        if ((mapset = G_find_vector2(in_ext_opt->answer, "")) == NULL)
            G_fatal_error(_("Vector map <%s> not found"), in_ext_opt->answer);

        Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
        if (1 > Vect_open_old(&In_ext, in_ext_opt->answer, mapset))
            G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
                          in_opt->answer);
    }

    /* Open output map */
    /* vector output */
    if (vector && !map) {
        if (strcmp(drv, "dbf") == 0)
            G_fatal_error(_("Sorry, the <%s> driver is not compatible with "
                            "the vector output of this module. "
                            "Try with raster output or another driver."), drv);

        Vect_check_input_output_name(in_opt->answer, out_opt->answer,
                                     G_FATAL_EXIT);
        grid = FALSE;

        if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z))
            G_fatal_error(_("Unable to create vector map <%s>"),
                          out_opt->answer);

        /* Copy vector Head File */
        if (ext == FALSE) {
            Vect_copy_head_data(&In, &Out);
            Vect_hist_copy(&In, &Out);
        }
        else {
            Vect_copy_head_data(&In_ext, &Out);
            Vect_hist_copy(&In_ext, &Out);
        }
        Vect_hist_command(&Out);

        G_verbose_message(_("Points in input vector map <%s> will be interpolated"),
                          vector);
    }


    /* read z values from attribute table */
    if (bspline_field > 0) {
        G_message(_("Reading values from attribute table..."));
        db_CatValArray_init(&cvarr);
        Fi = Vect_get_field(&In, bspline_field);
        if (Fi == NULL)
            G_fatal_error(_("Cannot read layer info"));

        driver_cats = db_start_driver_open_database(Fi->driver, Fi->database);
        /*G_debug (0, _("driver=%s db=%s"), Fi->driver, Fi->database); */

        if (driver_cats == NULL)
            G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
                          Fi->database, Fi->driver);
        db_set_error_handler_driver(driver_cats);

        nrec =
            db_select_CatValArray(driver_cats, Fi->table, Fi->key,
                                  col_opt->answer, NULL, &cvarr);
        G_debug(3, "nrec = %d", nrec);

        ctype = cvarr.ctype;
        if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE)
            G_fatal_error(_("Column type not supported"));

        if (nrec < 0)
            G_fatal_error(_("Unable to select data from table"));

        G_verbose_message(_("%d records selected from table"), nrec);

        db_close_database_shutdown_driver(driver_cats);
    }

    /*----------------------------------------------------------------*/
    /* Interpolation begins */
    G_debug(1, "Interpolation()");

    /* Open driver and database */
    driver = db_start_driver_open_database(drv, db);
    if (driver == NULL)
        G_fatal_error(_("No database connection for driver <%s> is defined. "
                        "Run db.connect."), drv);
    db_set_error_handler_driver(driver);

    /* Create auxiliary table */
    if (vector) {
        if ((flag_auxiliar = P_Create_Aux4_Table(driver, table_name)) == FALSE) {
            P_Drop_Aux_Table(driver, table_name);
            G_fatal_error(_("Interpolation: Creating table: "
                            "It was impossible to create table <%s>."),
                          table_name);
        }
        /* db_create_index2(driver, table_name, "ID"); */
        /* sqlite likes that ??? */
        db_close_database_shutdown_driver(driver);
        driver = db_start_driver_open_database(drv, db);
    }

    /* raster output */
    raster = -1;
    Rast_set_fp_type(DCELL_TYPE);
    if (!vector && map) {
        grid = TRUE;
        raster = Rast_open_fp_new(out_map_opt->answer);

        G_verbose_message(_("Cells for raster map <%s> will be interpolated"),
                          map);
    }

    /* Setting regions and boxes */
    G_debug(1, "Interpolation: Setting regions and boxes");
    G_get_window(&original_reg);
    G_get_window(&elaboration_reg);
    Vect_region_box(&original_reg, &original_box);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* Alloc raster matrix */
    have_mask = 0;
    out_file = mask_file = NULL;
    out_fd = mask_fd = -1;
    if (grid == TRUE) {
        int row;
        DCELL *drastbuf;

        seg_mb = atoi(memory_opt->answer);
        if (seg_mb < 3)
            G_fatal_error(_("Memory in MB must be >= 3"));

        if (mask_opt->answer)
            seg_size = sizeof(double) + sizeof(char);
        else
            seg_size = sizeof(double);

        seg_size = (seg_size * SEGSIZE * SEGSIZE) / (1 << 20);
        segments_in_memory = seg_mb / seg_size + 0.5;
        G_debug(1, "%d %dx%d segments held in memory", segments_in_memory, SEGSIZE, SEGSIZE);

        out_file = G_tempfile();
        out_fd = creat(out_file, 0666);
        if (Segment_format(out_fd, nrows, ncols, SEGSIZE, SEGSIZE, sizeof(double)) != 1)
            G_fatal_error(_("Can not create temporary file"));
        close(out_fd);

        out_fd = open(out_file, 2);
        if (Segment_init(&out_seg, out_fd, segments_in_memory) != 1)
            G_fatal_error(_("Can not initialize temporary file"));

        /* initialize output */
        G_message(_("Initializing output..."));

        drastbuf = Rast_allocate_buf(DCELL_TYPE);
        Rast_set_d_null_value(drastbuf, ncols);
        for (row = 0; row < nrows; row++) {
            G_percent(row, nrows, 2);
            Segment_put_row(&out_seg, drastbuf, row);
        }
        G_percent(row, nrows, 2);

        if (mask_opt->answer) {
            int row, col, maskfd;
            DCELL dval, *drastbuf;
            char mask_val;

            G_message(_("Load masking map"));

            mask_file = G_tempfile();
            mask_fd = creat(mask_file, 0666);
            if (Segment_format(mask_fd, nrows, ncols, SEGSIZE, SEGSIZE, sizeof(char)) != 1)
                G_fatal_error(_("Can not create temporary file"));
            close(mask_fd);

            mask_fd = open(mask_file, 2);
            if (Segment_init(&mask_seg, mask_fd, segments_in_memory) != 1)
                G_fatal_error(_("Can not initialize temporary file"));

            maskfd = Rast_open_old(mask_opt->answer, "");
            drastbuf = Rast_allocate_buf(DCELL_TYPE);

            for (row = 0; row < nrows; row++) {
                G_percent(row, nrows, 2);
                Rast_get_d_row(maskfd, drastbuf, row);
                for (col = 0; col < ncols; col++) {
                    dval = drastbuf[col];
                    if (Rast_is_d_null_value(&dval) || dval == 0)
                        mask_val = 0;
                    else
                        mask_val = 1;

                    Segment_put(&mask_seg, &mask_val, row, col);
                }
            }

            G_percent(row, nrows, 2);
            G_free(drastbuf);
            Rast_close(maskfd);

            have_mask = 1;
        }
    }

    /*------------------------------------------------------------------
      | Subdividing and working with tiles:
      | Each original region will be divided into several subregions.
      | Each one will be overlaped by its neighbouring subregions.
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);		/* Set dim struct to zero */

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
        dims.overlap = OVERLAP_SIZE * stepN;
    else
        dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(bilin, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(_("Adjusted EW splines %d"), nsplx_adj);
    G_verbose_message(_("Adjusted NS splines %d"), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
        nsubregion_col = 0;
    if (nsubregion_row < 0)
        nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    /* Creating line and categories structs */
    Cats = Vect_new_cats_struct();
    Vect_cat_set(Cats, 1, 0);

    subregion_row = 0;
    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each subregion row */
        subregion_row++;
        P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                      GENERAL_ROW);

        if (elaboration_reg.north > original_reg.north) {	/* First row */

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          FIRST_ROW);
        }

        if (elaboration_reg.south <= original_reg.south) {	/* Last row */

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          LAST_ROW);
            last_row = TRUE;
        }

        nsply =
            ceil((elaboration_reg.north -
                  elaboration_reg.south) / stepN) + 0.5;
        G_debug(1, "Interpolation: nsply = %d", nsply);
        /*
        if (nsply > NSPLY_MAX)
            nsply = NSPLY_MAX;
        */
        elaboration_reg.east = original_reg.west;
        last_column = FALSE;
        subregion_col = 0;

        /* TODO: process each subregion using its own thread (via OpenMP or pthreads) */
        /*     I'm not sure about pthreads, but you can tell OpenMP to start all at the
        	same time and it will keep num_workers supplied with the next job as free
        	cpus become available */
        while (last_column == FALSE) {	/* For each subregion column */
            int npoints = 0;
            /* needed for sparse points interpolation */
            int npoints_ext, *lineVect_ext = NULL;
            double **obsVect_ext;	/*, mean_ext = .0; */
            struct Point *observ_ext;

            subregion_col++;
            subregion++;
            if (nsubregions > 1)
                G_message(_("Processing subregion %d of %d..."), subregion, nsubregions);

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          GENERAL_COLUMN);

            if (elaboration_reg.west < original_reg.west) {	/* First column */

                P_set_regions(&elaboration_reg, &general_box, &overlap_box,
                              dims, FIRST_COLUMN);
            }

            if (elaboration_reg.east >= original_reg.east) {	/* Last column */

                P_set_regions(&elaboration_reg, &general_box, &overlap_box,
                              dims, LAST_COLUMN);
                last_column = TRUE;
            }
            nsplx =
                ceil((elaboration_reg.east -
                      elaboration_reg.west) / stepE) + 0.5;
            G_debug(1, "Interpolation: nsplx = %d", nsplx);
            /*
            if (nsplx > NSPLX_MAX)
            nsplx = NSPLX_MAX;
            */
            G_debug(1, "Interpolation: (%d,%d): subregion bounds",
                    subregion_row, subregion_col);
            G_debug(1, "Interpolation: \t\tNORTH:%.2f\t",
                    elaboration_reg.north);
            G_debug(1, "Interpolation: WEST:%.2f\t\tEAST:%.2f",
                    elaboration_reg.west, elaboration_reg.east);
            G_debug(1, "Interpolation: \t\tSOUTH:%.2f",
                    elaboration_reg.south);

#ifdef DEBUG_SUBREGIONS
            fprintf(stdout, "B 5\n");
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.north);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.west, elaboration_reg.north);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.west, elaboration_reg.south);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.south);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.north);
            fprintf(stdout, "C 1 1\n");
            fprintf(stdout, " %.11g %.11g\n", (elaboration_reg.west + elaboration_reg.east) / 2,
                    (elaboration_reg.south + elaboration_reg.north) / 2);
            fprintf(stdout, " 1 %d\n", subregion);
#endif



            /* reading points in interpolation region */
            dim_vect = nsplx * nsply;
            observ_ext = NULL;
            if (grid == FALSE && ext == TRUE) {
                observ_ext =
                    P_Read_Vector_Region_Map(&In_ext,
                                             &elaboration_reg,
                                             &npoints_ext, dim_vect,
                                             1);
            }
            else
                npoints_ext = 1;

            if (grid == TRUE && have_mask) {
                /* any unmasked cells in general region ? */
                mean = 0;
                observ_ext =
                    P_Read_Raster_Region_masked(&mask_seg, &original_reg,
                                                original_box, general_box,
                                                &npoints_ext, dim_vect, mean);
            }

            observ = NULL;
            if (npoints_ext > 0) {
                observ =
                    P_Read_Vector_Region_Map(&In, &elaboration_reg, &npoints,
                                             dim_vect, bspline_field);
            }
            else
                npoints = 1;

            G_debug(1,
                    "Interpolation: (%d,%d): Number of points in <elaboration_box> is %d",
                    subregion_row, subregion_col, npoints);
            if (npoints > 0)
                G_verbose_message(_("%d points found in this subregion"), npoints);
            /* only interpolate if there are any points in current subregion */
            if (npoints > 0 && npoints_ext > 0) {
                int i;

                nparameters = nsplx * nsply;
                BW = P_get_BandWidth(bilin, nsply);

                /* Least Squares system */
                N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
                TN = G_alloc_vector(nparameters);	/* vector */
                parVect = G_alloc_vector(nparameters);	/* Parameters vector */
                obsVect = G_alloc_matrix(npoints, 3);	/* Observation vector */
                Q = G_alloc_vector(npoints);	/* "a priori" var-cov matrix */
                lineVect = G_alloc_ivector(npoints);	/*  */

                for (i = 0; i < npoints; i++) {	/* Setting obsVect vector & Q matrix */
                    double dval;

                    Q[i] = 1;	/* Q=I */
                    lineVect[i] = observ[i].lineID;
                    obsVect[i][0] = observ[i].coordX;
                    obsVect[i][1] = observ[i].coordY;

                    /* read z coordinates from attribute table */
                    if (bspline_field > 0) {
                        int cat, ival, ret;

                        cat = observ[i].cat;
                        if (cat < 0)
                            continue;

                        if (ctype == DB_C_TYPE_INT) {
                            ret =
                                db_CatValArray_get_value_int(&cvarr, cat,
                                                             &ival);
                            obsVect[i][2] = ival;
                            observ[i].coordZ = ival;
                        }
                        else {	/* DB_C_TYPE_DOUBLE */
                            ret =
                                db_CatValArray_get_value_double(&cvarr, cat,
                                                                &dval);
                            obsVect[i][2] = dval;
                            observ[i].coordZ = dval;
                        }
                        if (ret != DB_OK) {
                            G_warning(_("Interpolation: (%d,%d): No record for point (cat = %d)"),
                                      subregion_row, subregion_col, cat);
                            continue;
                        }
                    }
                    /* use z coordinates of 3D vector */
                    else {
                        obsVect[i][2] = observ[i].coordZ;
                    }
                }

                /* Mean calculation for every point */
                mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

                G_debug(1, "Interpolation: (%d,%d): mean=%lf",
                        subregion_row, subregion_col, mean);

                G_free(observ);

                for (i = 0; i < npoints; i++)
                    obsVect[i][2] -= mean;

                /* Bilinear interpolation */
                if (bilin) {
                    G_debug(1,
                            "Interpolation: (%d,%d): Bilinear interpolation...",
                            subregion_row, subregion_col);
                    normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
                                   nsply, elaboration_reg.west,
                                   elaboration_reg.south, npoints,
                                   nparameters, BW);
                    nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
                }
                /* Bicubic interpolation */
                else {
                    G_debug(1,
                            "Interpolation: (%d,%d): Bicubic interpolation...",
                            subregion_row, subregion_col);
                    normalDefBicubic(N, TN, Q, obsVect, stepE, stepN, nsplx,
                                     nsply, elaboration_reg.west,
                                     elaboration_reg.south, npoints,
                                     nparameters, BW);
                    nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
                }

                if(G_strncasecmp(solver->answer, "cg", 2) == 0)
                    G_math_solver_cg_sband(N, parVect, TN, nparameters, BW, atoi(iter->answer), atof(error->answer));
                else
                    G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);


                G_free_matrix(N);
                G_free_vector(TN);
                G_free_vector(Q);

                if (grid == TRUE) {	/* GRID INTERPOLATION ==> INTERPOLATION INTO A RASTER */
                    G_debug(1, "Interpolation: (%d,%d): Regular_Points...",
                            subregion_row, subregion_col);

                    if (!have_mask) {
                        P_Regular_Points(&elaboration_reg, &original_reg, general_box,
                                         overlap_box, &out_seg, parVect,
                                         stepN, stepE, dims.overlap, mean,
                                         nsplx, nsply, nrows, ncols, bilin);
                    }
                    else {
                        P_Sparse_Raster_Points(&out_seg,
                                               &elaboration_reg, &original_reg,
                                               general_box, overlap_box,
                                               observ_ext, parVect,
                                               stepE, stepN,
                                               dims.overlap, nsplx, nsply,
                                               npoints_ext, bilin, mean);
                    }
                }
                else {		/* OBSERVATION POINTS INTERPOLATION */
                    if (ext == FALSE) {
                        G_debug(1, "Interpolation: (%d,%d): Sparse_Points...",
                                subregion_row, subregion_col);
                        P_Sparse_Points(&Out, &elaboration_reg, general_box,
                                        overlap_box, obsVect, parVect,
                                        lineVect, stepE, stepN,
                                        dims.overlap, nsplx, nsply, npoints,
                                        bilin, Cats, driver, mean,
                                        table_name);
                    }
                    else {	/* FLAG_EXT == TRUE */

                        /* done that earlier */
                        /*
                        int npoints_ext, *lineVect_ext = NULL;
                        double **obsVect_ext;
                        struct Point *observ_ext;

                        observ_ext =
                            P_Read_Vector_Region_Map(&In_ext,
                        			     &elaboration_reg,
                        			     &npoints_ext, dim_vect,
                        			     1);
                        */

                        obsVect_ext = G_alloc_matrix(npoints_ext, 3);	/* Observation vector_ext */
                        lineVect_ext = G_alloc_ivector(npoints_ext);

                        for (i = 0; i < npoints_ext; i++) {	/* Setting obsVect_ext vector & Q matrix */
                            obsVect_ext[i][0] = observ_ext[i].coordX;
                            obsVect_ext[i][1] = observ_ext[i].coordY;
                            obsVect_ext[i][2] = observ_ext[i].coordZ - mean;
                            lineVect_ext[i] = observ_ext[i].lineID;
                        }

                        G_free(observ_ext);

                        G_debug(1, "Interpolation: (%d,%d): Sparse_Points...",
                                subregion_row, subregion_col);
                        P_Sparse_Points(&Out, &elaboration_reg, general_box,
                                        overlap_box, obsVect_ext, parVect,
                                        lineVect_ext, stepE, stepN,
                                        dims.overlap, nsplx, nsply,
                                        npoints_ext, bilin, Cats, driver,
                                        mean, table_name);

                        G_free_matrix(obsVect_ext);
                        G_free_ivector(lineVect_ext);
                    }		/* END FLAG_EXT == TRUE */
                }		/* END GRID == FALSE */
                G_free_vector(parVect);
                G_free_matrix(obsVect);
                G_free_ivector(lineVect);
            }
            else {
                if (observ)
                    G_free(observ);
                if (observ_ext)
                    G_free(observ_ext);
                if (npoints == 0)
                    G_warning(_("No data within this subregion. "
                                "Consider increasing spline step values."));
            }
        }			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    G_verbose_message(_("Writing output..."));
    /* Writing the output raster map */
    if (grid == TRUE) {
        int row, col;
        DCELL *drastbuf, dval;


        if (have_mask) {
            Segment_release(&mask_seg);	/* release memory  */
            close(mask_fd);
            unlink(mask_file);
        }

        drastbuf = Rast_allocate_buf(DCELL_TYPE);
        for (row = 0; row < nrows; row++) {
            G_percent(row, nrows, 2);
            for (col = 0; col < ncols; col++) {
                Segment_get(&out_seg, &dval, row, col);
                drastbuf[col] = dval;
            }
            Rast_put_d_row(raster, drastbuf);
        }

        Rast_close(raster);

        Segment_release(&out_seg);	/* release memory  */
        close(out_fd);
        unlink(out_file);
        /* set map title */
        sprintf(title, "%s interpolation with Tykhonov regularization",
                type_opt->answer);
        Rast_put_cell_title(out_map_opt->answer, title);
        /* write map history */
        Rast_short_history(out_map_opt->answer, "raster", &history);
        Rast_command_history(&history);
        Rast_write_history(out_map_opt->answer, &history);
    }
    /* Writing to the output vector map the points from the overlapping zones */
    else if (flag_auxiliar == TRUE) {
        if (ext == FALSE)
            P_Aux_to_Vector(&In, &Out, driver, table_name);
        else
            P_Aux_to_Vector(&In_ext, &Out, driver, table_name);

        /* Drop auxiliary table */
        G_debug(1, "%s: Dropping <%s>", argv[0], table_name);
        if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
            G_fatal_error(_("Auxiliary table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    if (ext != FALSE)
        Vect_close(&In_ext);
    if (vector)
        Vect_close(&Out);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*END MAIN */
Example #10
0
static void resamp_weighted(void)
{
    stat_func_w *method_fn;

    DCELL(*values)[2];
    double *col_map, *row_map;
    int row, col;

    method_fn = menu[method].method_w;

    values = G_malloc(row_scale * col_scale * 2 * sizeof(DCELL));

    col_map = G_malloc((dst_w.cols + 1) * sizeof(double));
    row_map = G_malloc((dst_w.rows + 1) * sizeof(double));

    for (col = 0; col <= dst_w.cols; col++) {
	double x = Rast_col_to_easting(col, &dst_w);

	col_map[col] = Rast_easting_to_col(x, &src_w);
    }

    for (row = 0; row <= dst_w.rows; row++) {
	double y = Rast_row_to_northing(row, &dst_w);

	row_map[row] = Rast_northing_to_row(y, &src_w);
    }

    for (row = 0; row < dst_w.rows; row++) {
	double y0 = row_map[row + 0];
	double y1 = row_map[row + 1];
	int maprow0 = (int)floor(y0);
	int maprow1 = (int)ceil(y1);
	int count = maprow1 - maprow0;
	int i;

	G_percent(row, dst_w.rows, 2);

	for (i = 0; i < count; i++)
	    Rast_get_d_row(infile, bufs[i], maprow0 + i);

	for (col = 0; col < dst_w.cols; col++) {
	    double x0 = col_map[col + 0];
	    double x1 = col_map[col + 1];
	    int mapcol0 = (int)floor(x0);
	    int mapcol1 = (int)ceil(x1);
	    int null = 0;
	    int n = 0;
	    int i, j;

	    for (i = maprow0; i < maprow1; i++) {
		double ky = (i == maprow0) ? 1 - (y0 - maprow0)
		    : (i == maprow1 - 1) ? 1 - (maprow1 - y1)
		    : 1;

		for (j = mapcol0; j < mapcol1; j++) {
		    double kx = (j == mapcol0) ? 1 - (x0 - mapcol0)
			: (j == mapcol1 - 1) ? 1 - (mapcol1 - x1)
			: 1;

		    DCELL *src = &bufs[i - maprow0][j];
		    DCELL *dst = &values[n++][0];

		    if (Rast_is_d_null_value(src)) {
			Rast_set_d_null_value(&dst[0], 1);
			null = 1;
		    }
		    else {
			dst[0] = *src;
			dst[1] = kx * ky;
		    }
		}
	    }

	    if (null && nulls)
		Rast_set_d_null_value(&outbuf[col], 1);
	    else
		(*method_fn) (&outbuf[col], values, n, closure);
	}

	Rast_put_d_row(outfile, outbuf);
    }
}
Example #11
0
int main(int argc, char *argv[]) 
{
    struct Cell_head cellhd;	/*region+header info */
    char *mapset;		/*mapset name */
    int nrows, ncols;
    int row, col;
    struct GModule *module;
    struct Option *input1, *input2, *input3, *input4, *input5;
    struct Option *input6, *input7, *input8, *input9, *output1;
    struct Flag *flag1;
    struct History history;	/*metadata */
    struct Colors colors;	/*Color rules */
    char *name;			/*input raster name */
    char *result;		/*output raster name */
    int infd_albedo, infd_ndvi, infd_tempk, infd_time, infd_dtair;
    int infd_emissivity, infd_tsw, infd_doy, infd_sunzangle;
    int outfd;
    char *albedo, *ndvi, *tempk, *time, *dtair, *emissivity;
    char *tsw, *doy, *sunzangle;
    int i = 0, j = 0;
    void *inrast_albedo, *inrast_ndvi, *inrast_tempk, *inrast_rnet;
    void *inrast_time, *inrast_dtair, *inrast_emissivity, *inrast_tsw;
    void *inrast_doy, *inrast_sunzangle;
    DCELL * outrast;
    CELL val1,val2; /*For color range*/

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("energy balance"));
    G_add_keyword(_("net radiation"));
    G_add_keyword(_("SEBAL"));
    module->description =
	_("Net radiation approximation (Bastiaanssen, 1995).");
    
	/* Define the different options */ 
    input1 = G_define_standard_option(G_OPT_R_INPUT);
    input1->key = "albedo";
    input1->description = _("Name of albedo raster map [0.0;1.0]");

    input2 = G_define_standard_option(G_OPT_R_INPUT);
    input2->key = "ndvi";
    input2->description = _("Name of NDVI raster map [-1.0;+1.0]");

    input3 = G_define_standard_option(G_OPT_R_INPUT);
    input3->key = "temperature";
    input3->description =
	_("Name of surface temperature raster map [K]");

    input4 = G_define_standard_option(G_OPT_R_INPUT);
    input4->key = "localutctime";
    input4->description =
	_("Name of time of satellite overpass raster map [local time in UTC]"); 

    input5 = G_define_standard_option(G_OPT_R_INPUT);
    input5->key = "temperaturedifference2m";
    input5->description =
	_("Name of the difference map of temperature from surface skin to about 2 m height [K]");

    input6 = G_define_standard_option(G_OPT_R_INPUT);
    input6->key = "emissivity";
    input6->description = _("Name of the emissivity map [-]");

    input7 = G_define_standard_option(G_OPT_R_INPUT);
    input7->key = "transmissivity_singleway";
    input7->description =
	_("Name of the single-way atmospheric transmissivitymap [-]");

    input8 = G_define_standard_option(G_OPT_R_INPUT);
    input8->key = "dayofyear";
    input8->description = _("Name of the Day Of Year (DOY) map [-]");

    input9 = G_define_standard_option(G_OPT_R_INPUT);
    input9->key = "sunzenithangle";
    input9->description = _("Name of the sun zenith angle map [degrees]");

    output1 = G_define_standard_option(G_OPT_R_OUTPUT);
    output1->description = _("Name of the output net radiation layer");
    
    /********************/ 
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    albedo = input1->answer;
    ndvi = input2->answer;
    tempk = input3->answer;
    time = input4->answer;
    dtair = input5->answer;
    emissivity = input6->answer;
    tsw = input7->answer;
    doy = input8->answer;
    sunzangle = input9->answer;
    result = output1->answer;
    
    /* Open access to image files and allocate row access memory */
    infd_albedo = Rast_open_old(albedo, "");
    inrast_albedo = Rast_allocate_d_buf();
    
    infd_ndvi = Rast_open_old(ndvi, "");
    inrast_ndvi = Rast_allocate_d_buf();

    infd_tempk = Rast_open_old(tempk, "");
    inrast_tempk = Rast_allocate_d_buf();

    infd_dtair = Rast_open_old(dtair, "");
    inrast_dtair = Rast_allocate_d_buf();

    infd_time = Rast_open_old(time, "");
    inrast_time = Rast_allocate_d_buf();

    infd_emissivity = Rast_open_old(emissivity, "");
    inrast_emissivity = Rast_allocate_d_buf();
    
    infd_tsw = Rast_open_old(tsw, "");
    inrast_tsw = Rast_allocate_d_buf();
    
    infd_doy = Rast_open_old(doy, "");
    inrast_doy = Rast_allocate_d_buf();
    
    infd_sunzangle = Rast_open_old(sunzangle, "");
    inrast_sunzangle = Rast_allocate_d_buf();
    
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    outfd = Rast_open_new(result, DCELL_TYPE);
    outrast = Rast_allocate_d_buf();
    
    /* Process pixels */ 
    for (row = 0; row < nrows; row++)
    {
	DCELL d;
	DCELL d_albedo;
	DCELL d_ndvi;
	DCELL d_tempk;
	DCELL d_dtair;
	DCELL d_time;
	DCELL d_emissivity;
	DCELL d_tsw;
	DCELL d_doy;
	DCELL d_sunzangle;

	/* Display row process percentage */
	G_percent(row, nrows, 2);

	/* Load rows for each input image  */
	Rast_get_d_row(infd_albedo, inrast_albedo, row);
	Rast_get_d_row(infd_ndvi, inrast_ndvi, row);
	Rast_get_d_row(infd_tempk, inrast_tempk, row);
	Rast_get_d_row(infd_dtair, inrast_dtair, row);
	Rast_get_d_row(infd_time, inrast_time, row);
	Rast_get_d_row(infd_emissivity, inrast_emissivity, row);
	Rast_get_d_row(infd_tsw, inrast_tsw, row);
	Rast_get_d_row(infd_doy, inrast_doy, row);
	Rast_get_d_row(infd_sunzangle, inrast_sunzangle, row);
	
        /*process the data */ 
        for (col = 0; col < ncols; col++)
        {
            d_albedo = (double)((DCELL *) inrast_albedo)[col];
            d_ndvi = (double)((DCELL *) inrast_ndvi)[col];
            d_tempk = (double)((DCELL *) inrast_tempk)[col];
            d_dtair = (double)((DCELL *) inrast_dtair)[col];
            d_time = (double)((DCELL *) inrast_time)[col];
            d_emissivity = (double)((DCELL *) inrast_emissivity)[col];
            d_tsw = (double)((DCELL *) inrast_tsw)[col];
            d_doy = (double)((DCELL *) inrast_doy)[col];
            d_sunzangle = (double)((DCELL *) inrast_sunzangle)[col];
            /* process NULL Values */
	    if (Rast_is_d_null_value(&d_albedo) ||
	         Rast_is_d_null_value(&d_ndvi) ||
		 Rast_is_d_null_value(&d_tempk) ||
		 Rast_is_d_null_value(&d_dtair) || 
		 Rast_is_d_null_value(&d_time) ||
		 Rast_is_d_null_value(&d_emissivity) ||
		 Rast_is_d_null_value(&d_tsw) || 
		 Rast_is_d_null_value(&d_doy) ||
		 Rast_is_d_null_value(&d_sunzangle)) {
		Rast_set_d_null_value(&outrast[col], 1);
	    }
	    else {
                 /************************************/ 
		 /* calculate the net radiation      */ 
		 d = r_net(d_albedo, d_ndvi, d_tempk, d_dtair, d_emissivity, d_tsw, d_doy, d_time, d_sunzangle);
		 outrast[col] = d;
	    }
	}
	Rast_put_d_row(outfd, outrast);
    }
    G_free(inrast_albedo);
    G_free(inrast_ndvi);
    G_free(inrast_tempk);
    G_free(inrast_dtair);
    G_free(inrast_time);
    G_free(inrast_emissivity);
    G_free(inrast_tsw);
    G_free(inrast_doy);
    G_free(inrast_sunzangle);
    Rast_close(infd_albedo);
    Rast_close(infd_ndvi);
    Rast_close(infd_tempk);
    Rast_close(infd_dtair);
    Rast_close(infd_time);
    Rast_close(infd_emissivity);
    Rast_close(infd_tsw);
    Rast_close(infd_doy);
    Rast_close(infd_sunzangle);
    G_free(outrast);
    Rast_close(outfd);
    
    /* Colors in grey shade */ 
    Rast_init_colors(&colors);
    val1=0;
    val2=900;
    Rast_add_c_color_rule(&val1, 0, 0, 0, &val2, 255, 255, 255, &colors);
    
    /* Metadata */ 
    Rast_short_history(result, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(result, &history);
    exit(EXIT_SUCCESS);
}
Example #12
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *rastin, *rastout, *method;
    struct History history;
    char title[64];
    char buf_nsres[100], buf_ewres[100];
    struct Colors colors;
    int infile, outfile;
    DCELL *outbuf;
    int row, col;
    struct Cell_head dst_w, src_w;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("resample"));
    module->description =
	_("Resamples raster map layers to a finer grid using interpolation.");

    rastin = G_define_standard_option(G_OPT_R_INPUT);
    rastout = G_define_standard_option(G_OPT_R_OUTPUT);

    method = G_define_option();
    method->key = "method";
    method->type = TYPE_STRING;
    method->required = NO;
    method->description = _("Interpolation method");
    method->options = "nearest,bilinear,bicubic,lanczos";
    method->answer = "bilinear";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (G_strcasecmp(method->answer, "nearest") == 0)
	neighbors = 1;
    else if (G_strcasecmp(method->answer, "bilinear") == 0)
	neighbors = 2;
    else if (G_strcasecmp(method->answer, "bicubic") == 0)
	neighbors = 4;
    else if (G_strcasecmp(method->answer, "lanczos") == 0)
	neighbors = 5;
    else
	G_fatal_error(_("Invalid method: %s"), method->answer);

    G_get_set_window(&dst_w);

    /* set window to old map */
    Rast_get_cellhd(rastin->answer, "", &src_w);

    /* enlarge source window */
    {
	double north = Rast_row_to_northing(0.5, &dst_w);
	double south = Rast_row_to_northing(dst_w.rows - 0.5, &dst_w);
	int r0 = (int)floor(Rast_northing_to_row(north, &src_w) - 0.5) - 2;
	int r1 = (int)floor(Rast_northing_to_row(south, &src_w) - 0.5) + 3;
	double west = Rast_col_to_easting(0.5, &dst_w);
	double east = Rast_col_to_easting(dst_w.cols - 0.5, &dst_w);
	int c0 = (int)floor(Rast_easting_to_col(west, &src_w) - 0.5) - 2;
	int c1 = (int)floor(Rast_easting_to_col(east, &src_w) - 0.5) + 3;

	src_w.south -= src_w.ns_res * (r1 - src_w.rows);
	src_w.north += src_w.ns_res * (-r0);
	src_w.west -= src_w.ew_res * (-c0);
	src_w.east += src_w.ew_res * (c1 - src_w.cols);
	src_w.rows = r1 - r0;
	src_w.cols = c1 - c0;
    }

    Rast_set_input_window(&src_w);

    /* allocate buffers for input rows */
    for (row = 0; row < neighbors; row++)
	bufs[row] = Rast_allocate_d_input_buf();

    cur_row = -100;

    /* open old map */
    infile = Rast_open_old(rastin->answer, "");

    /* reset window to current region */
    Rast_set_output_window(&dst_w);

    outbuf = Rast_allocate_d_output_buf();

    /* open new map */
    outfile = Rast_open_new(rastout->answer, DCELL_TYPE);

    switch (neighbors) {
    case 1:			/* nearest */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f + 0.5);

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f + 0.5);

		double c = bufs[0][mapcol0];

		if (Rast_is_d_null_value(&c)) {
		    Rast_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = c;
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;

    case 2:			/* bilinear */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f);
	    double v = maprow_f - maprow0;

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f);
		int mapcol1 = mapcol0 + 1;
		double u = mapcol_f - mapcol0;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];

		if (Rast_is_d_null_value(&c00) ||
		    Rast_is_d_null_value(&c01) ||
		    Rast_is_d_null_value(&c10) || Rast_is_d_null_value(&c11)) {
		    Rast_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = Rast_interp_bilinear(u, v, c00, c01, c10, c11);
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;

    case 4:			/* bicubic */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow1 = (int)floor(maprow_f);
	    int maprow0 = maprow1 - 1;
	    double v = maprow_f - maprow1;

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol1 = (int)floor(mapcol_f);
		int mapcol0 = mapcol1 - 1;
		int mapcol2 = mapcol1 + 1;
		int mapcol3 = mapcol1 + 2;
		double u = mapcol_f - mapcol1;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c02 = bufs[0][mapcol2];
		double c03 = bufs[0][mapcol3];

		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];
		double c12 = bufs[1][mapcol2];
		double c13 = bufs[1][mapcol3];

		double c20 = bufs[2][mapcol0];
		double c21 = bufs[2][mapcol1];
		double c22 = bufs[2][mapcol2];
		double c23 = bufs[2][mapcol3];

		double c30 = bufs[3][mapcol0];
		double c31 = bufs[3][mapcol1];
		double c32 = bufs[3][mapcol2];
		double c33 = bufs[3][mapcol3];

		if (Rast_is_d_null_value(&c00) ||
		    Rast_is_d_null_value(&c01) ||
		    Rast_is_d_null_value(&c02) ||
		    Rast_is_d_null_value(&c03) ||
		    Rast_is_d_null_value(&c10) ||
		    Rast_is_d_null_value(&c11) ||
		    Rast_is_d_null_value(&c12) ||
		    Rast_is_d_null_value(&c13) ||
		    Rast_is_d_null_value(&c20) ||
		    Rast_is_d_null_value(&c21) ||
		    Rast_is_d_null_value(&c22) ||
		    Rast_is_d_null_value(&c23) ||
		    Rast_is_d_null_value(&c30) ||
		    Rast_is_d_null_value(&c31) ||
		    Rast_is_d_null_value(&c32) || Rast_is_d_null_value(&c33)) {
		    Rast_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = Rast_interp_bicubic(u, v,
						   c00, c01, c02, c03,
						   c10, c11, c12, c13,
						   c20, c21, c22, c23,
						   c30, c31, c32, c33);
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;

    case 5:			/* lanczos */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow1 = (int)floor(maprow_f + 0.5);
	    int maprow0 = maprow1 - 2;
	    double v = maprow_f - maprow1;

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol2 = (int)floor(mapcol_f + 0.5);
		int mapcol0 = mapcol2 - 2;
		int mapcol4 = mapcol2 + 2;
		double u = mapcol_f - mapcol2;
		double c[25];
		int ci = 0, i, j, do_lanczos = 1;

		for (i = 0; i < 5; i++) {
		    for (j = mapcol0; j <= mapcol4; j++) {
			c[ci] = bufs[i][j];
			if (Rast_is_d_null_value(&(c[ci]))) {
			    Rast_set_d_null_value(&outbuf[col], 1);
			    do_lanczos = 0;
			    break;
			}
			ci++;
		    }
		    if (!do_lanczos)
			break;
		}

		if (do_lanczos) {
		    outbuf[col] = Rast_interp_lanczos(u, v, c);
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;
    }

    G_percent(dst_w.rows, dst_w.rows, 2);

    Rast_close(infile);
    Rast_close(outfile);


    /* record map metadata/history info */
    sprintf(title, "Resample by %s interpolation", method->answer);
    Rast_put_cell_title(rastout->answer, title);

    Rast_short_history(rastout->answer, "raster", &history);
    Rast_set_history(&history, HIST_DATSRC_1, rastin->answer);
    G_format_resolution(src_w.ns_res, buf_nsres, src_w.proj);
    G_format_resolution(src_w.ew_res, buf_ewres, src_w.proj);
    Rast_format_history(&history, HIST_DATSRC_2,
			"Source map NS res: %s   EW res: %s",
			buf_nsres, buf_ewres);
    Rast_command_history(&history);
    Rast_write_history(rastout->answer, &history);

    /* copy color table from source map */
    if (Rast_read_colors(rastin->answer, "", &colors) < 0)
	G_fatal_error(_("Unable to read color table for %s"), rastin->answer);
    Rast_mark_colors_as_fp(&colors);
    Rast_write_colors(rastout->answer, G_mapset(), &colors);

    return (EXIT_SUCCESS);
}
Example #13
0
int main(int argc, char *argv[])
{
    int nrows, ncols;
    int row, col;
    char *viflag;		/*Switch for particular index */
    char *desc;
    struct GModule *module;
    struct {
        struct Option *viname, *red, *nir, *green, *blue, *chan5,
            *chan7, *sl_slope, *sl_int, *sl_red, *bits, *output;
    } opt;
    struct History history;	/*metadata */
    struct Colors colors;	/*Color rules */

    char *result;		/*output raster name */
    int infd_redchan, infd_nirchan, infd_greenchan;
    int infd_bluechan, infd_chan5chan, infd_chan7chan;
    int outfd;
    char *bluechan, *greenchan, *redchan, *nirchan, *chan5chan, *chan7chan;
    DCELL *inrast_redchan, *inrast_nirchan, *inrast_greenchan;
    DCELL *inrast_bluechan, *inrast_chan5chan, *inrast_chan7chan;
    DCELL *outrast;
    RASTER_MAP_TYPE data_type_redchan;
    RASTER_MAP_TYPE data_type_nirchan, data_type_greenchan;
    RASTER_MAP_TYPE data_type_bluechan;
    RASTER_MAP_TYPE data_type_chan5chan, data_type_chan7chan;
    DCELL msavip1, msavip2, msavip3, dnbits;
    CELL val1, val2;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("vegetation index"));
    G_add_keyword(_("biophysical parameters"));
    module->label =
	_("Calculates different types of vegetation indices.");
    module->description = _("Uses red and nir bands mostly, "
			    "and some indices require additional bands.");

    /* Define the different options */
    opt.red = G_define_standard_option(G_OPT_R_INPUT);
    opt.red->key = "red";
    opt.red->label =
	_("Name of input red channel surface reflectance map");
    opt.red->description = _("Range: [0.0;1.0]");

    opt.output = G_define_standard_option(G_OPT_R_OUTPUT);

    opt.viname = G_define_option();
    opt.viname->key = "viname";
    opt.viname->type = TYPE_STRING;
    opt.viname->required = YES;
    opt.viname->description = _("Type of vegetation index");
    desc = NULL;
    G_asprintf(&desc,
	       "arvi;%s;dvi;%s;evi;%s;evi2;%s;gvi;%s;gari;%s;gemi;%s;ipvi;%s;msavi;%s;"
	       "msavi2;%s;ndvi;%s;pvi;%s;savi;%s;sr;%s;vari;%s;wdvi;%s",
	       _("Atmospherically Resistant Vegetation Index"),
	       _("Difference Vegetation Index"),
	       _("Enhanced Vegetation Index"),
	       _("Enhanced Vegetation Index 2"),
	       _("Green Vegetation Index"),
	       _("Green Atmospherically Resistant Vegetation Index"),
	       _("Global Environmental Monitoring Index"),
	       _("Infrared Percentage Vegetation Index"),
	       _("Modified Soil Adjusted Vegetation Index"),
	       _("second Modified Soil Adjusted Vegetation Index"),
	       _("Normalized Difference Vegetation Index"),
	       _("Perpendicular Vegetation Index"),
	       _("Soil Adjusted Vegetation Index"),
	       _("Simple Ratio"),
	       _("Visible Atmospherically Resistant Index"),
	       _("Weighted Difference Vegetation Index"));
    opt.viname->descriptions = desc;
    opt.viname->options = "arvi,dvi,evi,evi2,gvi,gari,gemi,ipvi,msavi,msavi2,ndvi,pvi,savi,sr,vari,wdvi";
    opt.viname->answer = "ndvi";
    opt.viname->key_desc = _("type");

    opt.nir = G_define_standard_option(G_OPT_R_INPUT);
    opt.nir->key = "nir";
    opt.nir->required = NO;
    opt.nir->label =
	_("Name of input nir channel surface reflectance map");
    opt.nir->description = _("Range: [0.0;1.0]");
    opt.nir->guisection = _("Optional inputs");

    opt.green = G_define_standard_option(G_OPT_R_INPUT);
    opt.green->key = "green";
    opt.green->required = NO;
    opt.green->label =
	_("Name of input green channel surface reflectance map");
    opt.green->description = _("Range: [0.0;1.0]");
    opt.green->guisection = _("Optional inputs");

    opt.blue = G_define_standard_option(G_OPT_R_INPUT);
    opt.blue->key = "blue";
    opt.blue->required = NO;
    opt.blue->label =
	_("Name of input blue channel surface reflectance map");
    opt.blue->description = _("Range: [0.0;1.0]");
    opt.blue->guisection = _("Optional inputs");

    opt.chan5 = G_define_standard_option(G_OPT_R_INPUT);
    opt.chan5->key = "band5";
    opt.chan5->required = NO;
    opt.chan5->label =
	_("Name of input 5th channel surface reflectance map");
    opt.chan5->description = _("Range: [0.0;1.0]");
    opt.chan5->guisection = _("Optional inputs");

    opt.chan7 = G_define_standard_option(G_OPT_R_INPUT);
    opt.chan7->key = "band7";
    opt.chan7->required = NO;
    opt.chan7->label =
	_("Name of input 7th channel surface reflectance map");
    opt.chan7->description = _("Range: [0.0;1.0]");
    opt.chan7->guisection = _("Optional inputs");

    opt.sl_slope = G_define_option();
    opt.sl_slope->key = "soil_line_slope";
    opt.sl_slope->type = TYPE_DOUBLE;
    opt.sl_slope->required = NO;
    opt.sl_slope->description = _("Value of the slope of the soil line (MSAVI only)");
    opt.sl_slope->guisection = _("MSAVI settings");

    opt.sl_int = G_define_option();
    opt.sl_int->key = "soil_line_intercept";
    opt.sl_int->type = TYPE_DOUBLE;
    opt.sl_int->required = NO;
    opt.sl_int->description = _("Value of the intercept of the soil line (MSAVI only)");
    opt.sl_int->guisection = _("MSAVI settings");

    opt.sl_red = G_define_option();
    opt.sl_red->key = "soil_noise_reduction";
    opt.sl_red->type = TYPE_DOUBLE;
    opt.sl_red->required = NO;
    opt.sl_red->description = _("Value of the factor of reduction of soil noise (MSAVI only)");
    opt.sl_red->guisection = _("MSAVI settings");

    opt.bits = G_define_option();
    opt.bits->key = "storage_bit";
    opt.bits->type = TYPE_INTEGER;
    opt.bits->required = NO;
    opt.bits->label = _("Maximum bits for digital numbers");
    opt.bits->description = _("If data is in Digital Numbers (i.e. integer type), give the max bits (i.e. 8 for Landsat -> [0-255])");
    opt.bits->options = "7,8,10,16";
    opt.bits->answer = "8";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    viflag = opt.viname->answer;
    redchan = opt.red->answer;
    nirchan = opt.nir->answer;
    greenchan = opt.green->answer;
    bluechan = opt.blue->answer;
    chan5chan = opt.chan5->answer;
    chan7chan = opt.chan7->answer;
    if(opt.sl_slope->answer)
        msavip1 = atof(opt.sl_slope->answer);
    if(opt.sl_int->answer)
        msavip2 = atof(opt.sl_int->answer);
    if(opt.sl_red->answer)
        msavip3 = atof(opt.sl_red->answer);
    if(opt.bits->answer)
        dnbits = atof(opt.bits->answer);
    result = opt.output->answer;
    G_verbose_message(_("Calculating %s..."), viflag);

    if (!strcasecmp(viflag, "sr") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("sr index requires red and nir maps"));

    if (!strcasecmp(viflag, "ndvi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("ndvi index requires red and nir maps"));

    if (!strcasecmp(viflag, "ipvi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("ipvi index requires red and nir maps"));

    if (!strcasecmp(viflag, "dvi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("dvi index requires red and nir maps"));

    if (!strcasecmp(viflag, "pvi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("pvi index requires red and nir maps"));

    if (!strcasecmp(viflag, "wdvi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("wdvi index requires red and nir maps"));

    if (!strcasecmp(viflag, "savi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("savi index requires red and nir maps"));

    if (!strcasecmp(viflag, "msavi") && (!(opt.red->answer) || !(opt.nir->answer) || 
                                          !(opt.sl_slope->answer) || !(opt.sl_int->answer) || 
                                          !(opt.sl_red->answer)) )
	G_fatal_error(_("msavi index requires red and nir maps, and 3 parameters related to soil line"));

    if (!strcasecmp(viflag, "msavi2") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("msavi2 index requires red and nir maps"));

    if (!strcasecmp(viflag, "gemi") && (!(opt.red->answer) || !(opt.nir->answer)) )
	G_fatal_error(_("gemi index requires red and nir maps"));

    if (!strcasecmp(viflag, "arvi") && (!(opt.red->answer) || !(opt.nir->answer)
                || !(opt.blue->answer)) )
	G_fatal_error(_("arvi index requires blue, red and nir maps"));

    if (!strcasecmp(viflag, "evi") && (!(opt.red->answer) || !(opt.nir->answer)
                || !(opt.blue->answer)) )
	G_fatal_error(_("evi index requires blue, red and nir maps"));

	if (!strcasecmp(viflag, "evi2") && (!(opt.red->answer) || !(opt.nir->answer) ) )
	G_fatal_error(_("evi2 index requires red and nir maps"));
	
    if (!strcasecmp(viflag, "vari") && (!(opt.red->answer) || !(opt.green->answer)
                || !(opt.blue->answer)) )
	G_fatal_error(_("vari index requires blue, green and red maps"));

    if (!strcasecmp(viflag, "gari") && (!(opt.red->answer) || !(opt.nir->answer)
                || !(opt.green->answer) || !(opt.blue->answer)) )
	G_fatal_error(_("gari index requires blue, green, red and nir maps"));

    if (!strcasecmp(viflag, "gvi") && (!(opt.red->answer) || !(opt.nir->answer)
                || !(opt.green->answer) || !(opt.blue->answer)
                || !(opt.chan5->answer) || !(opt.chan7->answer)) )
	G_fatal_error(_("gvi index requires blue, green, red, nir, chan5 and chan7 maps"));

    infd_redchan = Rast_open_old(redchan, "");
    data_type_redchan = Rast_map_type(redchan, "");
    inrast_redchan = Rast_allocate_buf(data_type_redchan);

    if (nirchan) {
        infd_nirchan = Rast_open_old(nirchan, "");
        data_type_nirchan = Rast_map_type(nirchan, "");
        inrast_nirchan = Rast_allocate_buf(data_type_nirchan);
    }

    if (greenchan) {
        infd_greenchan = Rast_open_old(greenchan, "");
        data_type_greenchan = Rast_map_type(greenchan, "");
        inrast_greenchan = Rast_allocate_buf(data_type_greenchan);
    }

    if (bluechan) {
        infd_bluechan = Rast_open_old(bluechan, "");
        data_type_bluechan = Rast_map_type(bluechan, "");
        inrast_bluechan = Rast_allocate_buf(data_type_bluechan);
    }

    if (chan5chan) {
        infd_chan5chan = Rast_open_old(chan5chan, "");
        data_type_chan5chan = Rast_map_type(chan5chan, "");
        inrast_chan5chan = Rast_allocate_buf(data_type_chan5chan);
    }

    if (chan7chan) {
        infd_chan7chan = Rast_open_old(chan7chan, "");
        data_type_chan7chan = Rast_map_type(chan7chan, "");
        inrast_chan7chan = Rast_allocate_buf(data_type_chan7chan);
    }

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* Create New raster files */
    outfd = Rast_open_new(result, DCELL_TYPE);
    outrast = Rast_allocate_d_buf();

    /* Process pixels */
    for (row = 0; row < nrows; row++)
    {
	DCELL d_bluechan;
	DCELL d_greenchan;
	DCELL d_redchan;
	DCELL d_nirchan;
	DCELL d_chan5chan;
	DCELL d_chan7chan;

	G_percent(row, nrows, 2);

	/* read input maps */
	Rast_get_row(infd_redchan,inrast_redchan,row,data_type_redchan);
	if (nirchan) {
	    Rast_get_row(infd_nirchan,inrast_nirchan,row,data_type_nirchan);
	}
	if (bluechan) {
	    Rast_get_row(infd_bluechan,inrast_bluechan,row,data_type_bluechan);
	}
	if (greenchan) {
	    Rast_get_row(infd_greenchan,inrast_greenchan,row,data_type_greenchan);
	}
	if (chan5chan) {
	    Rast_get_row(infd_chan5chan,inrast_chan5chan,row,data_type_chan5chan);
	}
	if (chan7chan) {
	    Rast_get_row(infd_chan7chan,inrast_chan7chan,row,data_type_chan7chan);
	}
	/* process the data */
	for (col = 0; col < ncols; col++)
	{
	    switch(data_type_redchan){
		    case CELL_TYPE:
			d_redchan   = (double) ((CELL *) inrast_redchan)[col];
			if(opt.bits->answer)
				d_redchan *= 1.0/(pow(2,dnbits)-1);	
			break;
		    case FCELL_TYPE:
			d_redchan   = (double) ((FCELL *) inrast_redchan)[col];
			break;
		    case DCELL_TYPE:
			d_redchan   = ((DCELL *) inrast_redchan)[col];
			break;
	    }
	    if (nirchan) {
		switch(data_type_nirchan){
		    case CELL_TYPE:
			d_nirchan   = (double) ((CELL *) inrast_nirchan)[col];
			if(opt.bits->answer)
				d_nirchan *= 1.0/(pow(2,dnbits)-1);	
			break;
		    case FCELL_TYPE:
			d_nirchan   = (double) ((FCELL *) inrast_nirchan)[col];
			break;
		    case DCELL_TYPE:
			d_nirchan   = ((DCELL *) inrast_nirchan)[col];
			break;
		}
	    }
	    if (greenchan) {
		switch(data_type_greenchan){
		    case CELL_TYPE:
			d_greenchan   = (double) ((CELL *) inrast_greenchan)[col];
			if(opt.bits->answer)
				d_greenchan *= 1.0/(pow(2,dnbits)-1);	
			break;
		    case FCELL_TYPE:
			d_greenchan   = (double) ((FCELL *) inrast_greenchan)[col];
			break;
		    case DCELL_TYPE:
			d_greenchan   = ((DCELL *) inrast_greenchan)[col];
			break;
		}
	    }
	    if (bluechan) {
		switch(data_type_bluechan){
		    case CELL_TYPE:
			d_bluechan   = (double) ((CELL *) inrast_bluechan)[col];
			if(opt.bits->answer)
				d_bluechan *= 1.0/(pow(2,dnbits)-1);	
			break;
		    case FCELL_TYPE:
			d_bluechan   = (double) ((FCELL *) inrast_bluechan)[col];
			break;
		    case DCELL_TYPE:
			d_bluechan   = ((DCELL *) inrast_bluechan)[col];
			break;
		}
	    }
	    if (chan5chan) {
		switch(data_type_chan5chan){
		    case CELL_TYPE:
			d_chan5chan   = (double) ((CELL *) inrast_chan5chan)[col];
			if(opt.bits->answer)
				d_chan5chan *= 1.0/(pow(2,dnbits)-1);	
			break;
		    case FCELL_TYPE:
			d_chan5chan   = (double) ((FCELL *) inrast_chan5chan)[col];
			break;
		    case DCELL_TYPE:
			d_chan5chan   = ((DCELL *) inrast_chan5chan)[col];
			break;
		}
	    }
	    if (chan7chan) {
		switch(data_type_chan7chan){
		    case CELL_TYPE:
			d_chan7chan   = (double) ((CELL *) inrast_chan7chan)[col];
			if(opt.bits->answer)
				d_chan7chan *= 1.0/(pow(2,dnbits)-1);	
			break;
		    case FCELL_TYPE:
			d_chan7chan   = (double) ((FCELL *) inrast_chan7chan)[col];
			break;
		    case DCELL_TYPE:
			d_chan7chan   = ((DCELL *) inrast_chan7chan)[col];
			break;
		}
	    }

	    if (Rast_is_d_null_value(&d_redchan) ||
		((nirchan) && Rast_is_d_null_value(&d_nirchan)) ||
		((greenchan) && Rast_is_d_null_value(&d_greenchan)) ||
		((bluechan) && Rast_is_d_null_value(&d_bluechan)) ||
		((chan5chan) && Rast_is_d_null_value(&d_chan5chan)) ||
		((chan7chan) && Rast_is_d_null_value(&d_chan7chan))) {
		Rast_set_d_null_value(&outrast[col], 1);
	    }
	    else {
		/* calculate simple_ratio        */
		if (!strcasecmp(viflag, "sr"))
		    outrast[col] = s_r(d_redchan, d_nirchan);

		/* calculate ndvi                    */
		if (!strcasecmp(viflag, "ndvi")) {
		    if (d_redchan + d_nirchan < 0.001)
			Rast_set_d_null_value(&outrast[col], 1);
		    else
			outrast[col] = nd_vi(d_redchan, d_nirchan);
		}

		if (!strcasecmp(viflag, "ipvi"))
		    outrast[col] = ip_vi(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "dvi"))
		    outrast[col] = d_vi(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "evi"))
		    outrast[col] = e_vi(d_bluechan, d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "evi2"))
		    outrast[col] = e_vi2(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "pvi"))
		    outrast[col] = p_vi(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "wdvi"))
		    outrast[col] = wd_vi(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "savi"))
		    outrast[col] = sa_vi(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "msavi"))
		    outrast[col] = msa_vi(d_redchan, d_nirchan, msavip1, msavip2, msavip3);

		if (!strcasecmp(viflag, "msavi2"))
		    outrast[col] = msa_vi2(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "gemi"))
		    outrast[col] = ge_mi(d_redchan, d_nirchan);

		if (!strcasecmp(viflag, "arvi"))
		    outrast[col] = ar_vi(d_redchan, d_nirchan, d_bluechan);

		if (!strcasecmp(viflag, "gvi"))
		    outrast[col] = g_vi(d_bluechan, d_greenchan, d_redchan, d_nirchan, d_chan5chan, d_chan7chan);

		if (!strcasecmp(viflag, "gari"))
		    outrast[col] = ga_ri(d_redchan, d_nirchan, d_bluechan, d_greenchan);

		if (!strcasecmp(viflag, "vari"))
		    outrast[col] = va_ri(d_redchan, d_greenchan, d_bluechan);
	    }
	}
	Rast_put_d_row(outfd, outrast);
    }
    G_percent(1, 1, 1);
      
    G_free(inrast_redchan);
    Rast_close(infd_redchan);
    if (nirchan) {
    	G_free(inrast_nirchan);
    	Rast_close(infd_nirchan);
    }
    if (greenchan) {
	G_free(inrast_greenchan);
	Rast_close(infd_greenchan);
    }
    if (bluechan) {
	G_free(inrast_bluechan);
	Rast_close(infd_bluechan);
    }
    if (chan5chan) {
	G_free(inrast_chan5chan);
	Rast_close(infd_chan5chan);
    }
    if (chan7chan) {
	G_free(inrast_chan7chan);
	Rast_close(infd_chan7chan);
    }

    G_free(outrast);
    Rast_close(outfd);

    if (!strcasecmp(viflag, "ndvi")) {
 	/* apply predefined NDVI color table */
	const char *style = "ndvi";
	if (G_find_color_rule("ndvi")) {
	   Rast_make_fp_colors(&colors, style, -1.0, 1.0);
	} else
	   G_fatal_error(_("Unknown color request '%s'"), style);
    } else {
	/* Color from -1.0 to +1.0 in grey */
	Rast_init_colors(&colors);
	val1 = -1;
	val2 = 1;
	Rast_add_c_color_rule(&val1, 0, 0, 0, &val2, 255, 255, 255, &colors);
    }
    Rast_write_colors(result, G_mapset(), &colors);

    Rast_short_history(result, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(result, &history);

    exit(EXIT_SUCCESS);
}
Example #14
0
File: main.c Project: caomw/grass
int main(int argc, char *argv[]) 
{
    int nrows, ncols;
    int row, col;
    int makin = 0;		/*Makin Flag for root zone soil moisture output */
    struct GModule *module;
    struct Option *input1, *input2, *input3, *output1, *output2;
    struct Flag *flag1;
    struct History history;	/*metadata */
    char *result1, *result2;	/*output raster name */
    
    int infd_rnet, infd_g0, infd_h0;
    int outfd1, outfd2;
    char *rnet, *g0, *h0;
    void *inrast_rnet, *inrast_g0, *inrast_h0;

    DCELL * outrast1, *outrast2;

    /************************************/ 
    G_gisinit(argv[0]);
    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("energy balance"));
    G_add_keyword(_("soil moisture"));
    G_add_keyword(_("evaporative fraction"));
    G_add_keyword(_("SEBAL"));
    module->description =
	_("Computes evaporative fraction (Bastiaanssen, 1995) and "
	  "root zone soil moisture (Makin, Molden and Bastiaanssen, 2001).");
    
    /* Define the different options */ 
    input1 = G_define_standard_option(G_OPT_R_INPUT);
    input1->key = "netradiation";
    input1->description = _("Name of Net Radiation raster map [W/m2]");

    input2 = G_define_standard_option(G_OPT_R_INPUT);
    input2->key = "soilheatflux";
    input2->description = _("Name of soil heat flux raster map [W/m2]");

    input3 = G_define_standard_option(G_OPT_R_INPUT);
    input3->key = "sensibleheatflux";
    input3->description = _("Name of sensible heat flux raster map [W/m2]");

    output1 = G_define_standard_option(G_OPT_R_OUTPUT);
    output1->key = "evaporativefraction";
    output1->description =
	_("Name for output evaporative fraction raster map");

    output2 = G_define_standard_option(G_OPT_R_OUTPUT);
    output2->key = "soilmoisture";
    output2->required = NO;
    output2->description =
	_("Name for output root zone soil moisture raster map");

    flag1 = G_define_flag();
    flag1->key = 'm';
    flag1->description =
	_("Root zone soil moisture output (Makin, Molden and Bastiaanssen, 2001)");
    
    /********************/
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    
    rnet = input1->answer;
    g0 = input2->answer;
    h0 = input3->answer;
    result1 = output1->answer;
    result2 = output2->answer;
    makin = flag1->answer;
    
    /***************************************************/ 
    infd_rnet = Rast_open_old(rnet, "");
    inrast_rnet = Rast_allocate_d_buf();
    
    /***************************************************/ 
    infd_g0 = Rast_open_old(g0, "");
    inrast_g0 = Rast_allocate_d_buf();
    
    /***************************************************/ 
    infd_h0 = Rast_open_old(h0, "");
    inrast_h0 = Rast_allocate_d_buf();
    
    /***************************************************/ 
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    outrast1 = Rast_allocate_d_buf();

    if (makin) 
	outrast2 = Rast_allocate_d_buf();
    
    /* Create New raster files */ 
    outfd1 = Rast_open_new(result1, DCELL_TYPE);
    if (makin) 
	outfd2 = Rast_open_new(result2, DCELL_TYPE);
        
    /* Process pixels */ 
    for (row = 0; row < nrows; row++)
    {
	DCELL d;
	DCELL d_rnet;
	DCELL d_g0;
	DCELL d_h0;
	G_percent(row, nrows, 2);
	
        /* read input maps */ 
        Rast_get_d_row(infd_rnet, inrast_rnet, row);
	Rast_get_d_row(infd_g0, inrast_g0, row);
	Rast_get_d_row(infd_h0, inrast_h0, row);
	
        /*process the data */ 
        for (col = 0; col < ncols; col++)
        {
            d_rnet = ((DCELL *) inrast_rnet)[col];
            d_g0 = ((DCELL *) inrast_g0)[col];
            d_h0 = ((DCELL *) inrast_h0)[col];
	    if (Rast_is_d_null_value(&d_rnet) || 
                Rast_is_d_null_value(&d_g0) ||
		Rast_is_d_null_value(&d_h0)) {
		Rast_set_d_null_value(&outrast1[col], 1);
		if (makin) 
		    Rast_set_d_null_value(&outrast2[col], 1);
	    }
	    else {
                /* calculate evaporative fraction       */ 
                d = evap_fr(d_rnet, d_g0, d_h0);
		outrast1[col] = d;
                /* calculate soil moisture              */ 
                if (makin) 
                {
                    d = soilmoisture(d);
                    outrast2[col] = d;
		}
	    }
        }
	Rast_put_d_row(outfd1, outrast1);
	if (makin) 
            Rast_put_d_row(outfd2, outrast2);
    }
    G_free(inrast_rnet);
    G_free(inrast_g0);
    G_free(inrast_h0);
    Rast_close(infd_rnet);
    Rast_close(infd_g0);
    Rast_close(infd_h0);
    G_free(outrast1);
    Rast_close(outfd1);
    if (makin) {
        G_free(outrast2);
	Rast_close(outfd2);
    }
    Rast_short_history(result1, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(result1, &history);
    if (makin) {
	Rast_short_history(result2, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(result2, &history);
    }

    exit(EXIT_SUCCESS);
}
Example #15
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct
    {
	struct Option *input, *output, *method, *quantile, *range;
    } parm;
    struct
    {
	struct Flag *nulls;
    } flag;
    int i;
    int num_inputs;
    struct input *inputs;
    int num_outputs;
    struct output *outputs;
    struct History history;
    DCELL *values, *values_tmp;
    int nrows, ncols;
    int row, col;
    double lo, hi;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("series"));
    module->description =
	_("Makes each output cell value a "
	  "function of the values assigned to the corresponding cells "
	  "in the input raster map layers.");

    parm.input = G_define_standard_option(G_OPT_R_INPUTS);

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);
    parm.output->multiple = YES;

    parm.method = G_define_option();
    parm.method->key = "method";
    parm.method->type = TYPE_STRING;
    parm.method->required = YES;
    parm.method->options = build_method_list();
    parm.method->description = _("Aggregate operation");
    parm.method->multiple = YES;

    parm.quantile = G_define_option();
    parm.quantile->key = "quantile";
    parm.quantile->type = TYPE_DOUBLE;
    parm.quantile->required = NO;
    parm.quantile->description = _("Quantile to calculate for method=quantile");
    parm.quantile->options = "0.0-1.0";
    parm.quantile->multiple = YES;

    parm.range = G_define_option();
    parm.range->key = "range";
    parm.range->type = TYPE_DOUBLE;
    parm.range->key_desc = "lo,hi";
    parm.range->description = _("Ignore values outside this range");

    flag.nulls = G_define_flag();
    flag.nulls->key = 'n';
    flag.nulls->description = _("Propagate NULLs");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (parm.range->answer) {
	lo = atof(parm.range->answers[0]);
	hi = atof(parm.range->answers[1]);
    }

    /* process the input maps */
    for (i = 0; parm.input->answers[i]; i++)
	;
    num_inputs = i;

    if (num_inputs < 1)
	G_fatal_error(_("Raster map not found"));

    inputs = G_malloc(num_inputs * sizeof(struct input));

    for (i = 0; i < num_inputs; i++) {
	struct input *p = &inputs[i];

	p->name = parm.input->answers[i];
	G_message(_("Reading raster map <%s>..."), p->name);
	p->fd = Rast_open_old(p->name, "");
	p->buf = Rast_allocate_d_buf();
    }

    /* process the output maps */
    for (i = 0; parm.output->answers[i]; i++)
	;
    num_outputs = i;

    for (i = 0; parm.method->answers[i]; i++)
	;
    if (num_outputs != i)
	G_fatal_error(_("output= and method= must have the same number of values"));

    outputs = G_calloc(num_outputs, sizeof(struct output));

    for (i = 0; i < num_outputs; i++) {
	struct output *out = &outputs[i];
	const char *output_name = parm.output->answers[i];
	const char *method_name = parm.method->answers[i];
	int method = find_method(method_name);

	out->name = output_name;
	out->method_fn = menu[method].method;
	out->quantile = (parm.quantile->answer && parm.quantile->answers[i])
	    ? atof(parm.quantile->answers[i])
	    : 0;
	out->buf = Rast_allocate_d_buf();
	out->fd = Rast_open_new(output_name,
				menu[method].is_int ? CELL_TYPE : DCELL_TYPE);
    }

    /* initialise variables */
    values = G_malloc(num_inputs * sizeof(DCELL));
    values_tmp = G_malloc(num_inputs * sizeof(DCELL));

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* process the data */
    G_verbose_message(_("Percent complete..."));

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);

	for (i = 0; i < num_inputs; i++)
	    Rast_get_d_row(inputs[i].fd, inputs[i].buf, row);

	for (col = 0; col < ncols; col++) {
	    int null = 0;

	    for (i = 0; i < num_inputs; i++) {
		DCELL v = inputs[i].buf[col];

		if (Rast_is_d_null_value(&v))
		    null = 1;
		else if (parm.range->answer && (v < lo || v > hi)) {
		    Rast_set_d_null_value(&v, 1);
		    null = 1;
		}

		values[i] = v;
	    }

	    for (i = 0; i < num_outputs; i++) {
		struct output *out = &outputs[i];

		if (null && flag.nulls->answer)
		    Rast_set_d_null_value(&out->buf[col], 1);
		else {
		    memcpy(values_tmp, values, num_inputs * sizeof(DCELL));
		    (*out->method_fn)(&out->buf[col], values_tmp, num_inputs, &out->quantile);
		}
	    }
	}

	for (i = 0; i < num_outputs; i++)
	    Rast_put_d_row(outputs[i].fd, outputs[i].buf);
    }

    G_percent(row, nrows, 2);

    /* close maps */
    for (i = 0; i < num_outputs; i++) {
	struct output *out = &outputs[i];

	Rast_close(out->fd);

	Rast_short_history(out->name, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(out->name, &history);
    }

    for (i = 0; i < num_inputs; i++)
	Rast_close(inputs[i].fd);

    exit(EXIT_SUCCESS);
}
Example #16
0
int main(int argc, char *argv[])
{
    unsigned int r, c, rows, cols, n_valid;	/*  totals  */
    int *mapx_fd, mapy_fd, mapres_fd, mapest_fd;
    int i, j, k, n_predictors;
    double *sumX, sumY, *sumsqX, sumsqY, *sumXY;
    double *meanX, meanY, *varX, varY, *sdX, sdY;
    double yest, yres;       /* estimated y, residual */
    double sumYest, *SSerr_without;
    double SE;
    double meanYest, meanYres, varYest, varYres, sdYest, sdYres;
    double SStot, SSerr, SSreg;
    double **a;
    struct MATRIX *m, *m_all;
    double **B, Rsq, Rsqadj, F, t, AIC, AICc, BIC;
    unsigned int count = 0;
    DCELL **mapx_buf, *mapy_buf, *mapx_val, mapy_val, *mapres_buf, *mapest_buf;
    char *name;
    struct Option *input_mapx, *input_mapy, *output_res, *output_est, *output_opt;
    struct Flag *shell_style;
    struct Cell_head region;
    struct GModule *module;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("regression"));
    module->description =
	_("Calculates multiple linear regression from raster maps.");

    /* Define the different options */
    input_mapx = G_define_standard_option(G_OPT_R_INPUTS);
    input_mapx->key = "mapx";
    input_mapx->description = (_("Map for x coefficient"));

    input_mapy = G_define_standard_option(G_OPT_R_INPUT);
    input_mapy->key = "mapy";
    input_mapy->description = (_("Map for y coefficient"));

    output_res = G_define_standard_option(G_OPT_R_OUTPUT);
    output_res->key = "residuals";
    output_res->required = NO;
    output_res->description = (_("Map to store residuals"));

    output_est = G_define_standard_option(G_OPT_R_OUTPUT);
    output_est->key = "estimates";
    output_est->required = NO;
    output_est->description = (_("Map to store estimates"));

    output_opt = G_define_standard_option(G_OPT_F_OUTPUT);
    output_opt->key = "output";
    output_opt->required = NO;
    output_opt->description =
	(_("ASCII file for storing regression coefficients (output to screen if file not specified)."));

    shell_style = G_define_flag();
    shell_style->key = 'g';
    shell_style->description = _("Print in shell script style");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    name = output_opt->answer;
    if (name != NULL && strcmp(name, "-") != 0) {
	if (NULL == freopen(name, "w", stdout)) {
	    G_fatal_error(_("Unable to open file <%s> for writing"), name);
	}
    }

    G_get_window(&region);
    rows = region.rows;
    cols = region.cols;

    /* count x maps */
    for (i = 0; input_mapx->answers[i]; i++);
    n_predictors = i;
    
    /* allocate memory for x maps */
    mapx_fd = (int *)G_malloc(n_predictors * sizeof(int));
    sumX = (double *)G_malloc(n_predictors * sizeof(double));
    sumsqX = (double *)G_malloc(n_predictors * sizeof(double));
    sumXY = (double *)G_malloc(n_predictors * sizeof(double));
    SSerr_without = (double *)G_malloc(n_predictors * sizeof(double));
    meanX = (double *)G_malloc(n_predictors * sizeof(double));
    varX = (double *)G_malloc(n_predictors * sizeof(double));
    sdX = (double *)G_malloc(n_predictors * sizeof(double));
    mapx_buf = (DCELL **)G_malloc(n_predictors * sizeof(DCELL *));
    mapx_val = (DCELL *)G_malloc((n_predictors + 1) * sizeof(DCELL));
    
    /* ordinary least squares */
    m = NULL;
    m_all = (struct MATRIX *)G_malloc((n_predictors + 1) * sizeof(struct MATRIX));
    a = (double **)G_malloc((n_predictors + 1) * sizeof(double *));
    B = (double **)G_malloc((n_predictors + 1) * sizeof(double *));

    m = &(m_all[0]);
    m->n = n_predictors + 1;
    m->v = (double *)G_malloc(m->n * m->n * sizeof(double));

    a[0] = (double *)G_malloc(m->n * sizeof(double));
    B[0] = (double *)G_malloc(m->n * sizeof(double));

    for (i = 0; i < m->n; i++) {
	for (j = i; j < m->n; j++)
	    M(m, i, j) = 0.0;
	a[0][i] = 0.0;
	B[0][i] = 0.0;
    }
    
    for (k = 1; k <= n_predictors; k++) {
	m = &(m_all[k]);
	m->n = n_predictors;
	m->v = (double *)G_malloc(m->n * m->n * sizeof(double));
	a[k] = (double *)G_malloc(m->n * sizeof(double));
	B[k] = (double *)G_malloc(m->n * sizeof(double));

	for (i = 0; i < m->n; i++) {
	    for (j = i; j < m->n; j++)
		M(m, i, j) = 0.0;
	    a[k][i] = 0.0;
	    B[k][i] = 0.0;
	}
    }

    /* open maps */
    G_debug(1, "open maps");
    for (i = 0; i < n_predictors; i++) {
	mapx_fd[i] = Rast_open_old(input_mapx->answers[i], "");
    }
    mapy_fd = Rast_open_old(input_mapy->answer, "");

    for (i = 0; i < n_predictors; i++)
	mapx_buf[i] = Rast_allocate_d_buf();
    mapy_buf = Rast_allocate_d_buf();

    for (i = 0; i < n_predictors; i++) {
	sumX[i] = sumsqX[i] = sumXY[i] = 0.0;
	meanX[i] = varX[i] = sdX[i] = 0.0;
	SSerr_without[i] = 0.0;
    }
    sumY = sumsqY = meanY = varY = sdY = 0.0;
    sumYest = meanYest = varYest = sdYest = 0.0;
    meanYres = varYres = sdYres = 0.0;

    /* read input maps */
    G_message(_("First pass..."));
    n_valid = 0;
    mapx_val[0] = 1.0;
    for (r = 0; r < rows; r++) {
	G_percent(r, rows, 2);

	for (i = 0; i < n_predictors; i++)
	    Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);

	Rast_get_d_row(mapy_fd, mapy_buf, r);

	for (c = 0; c < cols; c++) {
	    int isnull = 0;

	    for (i = 0; i < n_predictors; i++) {
		mapx_val[i + 1] = mapx_buf[i][c];
		if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
		    isnull = 1;
		    break;
		}
	    }
	    if (isnull)
		continue;

	    mapy_val = mapy_buf[c];
	    if (Rast_is_d_null_value(&mapy_val))
		continue;

	    for (i = 0; i <= n_predictors; i++) {
		double val1 = mapx_val[i];

		for (j = i; j <= n_predictors; j++) {
		    double val2 = mapx_val[j];

		    m = &(m_all[0]);
		    M(m, i, j) += val1 * val2;

		    /* linear model without predictor k */
		    for (k = 1; k <= n_predictors; k++) {
			if (k != i && k != j) {
			    int i2 = k > i ? i : i - 1;
			    int j2 = k > j ? j : j - 1;

			    m = &(m_all[k]);
			    M(m, i2, j2) += val1 * val2;
			}
		    }
		}

		a[0][i] += mapy_val * val1;
		for (k = 1; k <= n_predictors; k++) {
		    if (k != i) {
			int i2 = k > i ? i : i - 1;

			a[k][i2] += mapy_val * val1;
		    }
		}

		if (i > 0) {
		    sumX[i - 1] += val1;
		    sumsqX[i - 1] += val1 * val1;
		    sumXY[i - 1] += val1 * mapy_val;
		}
	    }

	    sumY += mapy_val;
	    sumsqY += mapy_val * mapy_val;
	    count++;
	}
    }
    G_percent(rows, rows, 2);
    
    if (count < n_predictors + 1)
	G_fatal_error(_("Not enough valid cells available"));

    for (k = 0; k <= n_predictors; k++) {
	m = &(m_all[k]);

	/* TRANSPOSE VALUES IN UPPER HALF OF M TO OTHER HALF */
	for (i = 1; i < m->n; i++)
	    for (j = 0; j < i; j++)
		M(m, i, j) = M(m, j, i);

	if (!solvemat(m, a[k], B[k])) {
	    for (i = 0; i <= n_predictors; i++) {
		fprintf(stdout, "b%d=0.0\n", i);
	    }
	    G_fatal_error(_("Multiple regression failed"));
	}
    }
    
    /* second pass */
    G_message(_("Second pass..."));

    /* residuals output */
    if (output_res->answer) {
	mapres_fd = Rast_open_new(output_res->answer, DCELL_TYPE);
	mapres_buf = Rast_allocate_d_buf();
    }
    else {
	mapres_fd = -1;
	mapres_buf = NULL;
    }

    /* estimates output */
    if (output_est->answer) {
	mapest_fd = Rast_open_new(output_est->answer, DCELL_TYPE);
	mapest_buf = Rast_allocate_d_buf();
    }
    else {
	mapest_fd = -1;
	mapest_buf = NULL;
    }

    for (i = 0; i < n_predictors; i++)
	meanX[i] = sumX[i] / count;

    meanY = sumY / count;
    SStot = SSerr = SSreg = 0.0;
    for (r = 0; r < rows; r++) {
	G_percent(r, rows, 2);

	for (i = 0; i < n_predictors; i++)
	    Rast_get_d_row(mapx_fd[i], mapx_buf[i], r);

	Rast_get_d_row(mapy_fd, mapy_buf, r);
	
	if (mapres_buf)
	    Rast_set_d_null_value(mapres_buf, cols);
	if (mapest_buf)
	    Rast_set_d_null_value(mapest_buf, cols);

	for (c = 0; c < cols; c++) {
	    int isnull = 0;

	    for (i = 0; i < n_predictors; i++) {
		mapx_val[i + 1] = mapx_buf[i][c];
		if (Rast_is_d_null_value(&(mapx_val[i + 1]))) {
		    isnull = 1;
		    break;
		}
	    }
	    if (isnull)
		continue;

	    yest = 0.0;
	    for (i = 0; i <= n_predictors; i++) {
		yest += B[0][i] * mapx_val[i];
	    }
	    if (mapest_buf)
		mapest_buf[c] = yest;

	    mapy_val = mapy_buf[c];
	    if (Rast_is_d_null_value(&mapy_val))
		continue;

	    yres = mapy_val - yest;
	    if (mapres_buf)
		mapres_buf[c] = yres;

	    SStot += (mapy_val - meanY) * (mapy_val - meanY);
	    SSreg += (yest - meanY) * (yest - meanY);
	    SSerr += yres * yres;

	    for (k = 1; k <= n_predictors; k++) {
		double yesti = 0.0;
		double yresi;

		/* linear model without predictor k */
		for (i = 0; i <= n_predictors; i++) {
		    if (i != k) {
			j = k > i ? i : i - 1;
			yesti += B[k][j] * mapx_val[i];
		    }
		}
		yresi = mapy_val - yesti;

		/* linear model without predictor k */
		SSerr_without[k - 1] += yresi * yresi;

		varX[k - 1] = (mapx_val[k] - meanX[k - 1]) * (mapx_val[k] - meanX[k - 1]);
	    }
	}

	if (mapres_buf)
	    Rast_put_d_row(mapres_fd, mapres_buf);
	if (mapest_buf)
	    Rast_put_d_row(mapest_fd, mapest_buf);
    }
    G_percent(rows, rows, 2);

    fprintf(stdout, "n=%d\n", count);
    /* coefficient of determination aka R squared */
    Rsq = 1 - (SSerr / SStot);
    fprintf(stdout, "Rsq=%f\n", Rsq);
    /* adjusted coefficient of determination */
    Rsqadj = 1 - ((SSerr * (count - 1)) / (SStot * (count - n_predictors - 1)));
    fprintf(stdout, "Rsqadj=%f\n", Rsqadj);
    /* F statistic */
    /* F = ((SStot - SSerr) / (n_predictors)) / (SSerr / (count - n_predictors));
     * , or: */
    F = ((SStot - SSerr) * (count - n_predictors - 1)) / (SSerr * (n_predictors));
    fprintf(stdout, "F=%f\n", F);

    i = 0;
    /* constant aka estimate for intercept in R */
    fprintf(stdout, "b%d=%f\n", i, B[0][i]);
    /* t score for R squared of the full model, unused */
    t = sqrt(Rsq) * sqrt((count - 2) / (1 - Rsq));
    /*
    fprintf(stdout, "t%d=%f\n", i, t);
    */

    /* AIC, corrected AIC, and BIC information criteria for the full model */
    AIC = count * log(SSerr / count) + 2 * (n_predictors + 1);
    fprintf(stdout, "AIC=%f\n", AIC);
    AICc = AIC + (2 * n_predictors * (n_predictors + 1)) / (count - n_predictors - 1);
    fprintf(stdout, "AICc=%f\n", AICc);
    BIC = count * log(SSerr / count) + log(count) * (n_predictors + 1);
    fprintf(stdout, "BIC=%f\n", BIC);

    /* error variance of the model, identical to R */
    SE = SSerr / (count - n_predictors - 1);
    /*
    fprintf(stdout, "SE=%f\n", SE);
    fprintf(stdout, "SSerr=%f\n", SSerr);
    */

    for (i = 0; i < n_predictors; i++) {

	fprintf(stdout, "\npredictor%d=%s\n", i + 1, input_mapx->answers[i]);
	fprintf(stdout, "b%d=%f\n", i + 1, B[0][i + 1]);
	if (n_predictors > 1) {
	    double Rsqi, SEi, sumsqX_corr;

	    /* corrected sum of squares for predictor [i] */
	    sumsqX_corr = sumsqX[i] - sumX[i] * sumX[i] / (count - n_predictors - 1);

	    /* standard error SE for predictor [i] */

	    /* SE[i] with only one predictor: sqrt(SE / sumsqX_corr)
	     * this does not work with more than one predictor */
	    /* in R, SEi is sqrt(diag(R) * resvar) with
	     * R = ???
	     * resvar = rss / rdf = SE global
	     * rss = sum of squares of the residuals
	     * rdf = residual degrees of freedom = count - n_predictors - 1 */
	    SEi = sqrt(SE / (Rsq * sumsqX_corr));
	    /*
	    fprintf(stdout, "SE%d=%f\n", i + 1, SEi);
	    */

	    /* Sum of squares for predictor [i] */
	    /*
	    fprintf(stdout, "SSerr%d=%f\n", i + 1, SSerr_without[i] - SSerr);
	    */

	    /* R squared of the model without predictor [i] */
	    /* Rsqi = 1 - SSerr_without[i] / SStot; */
	    /* the additional amount of variance explained
	     * when including predictor [i] :
	     * Rsq - Rsqi */
	    Rsqi = (SSerr_without[i] - SSerr) / SStot;
	    fprintf(stdout, "Rsq%d=%f\n", i + 1, Rsqi);

	    /* t score for Student's t distribution, unused */
	    t = (B[0][i + 1]) / SEi;
	    /*
	    fprintf(stdout, "t%d=%f\n", i + 1, t);
	    */

	    /* F score for Fisher's F distribution
	     * here: F score to test if including predictor [i]
	     * yields a significant improvement
	     * after Lothar Sachs, Angewandte Statistik:
	     * F = (Rsq - Rsqi) * (count - n_predictors - 1) / (1 - Rsq) */
	    /* same like Sumsq / SE */
	    /* same like (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1) */
	    /* same like R-stats when entered in R-stats as last predictor */
	    F = (SSerr_without[i] / SSerr - 1) * (count - n_predictors - 1);
	    fprintf(stdout, "F%d=%f\n", i + 1, F);

	    /* AIC, corrected AIC, and BIC information criteria for
	     * the model without predictor [i] */
	    AIC = count * log(SSerr_without[i] / count) + 2 * (n_predictors);
	    fprintf(stdout, "AIC%d=%f\n", i + 1, AIC);
	    AICc = AIC + (2 * (n_predictors - 1) * n_predictors) / (count - n_predictors - 2);
	    fprintf(stdout, "AICc%d=%f\n", i + 1, AICc);
	    BIC = count * log(SSerr_without[i] / count) + (n_predictors - 1) * log(count);
	    fprintf(stdout, "BIC%d=%f\n", i + 1, BIC);
	}
    }
    

    for (i = 0; i < n_predictors; i++) {
	Rast_close(mapx_fd[i]);
	G_free(mapx_buf[i]);
    }
    Rast_close(mapy_fd);
    G_free(mapy_buf);
    
    if (mapres_fd > -1) {
	struct History history;

	Rast_close(mapres_fd);
	G_free(mapres_buf);

	Rast_short_history(output_res->answer, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(output_res->answer, &history);
    }

    if (mapest_fd > -1) {
	struct History history;

	Rast_close(mapest_fd);
	G_free(mapest_buf);

	Rast_short_history(output_est->answer, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(output_est->answer, &history);
    }

    exit(EXIT_SUCCESS);
}
Example #17
0
/* ************************************************************************* */
void rast3d_cross_section(void *map,RASTER3D_Region region, int elevfd, int outfd)
{
    int col, row;
    int rows, cols, depths, typeIntern;
    FCELL *fcell = NULL;
    DCELL *dcell = NULL;
    void *elevrast;
    void *ptr;
    int intvalue;
    float fvalue;
    double dvalue;
    double elevation = 0;
    double north, east;
    struct Cell_head window;
 
    Rast_get_window(&window);
    
    rows = region.rows;
    cols = region.cols;
    depths = region.depths;
    
    /*Typ of the RASTER3D Tile */
    typeIntern = Rast3d_tile_type_map(map);

    /*Allocate mem for the output maps row */
    if (typeIntern == FCELL_TYPE)
        fcell = Rast_allocate_f_buf();
    else if (typeIntern == DCELL_TYPE)
        dcell = Rast_allocate_d_buf();

    /*Mem for the input map row */
    elevrast = Rast_allocate_buf(globalElevMapType);

    for (row = 0; row < rows; row++) {
        G_percent(row, rows - 1, 10);

        /*Read the input map row */
        Rast_get_row(elevfd, elevrast, row, globalElevMapType);

        for (col = 0, ptr = elevrast; col < cols; col++, ptr =
            G_incr_void_ptr(ptr, Rast_cell_size(globalElevMapType))) {

            if (Rast_is_null_value(ptr, globalElevMapType)) {
                if (typeIntern == FCELL_TYPE)
                    Rast_set_null_value(&fcell[col], 1, FCELL_TYPE);
                else if (typeIntern == DCELL_TYPE)
                    Rast_set_null_value(&dcell[col], 1, DCELL_TYPE);
                continue;
            }

            /*Read the elevation value */
            if (globalElevMapType == CELL_TYPE) {
                intvalue = *(CELL *) ptr;
                elevation = intvalue;
            } else if (globalElevMapType == FCELL_TYPE) {
                fvalue = *(FCELL *) ptr;
                elevation = fvalue;
            } else if (globalElevMapType == DCELL_TYPE) {
                dvalue = *(DCELL *) ptr;
                elevation = dvalue;
            }

            /* Compute the coordinates */
            north = Rast_row_to_northing((double)row + 0.5, &window);
            east = Rast_col_to_easting((double)col + 0.5, &window);

            /* Get the voxel value */
            if (typeIntern == FCELL_TYPE)
                Rast3d_get_region_value(map, north, east, elevation, &fcell[col], FCELL_TYPE);

            if (typeIntern == DCELL_TYPE)
                Rast3d_get_region_value(map, north, east, elevation, &dcell[col], DCELL_TYPE);
        }

        /*Write the data to the output map */
        if (typeIntern == FCELL_TYPE)
            Rast_put_f_row(outfd, fcell);

        if (typeIntern == DCELL_TYPE)
            Rast_put_d_row(outfd, dcell);
    }
    G_debug(3, "\nDone\n");

    /*Free the mem */
    if (elevrast)
        G_free(elevrast);
    if (dcell)
        G_free(dcell);
    if (fcell)
        G_free(fcell);
}
Example #18
0
int main(int argc, char *argv[])
{
    int fd, maskfd;
    CELL *mask;
    DCELL *dcell;
    struct GModule *module;
    struct History history;
    int row, col;
    int searchrow, searchcolumn, pointsfound;
    int *shortlistrows = NULL, *shortlistcolumns = NULL;
    long ncells = 0;
    double north, east;
    double dist;
    double sum1, sum2, interp_value;
    int n;
    double p;
    struct
    {
        struct Option *input, *npoints, *power, *output, *dfield, *col;
    } parm;
    struct
    {
        struct Flag *noindex;
    } flag;
    struct cell_list
    {
        int row, column;
        struct cell_list *next;
    };
    struct cell_list **search_list = NULL, **search_list_start = NULL;
    int max_radius, radius;
    int searchallpoints = 0;
    char *tmpstr1, *tmpstr2;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    G_add_keyword(_("IDW"));
    module->description =
        _("Provides surface interpolation from vector point data by Inverse "
          "Distance Squared Weighting.");

    parm.input = G_define_standard_option(G_OPT_V_INPUT);

    parm.dfield = G_define_standard_option(G_OPT_V_FIELD);

    parm.col = G_define_standard_option(G_OPT_DB_COLUMN);
    parm.col->required = NO;
    parm.col->label = _("Name of attribute column with values to interpolate");
    parm.col->description = _("If not given and input is 2D vector map then category values are used. "
                              "If input is 3D vector map then z-coordinates are used.");
    parm.col->guisection = _("Values");

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.npoints = G_define_option();
    parm.npoints->key = "npoints";
    parm.npoints->key_desc = "count";
    parm.npoints->type = TYPE_INTEGER;
    parm.npoints->required = NO;
    parm.npoints->description = _("Number of interpolation points");
    parm.npoints->answer = "12";
    parm.npoints->guisection = _("Settings");

    parm.power = G_define_option();
    parm.power->key = "power";
    parm.power->type = TYPE_DOUBLE;
    parm.power->answer = "2.0";
    parm.power->label = _("Power parameter");
    parm.power->description =
        _("Greater values assign greater influence to closer points");
    parm.power->guisection = _("Settings");

    flag.noindex = G_define_flag();
    flag.noindex->key = 'n';
    flag.noindex->label = _("Don't index points by raster cell");
    flag.noindex->description = _("Slower but uses"
                                  " less memory and includes points from outside region"
                                  " in the interpolation");
    flag.noindex->guisection = _("Settings");

    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    if (sscanf(parm.npoints->answer, "%d", &search_points) != 1 ||
            search_points < 1)
        G_fatal_error(_("Illegal number (%s) of interpolation points"),
                      parm.npoints->answer);

    list =
        (struct list_Point *) G_calloc((size_t) search_points,
                                       sizeof(struct list_Point));

    p = atof(parm.power->answer);

    /* get the window, dimension arrays */
    G_get_window(&window);

    if (!flag.noindex->answer) {
        npoints_currcell = (long **)G_malloc(window.rows * sizeof(long *));
        points =
            (struct Point ***)G_malloc(window.rows * sizeof(struct Point **));


        for (row = 0; row < window.rows; row++) {
            npoints_currcell[row] =
                (long *)G_malloc(window.cols * sizeof(long));
            points[row] =
                (struct Point **)G_malloc(window.cols *
                                          sizeof(struct Point *));

            for (col = 0; col < window.cols; col++) {
                npoints_currcell[row][col] = 0;
                points[row][col] = NULL;
            }
        }
    }

    /* read the elevation points from the input sites file */
    read_sites(parm.input->answer, parm.dfield->answer,
               parm.col->answer, flag.noindex->answer);

    if (npoints == 0)
        G_fatal_error(_("No points found"));
    nsearch = npoints < search_points ? npoints : search_points;

    if (!flag.noindex->answer) {
        /* Arbitrary point to switch between searching algorithms. Could do
         * with refinement PK */
        if ((window.rows * window.cols) / npoints > 400) {
            /* Using old algorithm.... */
            searchallpoints = 1;
            ncells = 0;

            /* Make an array to contain the row and column indices that have
             * sites in them; later will just search through all these. */
            for (searchrow = 0; searchrow < window.rows; searchrow++)
                for (searchcolumn = 0; searchcolumn < window.cols;
                        searchcolumn++)
                    if (npoints_currcell[searchrow][searchcolumn] > 0) {
                        shortlistrows = (int *)G_realloc(shortlistrows,
                                                         (1 +
                                                          ncells) *
                                                         sizeof(int));
                        shortlistcolumns =
                            (int *)G_realloc(shortlistcolumns,
                                             (1 + ncells) * sizeof(int));
                        shortlistrows[ncells] = searchrow;
                        shortlistcolumns[ncells] = searchcolumn;
                        ncells++;
                    }
        }
        else {
            /* Fill look-up table of row and column offsets for
             * doing a circular region growing search looking for sites */
            /* Use units of column width */
            max_radius = (int)(0.5 + sqrt(window.cols * window.cols +
                                          (window.rows * window.ns_res /
                                           window.ew_res) * (window.rows *
                                                   window.ns_res /
                                                   window.ew_res)));

            search_list =
                (struct cell_list **)G_malloc(max_radius *
                                              sizeof(struct cell_list *));
            search_list_start =
                (struct cell_list **)G_malloc(max_radius *
                                              sizeof(struct cell_list *));

            for (radius = 0; radius < max_radius; radius++)
                search_list[radius] = NULL;

            for (row = 0; row < window.rows; row++)
                for (col = 0; col < window.cols; col++) {
                    radius = (int)sqrt(col * col +
                                       (row * window.ns_res / window.ew_res) *
                                       (row * window.ns_res / window.ew_res));
                    if (search_list[radius] == NULL)
                        search_list[radius] =
                            search_list_start[radius] =
                                G_malloc(sizeof(struct cell_list));
                    else
                        search_list[radius] =
                            search_list[radius]->next =
                                G_malloc(sizeof(struct cell_list));

                    search_list[radius]->row = row;
                    search_list[radius]->column = col;
                    search_list[radius]->next = NULL;
                }
        }
    }

    /* allocate buffers, etc. */

    dcell = Rast_allocate_d_buf();

    if ((maskfd = Rast_maskfd()) >= 0)
        mask = Rast_allocate_c_buf();
    else
        mask = NULL;


    fd = Rast_open_new(parm.output->answer, DCELL_TYPE);

    /* GTC Count of window rows */
    G_asprintf(&tmpstr1, n_("%d row", "%d rows", window.rows), window.rows);
    /* GTC Count of window columns */
    G_asprintf(&tmpstr2, n_("%d column", "%d columns", window.cols), window.cols);
    /* GTC First argument is map name, second - message about number of rows, third - columns. */
    G_important_message(_("Interpolating raster map <%s> (%s, %s)..."),
                        parm.output->answer, tmpstr1, tmpstr2);
    G_free(tmpstr1);
    G_free(tmpstr2);

    north = window.north + window.ns_res / 2.0;
    for (row = 0; row < window.rows; row++) {
        G_percent(row, window.rows, 1);

        if (mask)
            Rast_get_c_row(maskfd, mask, row);

        north -= window.ns_res;
        east = window.west - window.ew_res / 2.0;
        for (col = 0; col < window.cols; col++) {
            east += window.ew_res;
            /* don't interpolate outside of the mask */
            if (mask && mask[col] == 0) {
                Rast_set_d_null_value(&dcell[col], 1);
                continue;
            }

            /* If current cell contains more than nsearch points just average
             * all the points in this cell and don't look in any others */

            if (!(flag.noindex->answer) && npoints_currcell[row][col] >= nsearch) {
                sum1 = 0.0;
                for (i = 0; i < npoints_currcell[row][col]; i++)
                    sum1 += points[row][col][i].z;

                interp_value = sum1 / npoints_currcell[row][col];
            }
            else {
                if (flag.noindex->answer)
                    calculate_distances_noindex(north, east);
                else {
                    pointsfound = 0;
                    i = 0;

                    if (searchallpoints == 1) {
                        /* If there aren't many sites just check them all to find
                         * the nearest */
                        for (n = 0; n < ncells; n++)
                            calculate_distances(shortlistrows[n],
                                                shortlistcolumns[n], north,
                                                east, &pointsfound);
                    }
                    else {
                        radius = 0;
                        while (pointsfound < nsearch) {
                            /* Keep widening the search window until we find
                             * enough points */
                            search_list[radius] = search_list_start[radius];
                            while (search_list[radius] != NULL) {
                                /* Always */
                                if (row <
                                        (window.rows - search_list[radius]->row)
                                        && col <
                                        (window.cols -
                                         search_list[radius]->column)) {
                                    searchrow =
                                        row + search_list[radius]->row;
                                    searchcolumn =
                                        col + search_list[radius]->column;
                                    calculate_distances(searchrow,
                                                        searchcolumn, north,
                                                        east, &pointsfound);
                                }

                                /* Only if at least one offset is not 0 */
                                if ((search_list[radius]->row > 0 ||
                                        search_list[radius]->column > 0) &&
                                        row >= search_list[radius]->row &&
                                        col >= search_list[radius]->column) {
                                    searchrow =
                                        row - search_list[radius]->row;
                                    searchcolumn =
                                        col - search_list[radius]->column;
                                    calculate_distances(searchrow,
                                                        searchcolumn, north,
                                                        east, &pointsfound);
                                }

                                /* Only if both offsets are not 0 */
                                if (search_list[radius]->row > 0 &&
                                        search_list[radius]->column > 0) {
                                    if (row <
                                            (window.rows -
                                             search_list[radius]->row) &&
                                            col >= search_list[radius]->column) {
                                        searchrow =
                                            row + search_list[radius]->row;
                                        searchcolumn =
                                            col - search_list[radius]->column;
                                        calculate_distances(searchrow,
                                                            searchcolumn,
                                                            north, east,
                                                            &pointsfound);
                                    }
                                    if (row >= search_list[radius]->row &&
                                            col <
                                            (window.cols -
                                             search_list[radius]->column)) {
                                        searchrow =
                                            row - search_list[radius]->row;
                                        searchcolumn =
                                            col + search_list[radius]->column;
                                        calculate_distances(searchrow,
                                                            searchcolumn,
                                                            north, east,
                                                            &pointsfound);
                                    }
                                }

                                search_list[radius] =
                                    search_list[radius]->next;
                            }
                            radius++;
                        }
                    }
                }

                /* interpolate */
                sum1 = 0.0;
                sum2 = 0.0;
                for (n = 0; n < nsearch; n++) {
                    if ((dist = sqrt(list[n].dist))) {
                        sum1 += list[n].z / pow(dist, p);
                        sum2 += 1.0 / pow(dist, p);
                    }
                    else {
                        /* If one site is dead on the centre of the cell, ignore
                         * all the other sites and just use this value.
                         * (Unlikely when using floating point numbers?) */
                        sum1 = list[n].z;
                        sum2 = 1.0;
                        break;
                    }
                }
                interp_value = sum1 / sum2;
            }
            dcell[col] = (DCELL) interp_value;
        }
        Rast_put_d_row(fd, dcell);
    }
    G_percent(1, 1, 1);

    Rast_close(fd);

    /* writing history file */
    Rast_short_history(parm.output->answer, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(parm.output->answer, &history);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Example #19
0
static void resamp_unweighted(void)
{
    stat_func *method_fn;
    DCELL *values;
    int *col_map, *row_map;
    int row, col;

    method_fn = menu[method].method;

    values = G_malloc(row_scale * col_scale * sizeof(DCELL));

    col_map = G_malloc((dst_w.cols + 1) * sizeof(int));
    row_map = G_malloc((dst_w.rows + 1) * sizeof(int));

    for (col = 0; col <= dst_w.cols; col++) {
	double x = Rast_col_to_easting(col, &dst_w);

	col_map[col] = (int)floor(Rast_easting_to_col(x, &src_w) + 0.5);
    }

    for (row = 0; row <= dst_w.rows; row++) {
	double y = Rast_row_to_northing(row, &dst_w);

	row_map[row] = (int)floor(Rast_northing_to_row(y, &src_w) + 0.5);
    }

    for (row = 0; row < dst_w.rows; row++) {
	int maprow0 = row_map[row + 0];
	int maprow1 = row_map[row + 1];
	int count = maprow1 - maprow0;
	int i;

	G_percent(row, dst_w.rows, 2);

	for (i = 0; i < count; i++)
	    Rast_get_d_row(infile, bufs[i], maprow0 + i);

	for (col = 0; col < dst_w.cols; col++) {
	    int mapcol0 = col_map[col + 0];
	    int mapcol1 = col_map[col + 1];
	    int null = 0;
	    int n = 0;
	    int i, j;

	    for (i = maprow0; i < maprow1; i++)
		for (j = mapcol0; j < mapcol1; j++) {
		    DCELL *src = &bufs[i - maprow0][j];
		    DCELL *dst = &values[n++];

		    if (Rast_is_d_null_value(src)) {
			Rast_set_d_null_value(dst, 1);
			null = 1;
		    }
		    else
			*dst = *src;
		}

	    if (null && nulls)
		Rast_set_d_null_value(&outbuf[col], 1);
	    else
		(*method_fn) (&outbuf[col], values, n, closure);
	}

	Rast_put_d_row(outfile, outbuf);
    }
}
Example #20
0
int main(int argc, char *argv[])
{
    struct Cell_head cellhd;

    /* buffer for in out raster */
    DCELL *inrast_T, *inrast_RH, *inrast_u2;
    DCELL *inrast_Rn, *inrast_DEM, *inrast_hc, *outrast;
    char *EPo;

    int nrows, ncols;
    int row, col;
    int infd_T, infd_RH, infd_u2, infd_Rn, infd_DEM, infd_hc;
    int outfd;

    char *T, *RH, *u2, *Rn, *DEM, *hc;
    DCELL d_T, d_RH, d_u2, d_Rn, d_Z, d_hc;
    DCELL d_EPo;

    int d_night;

    struct History history;
    struct GModule *module;
    struct Option *input_DEM, *input_T, *input_RH;
    struct Option *input_u2, *input_Rn, *input_hc, *output;
    struct Flag *day, *zero;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("evapotranspiration"));
    module->description =
	_("Computes potential evapotranspiration calculation with hourly Penman-Monteith.");

    /* Define different options */
    input_DEM = G_define_standard_option(G_OPT_R_ELEV);
    input_DEM->description = _("Name of input elevation raster map [m a.s.l.]");
    
    input_T = G_define_standard_option(G_OPT_R_INPUT);
    input_T->key = "temperature";
    input_T->description = _("Name of input temperature raster map [C]");

    input_RH = G_define_standard_option(G_OPT_R_INPUT);
    input_RH->key = "relativehumidity";
    input_RH->description = _("Name of input relative humidity raster map [%]");

    input_u2 = G_define_standard_option(G_OPT_R_INPUT);
    input_u2->key = "windspeed";
    input_u2->description = _("Name of input wind speed raster map [m/s]");

    input_Rn = G_define_standard_option(G_OPT_R_INPUT);
    input_Rn->key = "netradiation";
    input_Rn->description =
	_("Name of input net solar radiation raster map [MJ/m2/h]");

    input_hc = G_define_standard_option(G_OPT_R_INPUT);
    input_hc->key = "cropheight";
    input_hc->description = _("Name of input crop height raster map [m]");

    output = G_define_standard_option(G_OPT_R_OUTPUT);
	_("Name for output raster map [mm/h]");

    zero = G_define_flag();
    zero->key = 'z';
    zero->description = _("Set negative evapotranspiration to zero");

    day = G_define_flag();
    day->key = 'n';
    day->description = _("Use Night-time");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    T = input_T->answer;
    RH = input_RH->answer;
    u2 = input_u2->answer;
    Rn = input_Rn->answer;
    EPo = output->answer;
    DEM = input_DEM->answer;
    hc = input_hc->answer;

    if (day->answer) {
	d_night = TRUE;
    }
    else {
	d_night = FALSE;
    }

    infd_T = Rast_open_old(T, "");
    infd_RH = Rast_open_old(RH, "");
    infd_u2 = Rast_open_old(u2, "");
    infd_Rn = Rast_open_old(Rn, "");
    infd_DEM = Rast_open_old(DEM, "");
    infd_hc = Rast_open_old(hc, "");

    Rast_get_cellhd(T, "", &cellhd);
    Rast_get_cellhd(RH, "", &cellhd);
    Rast_get_cellhd(u2, "", &cellhd);
    Rast_get_cellhd(Rn, "", &cellhd);
    Rast_get_cellhd(DEM, "", &cellhd);
    Rast_get_cellhd(hc, "", &cellhd);

    /* Allocate input buffer */
    inrast_T = Rast_allocate_d_buf();
    inrast_RH = Rast_allocate_d_buf();
    inrast_u2 = Rast_allocate_d_buf();
    inrast_Rn = Rast_allocate_d_buf();
    inrast_DEM = Rast_allocate_d_buf();
    inrast_hc = Rast_allocate_d_buf();

    /* Allocate output buffer */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    outrast = Rast_allocate_d_buf();

    outfd = Rast_open_new(EPo, DCELL_TYPE);

    for (row = 0; row < nrows; row++) {

	/* read a line input maps into buffers */
	Rast_get_d_row(infd_T, inrast_T, row);
	Rast_get_d_row(infd_RH, inrast_RH, row);
	Rast_get_d_row(infd_u2, inrast_u2, row);
	Rast_get_d_row(infd_Rn, inrast_Rn, row);
	Rast_get_d_row(infd_DEM, inrast_DEM, row);
	Rast_get_d_row(infd_hc, inrast_hc, row);

	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
	    d_T = ((DCELL *) inrast_T)[col];
	    d_RH = ((DCELL *) inrast_RH)[col];
	    d_u2 = ((DCELL *) inrast_u2)[col];
	    d_Rn = ((DCELL *) inrast_Rn)[col];
	    d_Z = ((DCELL *) inrast_DEM)[col];
	    d_hc = ((DCELL *) inrast_hc)[col];

	    /* calculate evapotranspiration */
	    if (d_hc < 0) {
		/* calculate evaporation */
		d_EPo =
		    calc_openwaterETp(d_T, d_Z, d_u2, d_Rn, d_night, d_RH,
				      d_hc);
	    }
	    else {
		/* calculate evapotranspiration */
		d_EPo = calc_ETp(d_T, d_Z, d_u2, d_Rn, d_night, d_RH, d_hc);
	    }

	    if (zero->answer && d_EPo < 0)
		d_EPo = 0;

	    ((DCELL *) outrast)[col] = d_EPo;
	}
	Rast_put_d_row(outfd, outrast);
    }
    G_free(inrast_T);
    G_free(inrast_RH);
    G_free(inrast_u2);
    G_free(inrast_Rn);
    G_free(inrast_DEM);
    G_free(inrast_hc);
    G_free(outrast);
    Rast_close(infd_T);
    Rast_close(infd_RH);
    Rast_close(infd_u2);
    Rast_close(infd_Rn);
    Rast_close(infd_DEM);
    Rast_close(infd_hc);
    Rast_close(outfd);

    /* add command line incantation to history file */
    Rast_short_history(EPo, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(EPo, &history);

    exit(EXIT_SUCCESS);
}
Example #21
0
int main(int argc, char *argv[])
{
    /* Global variable & function declarations */
    struct GModule *module;
    struct {
	struct Option *orig, *real, *imag;
    } opt;
    const char *Cellmap_real, *Cellmap_imag;
    const char *Cellmap_orig;
    int realfd, imagfd,  outputfd, maskfd;	/* the input and output file descriptors */
    struct Cell_head realhead, imaghead;
    DCELL *cell_real, *cell_imag;
    CELL *maskbuf;

    int i, j;			/* Loop control variables */
    int rows, cols;		/* number of rows & columns */
    long totsize;		/* Total number of data points */
    double (*data)[2];		/* Data structure containing real & complex values of FFT */

    G_gisinit(argv[0]);

    /* Set description */
    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("transformation"));
    G_add_keyword(_("Fast Fourier Transform"));
    module->description =
	_("Inverse Fast Fourier Transform (IFFT) for image processing.");

    /* define options */
    opt.real = G_define_standard_option(G_OPT_R_INPUT);
    opt.real->key = "real";
    opt.real->description = _("Name of input raster map (image fft, real part)");

    opt.imag = G_define_standard_option(G_OPT_R_INPUT);
    opt.imag->key = "imaginary";
    opt.imag->description = _("Name of input raster map (image fft, imaginary part");

    opt.orig = G_define_standard_option(G_OPT_R_OUTPUT);
    opt.orig->description = _("Name for output raster map");
    
    /*call parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Cellmap_real = opt.real->answer;
    Cellmap_imag = opt.imag->answer;
    Cellmap_orig = opt.orig->answer;

    /* get and compare the original window data */
    Rast_get_cellhd(Cellmap_real, "", &realhead);
    Rast_get_cellhd(Cellmap_imag, "", &imaghead);

    if (realhead.proj   != imaghead.proj   ||
	realhead.zone   != imaghead.zone   ||
	realhead.north  != imaghead.north  ||
	realhead.south  != imaghead.south  ||
	realhead.east   != imaghead.east   ||
	realhead.west   != imaghead.west   ||
	realhead.ew_res != imaghead.ew_res ||
	realhead.ns_res != imaghead.ns_res)
	G_fatal_error(_("The real and imaginary original windows did not match"));

    Rast_set_window(&realhead);	/* set the window to the whole cell map */

    /* open input raster map */
    realfd = Rast_open_old(Cellmap_real, "");
    imagfd = Rast_open_old(Cellmap_imag, "");

    /* get the rows and columns in the current window */
    rows = Rast_window_rows();
    cols = Rast_window_cols();
    totsize = rows * cols;

    /* Allocate appropriate memory for the structure containing
       the real and complex components of the FFT.  DATA[0] will
       contain the real, and DATA[1] the complex component.
     */
    data = G_malloc(rows * cols * 2 * sizeof(double));

    /* allocate the space for one row of cell map data */
    cell_real = Rast_allocate_d_buf();
    cell_imag = Rast_allocate_d_buf();
    
#define C(i, j) ((i) * cols + (j))

    /* Read in cell map values */
    G_message(_("Reading raster maps..."));
    for (i = 0; i < rows; i++) {
	Rast_get_d_row(realfd, cell_real, i);
	Rast_get_d_row(imagfd, cell_imag, i);
	for (j = 0; j < cols; j++) {
	    data[C(i, j)][0] = cell_real[j];
	    data[C(i, j)][1] = cell_imag[j];
	}
	G_percent(i+1, rows, 2);
    }

    /* close input cell maps */
    Rast_close(realfd);
    Rast_close(imagfd);

    /* Read in cell map values */
    G_message(_("Masking raster maps..."));
    maskfd = Rast_maskfd();
    if (maskfd >= 0) {
	maskbuf = Rast_allocate_c_buf();

	for (i = 0; i < rows; i++) {
	    Rast_get_c_row(maskfd, maskbuf, i);
	    for (j = 0; j < cols; j++) {
		if (maskbuf[j] == 0) {
		    data[C(i, j)][0] = 0.0;
		    data[C(i, j)][1] = 0.0;
		}
	    }
	    G_percent(i+1, rows, 2);
	}

	Rast_close(maskfd);
	G_free(maskbuf);
    }

#define SWAP1(a, b)				\
    do {					\
	double temp = (a);			\
	(a) = (b);				\
	(b) = temp;				\
    } while (0)

#define SWAP2(a, b)				\
    do {					\
	SWAP1(data[(a)][0], data[(b)][0]);	\
	SWAP1(data[(a)][1], data[(b)][1]);	\
    } while (0)

    /* rotate the data array for standard display */
    G_message(_("Rotating data..."));
    for (i = 0; i < rows; i++)
	for (j = 0; j < cols / 2; j++)
	    SWAP2(C(i, j), C(i, j + cols / 2));
    for (i = 0; i < rows / 2; i++)
	for (j = 0; j < cols; j++)
	    SWAP2(C(i, j), C(i + rows / 2, j));

    /* perform inverse FFT */
    G_message(_("Starting Inverse FFT..."));
    fft2(1, data, totsize, cols, rows);

    /* open the output cell map */
    outputfd = Rast_open_fp_new(Cellmap_orig);

    /* Write out result to a new cell map */
    G_message(_("Writing raster map <%s>..."),
	      Cellmap_orig);
    for (i = 0; i < rows; i++) {
	for (j = 0; j < cols; j++)
	    cell_real[j] = data[C(i, j)][0];
	Rast_put_d_row(outputfd, cell_real);

	G_percent(i+1, rows, 2);
    }

    Rast_close(outputfd);

    G_free(cell_real);
    G_free(cell_imag);

    fft_colors(Cellmap_orig);

    /* Release memory resources */
    G_free(data);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Example #22
0
int main(int argc, char *argv[])
{
    char *p;
    int method;
    int in_fd;
    int selection_fd;
    int out_fd;
    DCELL *result;
    char *selection;
    RASTER_MAP_TYPE map_type;
    int row, col;
    int readrow;
    int nrows, ncols;
    int n;
    int copycolr;
    int half;
    stat_func *newvalue;
    stat_func_w *newvalue_w;
    ifunc cat_names;
    double quantile;
    const void *closure;
    struct Colors colr;
    struct Cell_head cellhd;
    struct Cell_head window;
    struct History history;
    struct GModule *module;
    struct
    {
	struct Option *input, *output, *selection;
	struct Option *method, *size;
	struct Option *title;
	struct Option *weight;
	struct Option *gauss;
	struct Option *quantile;
    } parm;
    struct
    {
	struct Flag *align, *circle;
    } flag;

    DCELL *values;		/* list of neighborhood values */

    DCELL(*values_w)[2];	/* list of neighborhood values and weights */

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("algebra"));
    G_add_keyword(_("statistics"));
    module->description =
	_("Makes each cell category value a "
	  "function of the category values assigned to the cells "
	  "around it, and stores new cell values in an output raster "
	  "map layer.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.selection = G_define_standard_option(G_OPT_R_INPUT);
    parm.selection->key = "selection";
    parm.selection->required = NO;
    parm.selection->description = _("Name of an input raster map to select the cells which should be processed");

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.method = G_define_option();
    parm.method->key = "method";
    parm.method->type = TYPE_STRING;
    parm.method->required = NO;
    parm.method->answer = "average";
    p = G_malloc(1024);
    for (n = 0; menu[n].name; n++) {
	if (n)
	    strcat(p, ",");
	else
	    *p = 0;
	strcat(p, menu[n].name);
    }
    parm.method->options = p;
    parm.method->description = _("Neighborhood operation");
    parm.method->guisection = _("Neighborhood");

    parm.size = G_define_option();
    parm.size->key = "size";
    parm.size->type = TYPE_INTEGER;
    parm.size->required = NO;
    parm.size->description = _("Neighborhood size");
    parm.size->answer = "3";
    parm.size->guisection = _("Neighborhood");

    parm.title = G_define_option();
    parm.title->key = "title";
    parm.title->key_desc = "phrase";
    parm.title->type = TYPE_STRING;
    parm.title->required = NO;
    parm.title->description = _("Title of the output raster map");

    parm.weight = G_define_standard_option(G_OPT_F_INPUT);
    parm.weight->key = "weight";
    parm.weight->required = NO;
    parm.weight->description = _("Text file containing weights");

    parm.gauss = G_define_option();
    parm.gauss->key = "gauss";
    parm.gauss->type = TYPE_DOUBLE;
    parm.gauss->required = NO;
    parm.gauss->description = _("Sigma (in cells) for Gaussian filter");

    parm.quantile = G_define_option();
    parm.quantile->key = "quantile";
    parm.quantile->type = TYPE_DOUBLE;
    parm.quantile->required = NO;
    parm.quantile->description = _("Quantile to calculate for method=quantile");
    parm.quantile->options = "0.0-1.0";
    parm.quantile->answer = "0.5";

    flag.align = G_define_flag();
    flag.align->key = 'a';
    flag.align->description = _("Do not align output with the input");

    flag.circle = G_define_flag();
    flag.circle->key = 'c';
    flag.circle->description = _("Use circular neighborhood");
    flag.circle->guisection = _("Neighborhood");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    sscanf(parm.size->answer, "%d", &ncb.nsize);
    if (ncb.nsize <= 0)
	G_fatal_error(_("Neighborhood size must be positive"));
    if (ncb.nsize % 2 == 0)
	G_fatal_error(_("Neighborhood size must be odd"));
    ncb.dist = ncb.nsize / 2;

    if (parm.weight->answer && flag.circle->answer)
	G_fatal_error(_("weight= and -c are mutually exclusive"));

    if (parm.weight->answer && parm.gauss->answer)
	G_fatal_error(_("weight= and gauss= are mutually exclusive"));

    ncb.oldcell = parm.input->answer;
    ncb.newcell = parm.output->answer;

    if (!flag.align->answer) {
	Rast_get_cellhd(ncb.oldcell, "", &cellhd);
	G_get_window(&window);
	Rast_align_window(&window, &cellhd);
	Rast_set_window(&window);
    }

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* open raster maps */
    in_fd = Rast_open_old(ncb.oldcell, "");
    map_type = Rast_get_map_type(in_fd);

    /* get the method */
    for (method = 0; (p = menu[method].name); method++)
	if ((strcmp(p, parm.method->answer) == 0))
	    break;
    if (!p) {
	G_warning(_("<%s=%s> unknown %s"),
		  parm.method->key, parm.method->answer, parm.method->key);
	G_usage();
	exit(EXIT_FAILURE);
    }

    if (menu[method].method == c_quant) {
	quantile = atoi(parm.quantile->answer);
	closure = &quantile;
    }

    half = (map_type == CELL_TYPE) ? menu[method].half : 0;

    /* establish the newvalue routine */
    newvalue = menu[method].method;
    newvalue_w = menu[method].method_w;

    /* copy color table? */
    copycolr = menu[method].copycolr;
    if (copycolr) {
	G_suppress_warnings(1);
	copycolr =
	    (Rast_read_colors(ncb.oldcell, "", &colr) > 0);
	G_suppress_warnings(0);
    }

    /* read the weights */
    if (parm.weight->answer) {
	read_weights(parm.weight->answer);
	if (!newvalue_w)
	    weights_mask();
    }
    else if (parm.gauss->answer) {
	if (!newvalue_w)
	    G_fatal_error(_("Method %s not compatible with Gaussian filter"), parm.method->answer);
	gaussian_weights(atof(parm.gauss->answer));
    }
    else
	newvalue_w = NULL;

    /* allocate the cell buffers */
    allocate_bufs();
    result = Rast_allocate_d_buf();

    /* get title, initialize the category and stat info */
    if (parm.title->answer)
	strcpy(ncb.title, parm.title->answer);
    else
	sprintf(ncb.title, "%dx%d neighborhood: %s of %s",
		ncb.nsize, ncb.nsize, menu[method].name, ncb.oldcell);


    /* initialize the cell bufs with 'dist' rows of the old cellfile */

    readrow = 0;
    for (row = 0; row < ncb.dist; row++)
	readcell(in_fd, readrow++, nrows, ncols);

    /* open the selection raster map */
    if (parm.selection->answer) {
	G_message(_("Opening selection map <%s>"), parm.selection->answer);
	selection_fd = Rast_open_old(parm.selection->answer, "");
        selection = Rast_allocate_null_buf();
    } else {
        selection_fd = -1;
        selection = NULL;
    }

    /*open the new raster map */
    out_fd = Rast_open_new(ncb.newcell, map_type);

    if (flag.circle->answer)
	circle_mask();

    if (newvalue_w)
	values_w =
	    (DCELL(*)[2]) G_malloc(ncb.nsize * ncb.nsize * 2 * sizeof(DCELL));
    else
	values = (DCELL *) G_malloc(ncb.nsize * ncb.nsize * sizeof(DCELL));

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);
	readcell(in_fd, readrow++, nrows, ncols);

	if (selection)
            Rast_get_null_value_row(selection_fd, selection, row);

	for (col = 0; col < ncols; col++) {
	    DCELL *rp = &result[col];

            if (selection && selection[col]) {
		*rp = ncb.buf[ncb.dist][col];
		continue;
	    }

	    if (newvalue_w)
		n = gather_w(values_w, col);
	    else
		n = gather(values, col);

	    if (n < 0)
		Rast_set_d_null_value(rp, 1);
	    else {
		if (newvalue_w)
		    newvalue_w(rp, values_w, n, closure);
		else
		    newvalue(rp, values, n, closure);

		if (half && !Rast_is_d_null_value(rp))
		    *rp += 0.5;
	    }
	}

	Rast_put_d_row(out_fd, result);
    }
    G_percent(row, nrows, 2);

    Rast_close(out_fd);
    Rast_close(in_fd);

    if (selection)
        Rast_close(selection_fd);

    /* put out category info */
    null_cats();
    if ((cat_names = menu[method].cat_names))
	cat_names();

    Rast_write_cats(ncb.newcell, &ncb.cats);

    if (copycolr)
	Rast_write_colors(ncb.newcell, G_mapset(), &colr);

    Rast_short_history(ncb.newcell, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(ncb.newcell, &history);


    exit(EXIT_SUCCESS);
}
Example #23
0
File: main.c Project: caomw/grass
int main(int argc, char **argv)
{
    static DCELL *count, *sum, *mean, *sumu, *sum2, *sum3, *sum4, *min, *max;
    DCELL *result;
    struct GModule *module;
    struct {
	struct Option *method, *basemap, *covermap, *output;
    } opt;
    struct {
	struct Flag *c, *r;
    } flag;
    char methods[2048];
    const char *basemap, *covermap, *output;
    int usecats;
    int reclass;
    int base_fd, cover_fd;
    struct Categories cats;
    CELL *base_buf;
    DCELL *cover_buf;
    struct Range range;
    CELL mincat, ncats;
    int method;
    int rows, cols;
    int row, col, i;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("statistics"));
    module->description =
	_("Calculates category or object oriented statistics (accumulator-based statistics).");

    opt.basemap = G_define_standard_option(G_OPT_R_BASE);

    opt.covermap = G_define_standard_option(G_OPT_R_COVER);

    opt.method = G_define_option();
    opt.method->key = "method";
    opt.method->type = TYPE_STRING;
    opt.method->required = YES;
    opt.method->description = _("Method of object-based statistic");

    for (i = 0; menu[i].name; i++) {
	if (i)
	    strcat(methods, ",");
	else
	    *(methods) = 0;
	strcat(methods, menu[i].name);
    }
    opt.method->options = G_store(methods);

    for (i = 0; menu[i].name; i++) {
	if (i)
	    strcat(methods, ";");
	else
	    *(methods) = 0;
	strcat(methods, menu[i].name);
	strcat(methods, ";");
	strcat(methods, menu[i].text);
    }
    opt.method->descriptions = G_store(methods);

    opt.output = G_define_standard_option(G_OPT_R_OUTPUT);
    opt.output->description = _("Resultant raster map");
    opt.output->required = YES;

    flag.c = G_define_flag();
    flag.c->key = 'c';
    flag.c->description =
	_("Cover values extracted from the category labels of the cover map");

    flag.r = G_define_flag();
    flag.r->key = 'r';
    flag.r->description =
	_("Create reclass map with statistics as category labels");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    basemap = opt.basemap->answer;
    covermap = opt.covermap->answer;
    output = opt.output->answer;
    usecats = flag.c->answer;
    reclass = flag.r->answer;

    for (i = 0; menu[i].name; i++)
	if (strcmp(menu[i].name, opt.method->answer) == 0)
	    break;

    if (!menu[i].name) {
	G_warning(_("<%s=%s> unknown %s"), opt.method->key, opt.method->answer,
		  opt.method->key);
	G_usage();
	exit(EXIT_FAILURE);
    }

    method = menu[i].val;

    base_fd = Rast_open_old(basemap, "");

    cover_fd = Rast_open_old(covermap, "");

    if (usecats && Rast_read_cats(covermap, "", &cats) < 0)
	G_fatal_error(_("Unable to read category file of cover map <%s>"), covermap);

    if (Rast_map_is_fp(basemap, "") != 0)
	G_fatal_error(_("The base map must be an integer (CELL) map"));

    if (Rast_read_range(basemap, "", &range) < 0)
	G_fatal_error(_("Unable to read range of base map <%s>"), basemap);

    mincat = range.min;
    ncats = range.max - range.min + 1;

    rows = Rast_window_rows();
    cols = Rast_window_cols();

    switch (method) {
    case COUNT:
	count = G_calloc(ncats, sizeof(DCELL));
	break;
    case SUM:
	sum = G_calloc(ncats, sizeof(DCELL));
	break;
    case MIN:
	min = G_malloc(ncats * sizeof(DCELL));
	break;
    case MAX:
	max = G_malloc(ncats * sizeof(DCELL));
	break;
    case RANGE:
	min = G_malloc(ncats * sizeof(DCELL));
	max = G_malloc(ncats * sizeof(DCELL));
	break;
    case AVERAGE:
    case ADEV:
    case VARIANCE2:
    case STDDEV2:
    case SKEWNESS2:
    case KURTOSIS2:
	count = G_calloc(ncats, sizeof(DCELL));
	sum = G_calloc(ncats, sizeof(DCELL));
	break;
    case VARIANCE1:
    case STDDEV1:
	count = G_calloc(ncats, sizeof(DCELL));
	sum = G_calloc(ncats, sizeof(DCELL));
	sum2 = G_calloc(ncats, sizeof(DCELL));
	break;
    case SKEWNESS1:
	count = G_calloc(ncats, sizeof(DCELL));
	sum = G_calloc(ncats, sizeof(DCELL));
	sum2 = G_calloc(ncats, sizeof(DCELL));
	sum3 = G_calloc(ncats, sizeof(DCELL));
	break;
    case KURTOSIS1:
	count = G_calloc(ncats, sizeof(DCELL));
	sum = G_calloc(ncats, sizeof(DCELL));
	sum2 = G_calloc(ncats, sizeof(DCELL));
	sum4 = G_calloc(ncats, sizeof(DCELL));
	break;
    }

    if (min)
	for (i = 0; i < ncats; i++)
	    min[i] = 1e300;
    if (max)
	for (i = 0; i < ncats; i++)
	    max[i] = -1e300;

    base_buf = Rast_allocate_c_buf();
    cover_buf = Rast_allocate_d_buf();

    G_message(_("First pass"));

    for (row = 0; row < rows; row++) {
	Rast_get_c_row(base_fd, base_buf, row);
	Rast_get_d_row(cover_fd, cover_buf, row);

	for (col = 0; col < cols; col++) {
	    int n;
	    DCELL v;

	    if (Rast_is_c_null_value(&base_buf[col]))
		continue;
	    if (Rast_is_d_null_value(&cover_buf[col]))
		continue;

	    n = base_buf[col] - mincat;

	    if (n < 0 || n >= ncats)
		continue;

	    v = cover_buf[col];
	    if (usecats)
		sscanf(Rast_get_c_cat((CELL *) &v, &cats), "%lf", &v);

	    if (count)
		count[n]++;
	    if (sum)
		sum[n] += v;
	    if (sum2)
		sum2[n] += v * v;
	    if (sum3)
		sum3[n] += v * v * v;
	    if (sum4)
		sum4[n] += v * v * v * v;
	    if (min && min[n] > v)
		min[n] = v;
	    if (max && max[n] < v)
		max[n] = v;
	}

	G_percent(row, rows, 2);
    }

    G_percent(row, rows, 2);

    result = G_calloc(ncats, sizeof(DCELL));

    switch (method) {
    case ADEV:
    case VARIANCE2:
    case STDDEV2:
    case SKEWNESS2:
    case KURTOSIS2:
	mean = G_calloc(ncats, sizeof(DCELL));
	for (i = 0; i < ncats; i++)
	    mean[i] = sum[i] / count[i];
	G_free(sum);
	break;
    }

    switch (method) {
    case ADEV:
	sumu = G_calloc(ncats, sizeof(DCELL));
	break;
    case VARIANCE2:
    case STDDEV2:
	sum2 = G_calloc(ncats, sizeof(DCELL));
	break;
    case SKEWNESS2:
	sum2 = G_calloc(ncats, sizeof(DCELL));
	sum3 = G_calloc(ncats, sizeof(DCELL));
	break;
    case KURTOSIS2:
	sum2 = G_calloc(ncats, sizeof(DCELL));
	sum4 = G_calloc(ncats, sizeof(DCELL));
	break;
    }

    if (mean) {
	G_message(_("Second pass"));

	for (row = 0; row < rows; row++) {
	    Rast_get_c_row(base_fd, base_buf, row);
	    Rast_get_d_row(cover_fd, cover_buf, row);

	    for (col = 0; col < cols; col++) {
		int n;
		DCELL v, d;

		if (Rast_is_c_null_value(&base_buf[col]))
		    continue;
		if (Rast_is_d_null_value(&cover_buf[col]))
		    continue;

		n = base_buf[col] - mincat;

		if (n < 0 || n >= ncats)
		    continue;

		v = cover_buf[col];
		if (usecats)
		    sscanf(Rast_get_c_cat((CELL *) &v, &cats), "%lf", &v);
		d = v - mean[n];

		if (sumu)
		    sumu[n] += fabs(d);
		if (sum2)
		    sum2[n] += d * d;
		if (sum3)
		    sum3[n] += d * d * d;
		if (sum4)
		    sum4[n] += d * d * d * d;
	    }

	    G_percent(row, rows, 2);
	}

	G_percent(row, rows, 2);
	G_free(mean);
	G_free(cover_buf);
    }

    switch (method) {
    case COUNT:
	for (i = 0; i < ncats; i++)
	    result[i] = count[i];
	break;
    case SUM:
	for (i = 0; i < ncats; i++)
	    result[i] = sum[i];
	break;
    case AVERAGE:
	for (i = 0; i < ncats; i++)
	    result[i] = sum[i] / count[i];
	break;
    case MIN:
	for (i = 0; i < ncats; i++)
	    result[i] = min[i];
	break;
    case MAX:
	for (i = 0; i < ncats; i++)
	    result[i] = max[i];
	break;
    case RANGE:
	for (i = 0; i < ncats; i++)
	    result[i] = max[i] - min[i];
	break;
    case VARIANCE1:
	for (i = 0; i < ncats; i++) {
	    double n = count[i];
	    double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
	    result[i] = var;
	}
	break;
    case STDDEV1:
	for (i = 0; i < ncats; i++) {
	    double n = count[i];
	    double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
	    result[i] = sqrt(var);
	}
	break;
    case SKEWNESS1:
	for (i = 0; i < ncats; i++) {
	    double n = count[i];
	    double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
	    double skew = (sum3[i] / n
			   - 3 * sum[i] * sum2[i] / (n * n)
			   + 2 * sum[i] * sum[i] * sum[i] / (n * n * n))
		/ (pow(var, 1.5));
	    result[i] = skew;
	}
	break;
    case KURTOSIS1:
	for (i = 0; i < ncats; i++) {
	    double n = count[i];
	    double var = (sum2[i] - sum[i] * sum[i] / n) / (n - 1);
	    double kurt = (sum4[i] / n
			   - 4 * sum[i] * sum3[i] / (n * n)
			   + 6 * sum[i] * sum[i] * sum2[i] / (n * n * n)
			   - 3 * sum[i] * sum[i] * sum[i] * sum[i] / (n * n * n * n))
		/ (var * var) - 3;
	    result[i] = kurt;
	}
	break;
    case ADEV:
	for (i = 0; i < ncats; i++)
	    result[i] = sumu[i] / count[i];
	break;
    case VARIANCE2:
	for (i = 0; i < ncats; i++)
	    result[i] = sum2[i] / (count[i] - 1);
	break;
    case STDDEV2:
	for (i = 0; i < ncats; i++)
	    result[i] = sqrt(sum2[i] / (count[i] - 1));
	break;
    case SKEWNESS2:
	for (i = 0; i < ncats; i++) {
	    double n = count[i];
	    double var = sum2[i] / (n - 1);
	    double sdev = sqrt(var);
	    result[i] = sum3[i] / (sdev * sdev * sdev) / n;
	}
	G_free(count);
	G_free(sum2);
	G_free(sum3);
	break;
    case KURTOSIS2:
	for (i = 0; i < ncats; i++) {
	    double n = count[i];
	    double var = sum2[i] / (n - 1);
	    result[i] = sum4[i] / (var * var) / n - 3;
	}
	G_free(count);
	G_free(sum2);
	G_free(sum4);
	break;
    }

    if (reclass) {
	const char *tempfile = G_tempfile();
	char *input_arg = G_malloc(strlen(basemap) + 7);
	char *output_arg = G_malloc(strlen(output) + 8);
	char *rules_arg = G_malloc(strlen(tempfile) + 7);
	FILE *fp;

	G_message(_("Generating reclass map"));

	sprintf(input_arg, "input=%s", basemap);
	sprintf(output_arg, "output=%s", output);
	sprintf(rules_arg, "rules=%s", tempfile);

	fp = fopen(tempfile, "w");
	if (!fp)
	    G_fatal_error(_("Unable to open temporary file"));

	for (i = 0; i < ncats; i++)
	    fprintf(fp, "%d = %d %f\n", mincat + i, mincat + i, result[i]);

	fclose(fp);

	G_spawn("r.reclass", "r.reclass", input_arg, output_arg, rules_arg, NULL);
    }
    else {
	int out_fd;
	DCELL *out_buf;
	struct Colors colors;

	G_message(_("Writing output map"));

	out_fd = Rast_open_fp_new(output);

	out_buf = Rast_allocate_d_buf();

	for (row = 0; row < rows; row++) {
	    Rast_get_c_row(base_fd, base_buf, row);

	    for (col = 0; col < cols; col++)
		if (Rast_is_c_null_value(&base_buf[col]))
		    Rast_set_d_null_value(&out_buf[col], 1);
		else
		    out_buf[col] = result[base_buf[col] - mincat];

	    Rast_put_d_row(out_fd, out_buf);

	    G_percent(row, rows, 2);
	}

	G_percent(row, rows, 2);

	Rast_close(out_fd);

	if (Rast_read_colors(covermap, "", &colors) > 0)
	    Rast_write_colors(output, G_mapset(), &colors);
    }

    return 0;
}
Example #24
0
int main(int argc, char *argv[])
{
    struct Cell_head cellhd;
    /* buffer for in, tmp and out raster */
    void *inrast_Rn, *inrast_g0;
    void *inrast_z0m, *inrast_t0dem;
    DCELL *outrast;
    int nrows, ncols;
    int row, col;
    int row_wet, col_wet;
    int row_dry, col_dry;
    double m_row_wet, m_col_wet;
    double m_row_dry, m_col_dry;
    int infd_Rn, infd_g0;
    int infd_z0m, infd_t0dem;
    int outfd;
    char *Rn, *g0;
    char *z0m, *t0dem;
    char *h0;

    double ustar, ea;
    struct History history;
    struct GModule *module;
    struct Option *input_Rn, *input_g0;
    struct Option *input_z0m, *input_t0dem, *input_ustar;
    struct Option *input_ea, *output;
    struct Option *input_row_wet, *input_col_wet;
    struct Option *input_row_dry, *input_col_dry;
    struct Flag *flag2, *flag3;
    /********************************/
    double xp, yp;
    double xmin, ymin;
    double xmax, ymax;
    double stepx, stepy;
    double latitude, longitude;
    int rowDry, colDry, rowWet, colWet;
    /********************************/
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("energy balance"));
    G_add_keyword(_("soil moisture"));
    G_add_keyword(_("evaporative fraction"));
    G_add_keyword(_("SEBAL"));
    module->description = _("Computes sensible heat flux iteration SEBAL 01.");

    /* Define different options */
    input_Rn = G_define_standard_option(G_OPT_R_INPUT);
    input_Rn->key = "netradiation";
    input_Rn->description =
	_("Name of instantaneous Net Radiation raster map [W/m2]");

    input_g0 = G_define_standard_option(G_OPT_R_INPUT);
    input_g0->key = "soilheatflux";
    input_g0->description =
	_("Name of instantaneous soil heat flux raster map [W/m2]");

    input_z0m = G_define_standard_option(G_OPT_R_INPUT);
    input_z0m->key = "aerodynresistance";
    input_z0m->description =
	_("Name of aerodynamic resistance to heat momentum raster map [s/m]");

    input_t0dem = G_define_standard_option(G_OPT_R_INPUT);
    input_t0dem->key = "temperaturemeansealevel";
    input_t0dem->description =
	_("Name of altitude corrected surface temperature raster map [K]");

    input_ustar = G_define_option();
    input_ustar->key = "frictionvelocitystar";
    input_ustar->type = TYPE_DOUBLE;
    input_ustar->required = YES;
    input_ustar->gisprompt = "old,value";
    input_ustar->answer = "0.32407";
    input_ustar->description = _("Value of the height independent friction velocity (u*) [m/s]");
    input_ustar->guisection = _("Parameters");

    input_ea = G_define_option();
    input_ea->key = "vapourpressureactual";
    input_ea->type = TYPE_DOUBLE;
    input_ea->required = YES;
    input_ea->answer = "1.511";
    input_ea->description = _("Value of the actual vapour pressure (e_act) [KPa]");
    input_ea->guisection = _("Parameters");

    input_row_wet = G_define_option();
    input_row_wet->key = "row_wet_pixel";
    input_row_wet->type = TYPE_DOUBLE;
    input_row_wet->required = NO;
    input_row_wet->description = _("Row value of the wet pixel");
    input_row_wet->guisection = _("Parameters");

    input_col_wet = G_define_option();
    input_col_wet->key = "column_wet_pixel";
    input_col_wet->type = TYPE_DOUBLE;
    input_col_wet->required = NO;
    input_col_wet->description = _("Column value of the wet pixel");
    input_col_wet->guisection = _("Parameters");

    input_row_dry = G_define_option();
    input_row_dry->key = "row_dry_pixel";
    input_row_dry->type = TYPE_DOUBLE;
    input_row_dry->required = NO;
    input_row_dry->description = _("Row value of the dry pixel");
    input_row_dry->guisection = _("Parameters");

    input_col_dry = G_define_option();
    input_col_dry->key = "column_dry_pixel";
    input_col_dry->type = TYPE_DOUBLE;
    input_col_dry->required = NO;
    input_col_dry->description = _("Column value of the dry pixel");
    input_col_dry->guisection = _("Parameters");

    output = G_define_standard_option(G_OPT_R_OUTPUT);
    output->description = _("Name for output sensible heat flux raster map [W/m2]");
    
    /* Define the different flags */
    flag2 = G_define_flag();
    flag2->key = 'a';
    flag2->description = _("Automatic wet/dry pixel (careful!)");

    flag3 = G_define_flag();
    flag3->key = 'c';
    flag3->description =
	_("Dry/Wet pixels coordinates are in image projection, not row/col");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    Rn = input_Rn->answer;
    g0 = input_g0->answer;
    z0m = input_z0m->answer;
    t0dem = input_t0dem->answer;

    h0 = output->answer;

    ustar = atof(input_ustar->answer);
    ea = atof(input_ea->answer);

    if(input_row_wet->answer&&
    input_col_wet->answer&&
    input_row_dry->answer&&
    input_col_dry->answer){
        m_row_wet = atof(input_row_wet->answer);
        m_col_wet = atof(input_col_wet->answer);
        m_row_dry = atof(input_row_dry->answer);
        m_col_dry = atof(input_col_dry->answer);
    }
    if ((!input_row_wet->answer || !input_col_wet->answer ||
	 !input_row_dry->answer || !input_col_dry->answer) &&
	!flag2->answer) {
	G_fatal_error(_("Either auto-mode either wet/dry pixels coordinates should be provided!"));
    }
    if (flag3->answer) {
	G_message(_("Manual wet/dry pixels in image coordinates"));
	G_message(_("Wet Pixel=> x:%f y:%f"), m_col_wet, m_row_wet);
	G_message(_("Dry Pixel=> x:%f y:%f"), m_col_dry, m_row_dry);
    }
    else {
        if(flag2->answer)
	    G_message(_("Automatic mode selected"));
	else {
	    G_message(_("Wet Pixel=> row:%.0f col:%.0f"), m_row_wet, m_col_wet);
	    G_message(_("Dry Pixel=> row:%.0f col:%.0f"), m_row_dry, m_col_dry);
	}
    }
    /* check legal output name */
    if (G_legal_filename(h0) < 0)
	G_fatal_error(_("<%s> is an illegal name"), h0);

    infd_Rn = Rast_open_old(Rn, "");
    infd_g0 = Rast_open_old(g0, "");
    infd_z0m = Rast_open_old(z0m, "");
    infd_t0dem = Rast_open_old(t0dem, "");

    Rast_get_cellhd(Rn, "", &cellhd);
    Rast_get_cellhd(g0, "", &cellhd);
    Rast_get_cellhd(z0m, "", &cellhd);
    Rast_get_cellhd(t0dem, "", &cellhd);

    /* Allocate input buffer */
    inrast_Rn = Rast_allocate_d_buf();
    inrast_g0 = Rast_allocate_d_buf();
    inrast_z0m = Rast_allocate_d_buf();
    inrast_t0dem = Rast_allocate_d_buf();

    /***************************************************/
    /* Setup pixel location variables */
    /***************************************************/
    stepx = cellhd.ew_res;
    stepy = cellhd.ns_res;

    xmin = cellhd.west;
    xmax = cellhd.east;
    ymin = cellhd.south;
    ymax = cellhd.north;

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /***************************************************/
    /* Allocate output buffer */
    /***************************************************/
    outrast = Rast_allocate_d_buf();
    outfd = Rast_open_new(h0, DCELL_TYPE);
    /***************************************************/
    /* Allocate memory for temporary images            */
    double **d_Roh, **d_Rah;

    if ((d_Roh = G_alloc_matrix(nrows, ncols)) == NULL)
	G_message("Unable to allocate memory for temporary d_Roh image");
    if ((d_Rah = G_alloc_matrix(nrows, ncols)) == NULL)
	G_message("Unable to allocate memory for temporary d_Rah image");
    /***************************************************/

    /* MANUAL T0DEM WET/DRY PIXELS */
    DCELL d_Rn_dry,d_g0_dry;
    DCELL d_t0dem_dry,d_t0dem_wet;

    if (flag2->answer) {
	/* Process tempk min / max pixels */
	/* Internal use only */
	DCELL d_Rn_wet,d_g0_wet;
	DCELL d_Rn,d_g0,d_h0;
	DCELL t0dem_min,t0dem_max;
        /*********************/
	for (row = 0; row < nrows; row++) {
	    DCELL d_t0dem;
	    G_percent(row, nrows, 2);
	    Rast_get_d_row(infd_t0dem,inrast_t0dem,row);
	    Rast_get_d_row(infd_Rn,inrast_Rn,row);
	    Rast_get_d_row(infd_g0,inrast_g0,row);
	    /*process the data */
	    for (col = 0; col < ncols; col++) {
		d_t0dem = ((DCELL *) inrast_t0dem)[col];
		d_Rn = ((DCELL *) inrast_Rn)[col];
		d_g0 = ((DCELL *) inrast_g0)[col];
		if (Rast_is_d_null_value(&d_t0dem) ||
		    Rast_is_d_null_value(&d_Rn) || 
                    Rast_is_d_null_value(&d_g0)) {
		    /* do nothing */
		}
		else {
		    if (d_t0dem <= 250.0) {
			/* do nothing */
		    }
		    else {
			d_h0 = d_Rn - d_g0;
			if (d_t0dem < t0dem_min &&
			    d_Rn > 0.0 && d_g0 > 0.0 && d_h0 > 0.0 &&
			    d_h0 < 100.0) {
			    t0dem_min = d_t0dem;
			    d_t0dem_wet = d_t0dem;
			    d_Rn_wet = d_Rn;
			    d_g0_wet = d_g0;
			    m_col_wet = col;
			    m_row_wet = row;
			}
			if (d_t0dem > t0dem_max &&
			    d_Rn > 0.0 && d_g0 > 0.0 && d_h0 > 100.0 &&
			    d_h0 < 500.0) {
			    t0dem_max = d_t0dem;
			    d_t0dem_dry = d_t0dem;
			    d_Rn_dry = d_Rn;
			    d_g0_dry = d_g0;
			    m_col_dry = col;
			    m_row_dry = row;
			}
		    }
		}
	    }
	}
	G_message("row_wet=%d\tcol_wet=%d", row_wet, col_wet);
	G_message("row_dry=%d\tcol_dry=%d", row_dry, col_dry);
	G_message("g0_wet=%f", d_g0_wet);
	G_message("Rn_wet=%f", d_Rn_wet);
	G_message("LE_wet=%f", d_Rn_wet - d_g0_wet);
	G_message("t0dem_dry=%f", d_t0dem_dry);
	G_message("rnet_dry=%f", d_Rn_dry);
	G_message("g0_dry=%f", d_g0_dry);
	G_message("h0_dry=%f", d_Rn_dry - d_g0_dry);
    }/* END OF FLAG2 */

    G_message("Passed here");

    /* MANUAL T0DEM WET/DRY PIXELS */
    /*DRY PIXEL */
    if (flag3->answer) {
	/*Calculate coordinates of row/col from projected ones */
	row = (int)((ymax - m_row_dry) / (double)stepy);
	col = (int)((m_col_dry - xmin) / (double)stepx);
	G_message("Dry Pixel | row:%i col:%i", row, col);
    }
    else {
	row = (int)m_row_dry;
	col = (int)m_col_dry;
	G_message("Dry Pixel | row:%i col:%i", row, col);
    }
    rowDry = row;
    colDry = col;
    Rast_get_d_row(infd_Rn, inrast_Rn, row);
    Rast_get_d_row(infd_g0, inrast_g0, row);
    Rast_get_d_row(infd_t0dem, inrast_t0dem, row);
    d_Rn_dry = ((DCELL *) inrast_Rn)[col];
    d_g0_dry = ((DCELL *) inrast_g0)[col];
    d_t0dem_dry = ((DCELL *) inrast_t0dem)[col];
    /*WET PIXEL */
    if (flag3->answer) {
	/*Calculate coordinates of row/col from projected ones */
	row = (int)((ymax - m_row_wet) / (double)stepy);
	col = (int)((m_col_wet - xmin) / (double)stepx);
	G_message("Wet Pixel | row:%i col:%i", row, col);
    }
    else {
	row = m_row_wet;
	col = m_col_wet;
	G_message("Wet Pixel | row:%i col:%i", row, col);
    }
    rowWet = row;
    colWet = col;
    Rast_get_d_row(infd_t0dem, inrast_t0dem, row);
    d_t0dem_wet = ((DCELL *) inrast_t0dem)[col];
    /* END OF MANUAL WET/DRY PIXELS */
    double h_dry;

    h_dry = d_Rn_dry - d_g0_dry;
    G_message("h_dry = %f", h_dry);
    G_message("t0dem_dry = %f", d_t0dem_dry);
    G_message("t0dem_wet = %f", d_t0dem_wet);
    DCELL d_rah_dry;
    DCELL d_roh_dry;

    /* INITIALIZATION */
    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem,d_z0m;
	DCELL d_rah1,d_roh1;
	DCELL d_u5;
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m, inrast_z0m, row);
	Rast_get_d_row(infd_t0dem, inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		/* do nothing */
		d_Roh[row][col] = -999.9;
		d_Rah[row][col] = -999.9;
	    }
	    else {
		d_u5 = (ustar / 0.41) * log(5 / d_z0m);
		d_rah1=(1/(d_u5*pow(0.41,2)))*log(5/d_z0m)*log(5/(d_z0m*0.1));
		d_roh1=((998-ea)/(d_t0dem*2.87))+(ea/(d_t0dem*4.61));
		if (d_roh1 > 5)  d_roh1 = 1.0;
		else d_roh1=((1000-4.65)/(d_t0dem*2.87))+(4.65/(d_t0dem*4.61));
		if (row == rowDry && col == colDry) {	/*collect dry pix info */
		    d_rah_dry = d_rah1;
		    d_roh_dry = d_roh1;
		    G_message("d_rah_dry=%f d_roh_dry=%f",d_rah_dry,d_roh_dry);
		}
		d_Roh[row][col] = d_roh1;
		d_Rah[row][col] = d_rah1;
	    }
	}
    }
    DCELL d_dT_dry;

    /*Calculate dT_dry */
    d_dT_dry = (h_dry * d_rah_dry) / (1004 * d_roh_dry);
    double a, b;

    /*Calculate coefficients for next dT equation */
    /*a = 1.0/ ((d_dT_dry-0.0) / (d_t0dem_dry-d_t0dem_wet)); */
    /*b = ( a * d_t0dem_wet ) * (-1.0); */
    double sumx = d_t0dem_wet + d_t0dem_dry;
    double sumy = d_dT_dry + 0.0;
    double sumx2 = pow(d_t0dem_wet, 2) + pow(d_t0dem_dry, 2);
    double sumxy = (d_t0dem_wet * 0.0) + (d_t0dem_dry * d_dT_dry);
    a = (sumxy - ((sumx * sumy) / 2.0)) / (sumx2 - (pow(sumx, 2) / 2.0));
    b = (sumy - (a * sumx)) / 2.0;
    G_message("d_dT_dry=%f", d_dT_dry);
    G_message("dT1=%f * t0dem + (%f)", a, b);
    DCELL d_h_dry;

    /* ITERATION 1 */
    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem,d_z0m;
	DCELL d_h1,d_rah1,d_rah2,d_roh1;
	DCELL d_L,d_x,d_psih,d_psim;
	DCELL d_u5;
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m, inrast_z0m, row);
	Rast_get_d_row(infd_t0dem, inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    d_rah1 = d_Rah[row][col];
	    d_roh1 = d_Roh[row][col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		/* do nothing */
	    }
	    else {
		if (d_rah1 < 1.0) 
		    d_h1 = 0.0;
		else 
		    d_h1 = (1004 * d_roh1) * (a * d_t0dem + b) / d_rah1;
		d_L =-1004*d_roh1*pow(ustar,3)*d_t0dem/(d_h1*9.81*0.41);
		d_x = pow((1-16*(5/d_L)),0.25);
		d_psim =2*log((1+d_x)/2)+log((1+pow(d_x,2))/2)-2*atan(d_x)+0.5*M_PI;
		d_psih =2*log((1+pow(d_x,2))/2);
		d_u5 =(ustar/0.41)*log(5/d_z0m);
		d_rah2 = (1/(d_u5*pow(0.41,2)))*log((5/d_z0m)-d_psim)
                        *log((5/(d_z0m*0.1))-d_psih);
		if (row == rowDry && col == colDry) {/*collect dry pix info */
		    d_rah_dry = d_rah2;
		    d_h_dry = d_h1;
		}
		d_Rah[row][col] = d_rah1;
	    }
	}
    }

    /*Calculate dT_dry */
    d_dT_dry = (d_h_dry * d_rah_dry) / (1004 * d_roh_dry);
    /*Calculate coefficients for next dT equation */
    /*      a = (d_dT_dry-0)/(d_t0dem_dry-d_t0dem_wet); */
    /*      b = (-1.0) * ( a * d_t0dem_wet ); */
    /*      G_message("d_dT_dry=%f",d_dT_dry); */
    /*      G_message("dT2=%f * t0dem + (%f)", a, b); */
    sumx = d_t0dem_wet + d_t0dem_dry;
    sumy = d_dT_dry + 0.0;
    sumx2 = pow(d_t0dem_wet, 2) + pow(d_t0dem_dry, 2);
    sumxy = (d_t0dem_wet * 0.0) + (d_t0dem_dry * d_dT_dry);
    a = (sumxy - ((sumx * sumy) / 2.0)) / (sumx2 - (pow(sumx, 2) / 2.0));
    b = (sumy - (a * sumx)) / 2.0;
    G_message("d_dT_dry=%f", d_dT_dry);
    G_message("dT1=%f * t0dem + (%f)", a, b);

    /* ITERATION 2 */
    /***************************************************/
    /***************************************************/
    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem;
	DCELL d_z0m;
	DCELL d_rah2;
	DCELL d_rah3;
	DCELL d_roh1;
	DCELL d_h2;
	DCELL d_L;
	DCELL d_x;
	DCELL d_psih;
	DCELL d_psim;
	DCELL d_u5;
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m,inrast_z0m,row);
	Rast_get_d_row(infd_t0dem,inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    d_rah2 = d_Rah[row][col];
	    d_roh1 = d_Roh[row][col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		/* do nothing */
	    }
	    else {
		if (d_rah2 < 1.0) {
		    d_h2 = 0.0;
		}
		else {
		    d_h2 =(1004*d_roh1)*(a*d_t0dem+b)/d_rah2;
		}
		d_L =-1004*d_roh1*pow(ustar,3)*d_t0dem/(d_h2*9.81*0.41);
		d_x = pow((1 - 16 * (5 / d_L)), 0.25);
		d_psim =2*log((1+d_x)/2)+log((1+pow(d_x,2))/2)-
		    2*atan(d_x)+0.5*M_PI;
		d_psih =2*log((1+pow(d_x,2))/2);
		d_u5 =(ustar/0.41)*log(5/d_z0m);
		d_rah3=(1/(d_u5*pow(0.41,2)))*log((5/d_z0m)-d_psim)*
                       log((5/(d_z0m*0.1))-d_psih);
		if (row == rowDry && col == colDry) {/*collect dry pix info */
		    d_rah_dry = d_rah2;
		    d_h_dry = d_h2;
		}
		d_Rah[row][col] = d_rah2;
	    }
	}
    }

    /*Calculate dT_dry */
    d_dT_dry = (d_h_dry * d_rah_dry) / (1004 * d_roh_dry);
    /*Calculate coefficients for next dT equation */
    /*      a = (d_dT_dry-0)/(d_t0dem_dry-d_t0dem_wet); */
    /*      b = (-1.0) * ( a * d_t0dem_wet ); */
    /*      G_message("d_dT_dry=%f",d_dT_dry); */
    /*      G_message("dT3=%f * t0dem + (%f)", a, b); */
    sumx = d_t0dem_wet + d_t0dem_dry;
    sumy = d_dT_dry + 0.0;
    sumx2 = pow(d_t0dem_wet, 2) + pow(d_t0dem_dry, 2);
    sumxy = (d_t0dem_wet * 0.0) + (d_t0dem_dry * d_dT_dry);
    a = (sumxy - ((sumx * sumy) / 2.0)) / (sumx2 - (pow(sumx, 2) / 2.0));
    b = (sumy - (a * sumx)) / 2.0;
    G_message("d_dT_dry=%f", d_dT_dry);
    G_message("dT1=%f * t0dem + (%f)", a, b);

    /* ITERATION 3 */
    /***************************************************/
    /***************************************************/

    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem;
	DCELL d_z0m;
	DCELL d_rah3;
	DCELL d_roh1;
	DCELL d_h3;
	DCELL d_L;
	DCELL d_x;
	DCELL d_psih;
	DCELL d_psim;
	DCELL d;		/* Output pixel */
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m, inrast_z0m, row);
	Rast_get_d_row(infd_t0dem,inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    d_rah3 = d_Rah[row][col];
	    d_roh1 = d_Roh[row][col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		Rast_set_d_null_value(&outrast[col], 1);
	    }
	    else {
		if (d_rah3 < 1.0) {
		    d_h3 = 0.0;
		}
		else {
		    d_h3 = (1004 * d_roh1) * (a * d_t0dem + b) / d_rah3;
		}
		if (d_h3 < 0 && d_h3 > -50) {
		    d_h3 = 0.0;
		}
		if (d_h3 < -50 || d_h3 > 1000) {
		    Rast_set_d_null_value(&outrast[col], 1);
		}
		outrast[col] = d_h3;
	    }
	}
	Rast_put_d_row(outfd, outrast);
    }


    G_free(inrast_z0m);
    Rast_close(infd_z0m);
    G_free(inrast_t0dem);
    Rast_close(infd_t0dem);

    G_free(outrast);
    Rast_close(outfd);

    /* add command line incantation to history file */
    Rast_short_history(h0, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(h0, &history);

    exit(EXIT_SUCCESS);
}
Example #25
0
int main(int argc, char *argv[]) 
{
    int nrows, ncols;
    int row, col;
    char *nameflag;		/*Switch for particular method */
    struct GModule *module;
    struct Option *input1, *input2, *output;
    struct History history;	/*metadata */

    /************************************/ 
    char *result;		/*output raster name */
    int infd_annual_pmm;
    int outfd;
    char *annual_pmm;

    void *inrast_annual_pmm;
    DCELL * outrast;

    /************************************/ 
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("hydrology"));
    G_add_keyword(_("rainfall"));
    G_add_keyword(_("erosion"));
    module->description = _("Computes USLE R factor, Rainfall erosivity index.");
    
    input2 = G_define_standard_option(G_OPT_R_INPUT);
    input2->description = _("Name of annual precipitation raster map [mm/year]");

    output = G_define_standard_option(G_OPT_R_OUTPUT);
    output->description = _("Name for output USLE R raster map [MJ.mm/ha.hr.year]");

    /* Define the different options */ 
    input1 = G_define_option();
    input1->key = "method";
    input1->type = TYPE_STRING;
    input1->required = YES;
    input1->description = _("Name of USLE R equation");
    input1->options = "roose, morgan, foster, elswaify";
    input1->descriptions = _("roose;Roosle (1975);"
			     "morgan;Morgan (1974);"
			     "foster;Foster (1981);"
			     "elswaify;El-Swaify (1985)");
    input1->answer = "morgan";

    /********************/ 
    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    nameflag = input1->answer;
    annual_pmm = input2->answer;
    result = output->answer;
    
    /***************************************************/ 
    infd_annual_pmm = Rast_open_old(annual_pmm, "");
    inrast_annual_pmm = Rast_allocate_d_buf();
    
    /***************************************************/ 
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    outrast = Rast_allocate_d_buf();
    
    /* Create New raster files */ 
    outfd = Rast_open_new(result, DCELL_TYPE);
    
    /* Process pixels */ 
    for (row = 0; row < nrows; row++)
    {
        DCELL d;
	DCELL d_annual_pmm;
	G_percent(row, nrows, 2);
	
	/* read input map */ 
	Rast_get_d_row(infd_annual_pmm, inrast_annual_pmm, row);
	
	/*process the data */ 
	for (col = 0; col < ncols; col++)
	{
	    d_annual_pmm = ((DCELL *) inrast_annual_pmm)[col];
	    if (Rast_is_d_null_value(&d_annual_pmm)) 
		Rast_set_d_null_value(&outrast[col], 1);
	    else 
            {
                /*calculate morgan       */ 
                if (!strcmp(nameflag, "morgan"))
                    d = morgan_1974(d_annual_pmm);
		/*calculate roose        */ 
		if (!strcmp(nameflag, "roose")) 
		    d = roose_1975(d_annual_pmm);
		/*calculate foster       */ 
		if (!strcmp(nameflag, "foster"))
		    d = foster_1981(d_annual_pmm);
		/*calculate elswaify     */ 
		if (!strcmp(nameflag, "elswaify")) 
		    d = elswaify_1985(d_annual_pmm);
		outrast[col] = d ;
	    }
	}
	Rast_put_d_row(outfd, outrast);
    }
    G_free(inrast_annual_pmm);
    Rast_close(infd_annual_pmm);
    G_free(outrast);
    Rast_close(outfd);

    Rast_short_history(result, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(result, &history);

    exit(EXIT_SUCCESS);
}
Example #26
0
int main(int argc, char *argv[])
{
    /* buffer for input-output rasters */
    void *inrast_TEMPKAVG, *inrast_TEMPKMIN, *inrast_TEMPKMAX, *inrast_RNET,
	*inrast_P;
    DCELL *outrast;

    /* pointers to input-output raster files */
    int infd_TEMPKAVG, infd_TEMPKMIN, infd_TEMPKMAX, infd_RNET, infd_P;
    int outfd;

    /* names of input-output raster files */
    char *RNET, *TEMPKAVG, *TEMPKMIN, *TEMPKMAX, *P;
    char *ETa;

    /* input-output cell values */
    DCELL d_tempkavg, d_tempkmin, d_tempkmax, d_rnet, d_p;
    DCELL d_daily_et;

    /* region information and handler */
    struct Cell_head cellhd;
    int nrows, ncols;
    int row, col;

    /* parser stuctures definition */
    struct GModule *module;
    struct Option *input_RNET, *input_TEMPKAVG, *input_TEMPKMIN;
    struct Option *input_TEMPKMAX, *input_P;
    struct Option *output;
    struct Flag *zero, *original, *samani;
    struct Colors color;
    struct History history;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("evapotranspiration"));
    module->description =
	_("Computes evapotranspiration calculation "
	  "modified or original Hargreaves formulation, 2001.");

    /* Define different options */
    input_RNET = G_define_standard_option(G_OPT_R_INPUT);
    input_RNET->key = "netradiation_diurnal";
    input_RNET->description = _("Name of input diurnal net radiation raster map [W/m2/d]");

    input_TEMPKAVG = G_define_standard_option(G_OPT_R_INPUT);
    input_TEMPKAVG->key = "average_temperature";
    input_TEMPKAVG->description = _("Name of input average air temperature raster map [C]");

    input_TEMPKMIN = G_define_standard_option(G_OPT_R_INPUT);
    input_TEMPKMIN->key = "minimum_temperature";
    input_TEMPKMIN->description = _("Name of input minimum air temperature raster map [C]");

    input_TEMPKMAX = G_define_standard_option(G_OPT_R_INPUT);
    input_TEMPKMAX->key = "maximum_temperature";
    input_TEMPKMAX->description = _("Name of input maximum air temperature raster map [C]");

    input_P = G_define_standard_option(G_OPT_R_INPUT);
    input_P->required = NO;
    input_P->key = "precipitation";
    input_P->label =
	_("Name of precipitation raster map [mm/month]");
    input_P->description = _("Disabled for original Hargreaves (1985)");
    
    output = G_define_standard_option(G_OPT_R_OUTPUT);
    output->description = _("Name for output raster map [mm/d]");

    /* Define the different flags */
    zero = G_define_flag();
    zero->key = 'z';
    zero->description = _("Set negative ETa to zero");

    original = G_define_flag();
    original->key = 'h';
    original->description = _("Use original Hargreaves (1985)");

    samani = G_define_flag();
    samani->key = 's';
    samani->description = _("Use Hargreaves-Samani (1985)");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    RNET = input_RNET->answer;
    TEMPKAVG = input_TEMPKAVG->answer;
    TEMPKMIN = input_TEMPKMIN->answer;
    TEMPKMAX = input_TEMPKMAX->answer;
    P = input_P->answer;

    ETa = output->answer;

    /* open pointers to input raster files */
    infd_RNET = Rast_open_old(RNET, "");
    infd_TEMPKAVG = Rast_open_old(TEMPKAVG, "");
    infd_TEMPKMIN = Rast_open_old(TEMPKMIN, "");
    infd_TEMPKMAX = Rast_open_old(TEMPKMAX, "");
    if (!original->answer) {
        infd_P = Rast_open_old(P, "");
    }
    /* read headers of raster files */
    Rast_get_cellhd(RNET, "", &cellhd);
    Rast_get_cellhd(TEMPKAVG, "", &cellhd);
    Rast_get_cellhd(TEMPKMIN, "", &cellhd);
    Rast_get_cellhd(TEMPKMAX, "", &cellhd);
    if (!original->answer) {
	Rast_get_cellhd(P, "", &cellhd);
    }
    /* Allocate input buffer */
    inrast_RNET = Rast_allocate_d_buf();
    inrast_TEMPKAVG = Rast_allocate_d_buf();
    inrast_TEMPKMIN = Rast_allocate_d_buf();
    inrast_TEMPKMAX = Rast_allocate_d_buf();
    if (!original->answer) {
	inrast_P = Rast_allocate_d_buf();
    }
    /* get rows and columns number of the current region */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* allocate output buffer */
    outrast = Rast_allocate_d_buf();

    /* open pointers to output raster files */
    outfd = Rast_open_new(ETa, DCELL_TYPE);

    /* start the loop through cells */
    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);
	/* read input raster row into line buffer */
	Rast_get_d_row(infd_RNET, inrast_RNET, row);
	Rast_get_d_row(infd_TEMPKAVG, inrast_TEMPKAVG, row);
	Rast_get_d_row(infd_TEMPKMIN, inrast_TEMPKMIN, row);
	Rast_get_d_row(infd_TEMPKMAX, inrast_TEMPKMAX, row);
	if (!original->answer) {
	    Rast_get_d_row(infd_P, inrast_P, row);
	}
	for (col = 0; col < ncols; col++) {
	    /* read current cell from line buffer */
            d_rnet = ((DCELL *) inrast_RNET)[col];
            d_tempkavg = ((DCELL *) inrast_TEMPKAVG)[col];
            d_tempkmin = ((DCELL *) inrast_TEMPKMIN)[col];
            d_tempkmax = ((DCELL *) inrast_TEMPKMAX)[col];
	    if (!original->answer) {
		    d_p = ((DCELL *) inrast_P)[col];
	    }
	    if (Rast_is_d_null_value(&d_rnet) ||
		Rast_is_d_null_value(&d_tempkavg) ||
		Rast_is_d_null_value(&d_tempkmin) ||
		Rast_is_d_null_value(&d_tempkmax) || Rast_is_d_null_value(&d_p)) {
		Rast_set_d_null_value(&outrast[col], 1);
	    }
	    else {
		if (original->answer) {
		    d_daily_et =
			mh_original(d_rnet, d_tempkavg, d_tempkmax,
				    d_tempkmin, d_p);
		}
		else if (samani->answer) {
		    d_daily_et =
			mh_samani(d_rnet, d_tempkavg, d_tempkmax, d_tempkmin);
		}
		else {
		    d_daily_et =
			mh_eto(d_rnet, d_tempkavg, d_tempkmax, d_tempkmin,
			       d_p);
		}
		if (zero->answer && d_daily_et < 0)
		    d_daily_et = 0.0;
		/* write calculated ETP to output line buffer */
		outrast[col] = d_daily_et;
	    }
	}
	/* write output line buffer to output raster file */
	Rast_put_d_row(outfd, outrast);
    }
    /* free buffers and close input maps */

    G_free(inrast_RNET);
    G_free(inrast_TEMPKAVG);
    G_free(inrast_TEMPKMIN);
    G_free(inrast_TEMPKMAX);
    if (!original->answer) {
	G_free(inrast_P);
    }
    Rast_close(infd_RNET);
    Rast_close(infd_TEMPKAVG);
    Rast_close(infd_TEMPKMIN);
    Rast_close(infd_TEMPKMAX);
    if (!original->answer) {
	Rast_close(infd_P);
    }
    /* generate color table between -20 and 20 */
    Rast_make_rainbow_colors(&color, -20, 20);
    Rast_write_colors(ETa, G_mapset(), &color);

    Rast_short_history(ETa, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(ETa, &history);

    /* free buffers and close output map */
    G_free(outrast);
    Rast_close(outfd);

    return(EXIT_SUCCESS);
}