Example #1
0
int close_file(char *name)
{
    int cell_file, row, k;
    int row_count, col_count;
    CELL *buf;

    cell_file = Rast_open_c_new(name);

    row_count = n_rows - (PAD << 1);
    col_count = n_cols - (PAD << 1);
    G_message(_("Output file %d rows X %d columns"), row_count, col_count);
    G_message(_("Window %d rows X %d columns"), Rast_window_rows(),
	      Rast_window_cols());

    for (row = 0, k = PAD; row < row_count; row++, k++) {
	buf = get_a_row(k);
	Rast_put_row(cell_file, buf + PAD, CELL_TYPE);
    }
    Rast_close(cell_file);
    Rowio_flush(&row_io);
    close(Rowio_fileno(&row_io));
    Rowio_release(&row_io);
    unlink(work_file_name);

    return 0;
}
Example #2
0
/* Converts the buffer to cell and write it to disk */
static void write_fp_to_cell(int ofd, FCELL *buf)
{
    CELL *cbuf;
    int col;

    cbuf = (CELL *) Rast_allocate_buf(CELL_TYPE);

    for (col = 0; col < Rast_window_cols(); col++)
	cbuf[col] = round_c(buf[col]);
    Rast_put_row(ofd, cbuf, CELL_TYPE);
}
Example #3
0
int
transform(int *datafds, int *outfds, int rows, int cols,
	  double **eigmat, int bands, CELL *mins, CELL *maxs)
{
    int i, j, k, l;
    double *sum;
    CELL **rowbufs;

    sum = G_alloc_vector(bands);
    rowbufs = (CELL**)G_calloc(bands, sizeof(CELL*));


    /* allocate row buffers for each band */
    for (i = 0; i < bands; i++)
	if ((rowbufs[i] = Rast_allocate_c_buf()) == NULL)
	    G_fatal_error(_("Unable to allocate cell buffers."));

    for (i = 0; i < rows; i++) {
	/* get one row of data */
	for (j = 0; j < bands; j++)
	    Rast_get_c_row(datafds[j], rowbufs[j], i);

	/* transform each cell in the row */
	for (l = 0; l < cols; l++) {
	    for (j = 0; j < bands; j++) {
		sum[j] = 0.0;
		for (k = 0; k < bands; k++) {
		    sum[j] += eigmat[j][k] * (double)rowbufs[k][l];
		}
	    }
	    for (j = 0; j < bands; j++) {
		rowbufs[j][l] = (CELL) (sum[j] + 0.5);
		if (rowbufs[j][l] > maxs[j])
		    maxs[j] = rowbufs[j][l];
		if (rowbufs[j][l] < mins[j])
		    mins[j] = rowbufs[j][l];
	    }
	}

	/* output the row of data */
	for (j = 0; j < bands; j++)
	    Rast_put_row(outfds[j], rowbufs[j], CELL_TYPE);
    }
    for (i = 0; i < bands; i++)
	G_free(rowbufs[i]);

    G_free(rowbufs);
    G_free_vector(sum);

    G_message(_("Transform completed.\n"));

    return 0;
}
Example #4
0
void *write_raster(void *buf, const int fd, const RASTER_MAP_TYPE rtype)
{
    void *tmpbuf = buf;
    int rows = Rast_window_rows();
    int i;

    G_message(_("Writing raster map..."));

    for (i = 0; i < rows; i++) {
	G_percent(i, rows, 10);

	Rast_put_row(fd, tmpbuf, rtype);
	tmpbuf =
	    G_incr_void_ptr(tmpbuf, Rast_cell_size(rtype) * Rast_window_cols());
    }

    return tmpbuf;
}
Example #5
0
int output_raster(int fd)
{
    int i, j;

    for (i = 0; i < page.rows; i++, at_row++) {
	switch (format) {

	case USE_CHAR:
	    for (j = 0; j < page.cols; j++) {
		cell[j] = (CELL) raster.c[i][j];
		if (cell[j] == 0)
		    Rast_set_null_value(&cell[j], 1, CELL_TYPE);
	    }
	    break;

	case USE_UCHAR:
	    for (j = 0; j < page.cols; j++) {
		cell[j] = (CELL) raster.u[i][j];
		if (cell[j] == 0)
		    Rast_set_null_value(&cell[j], 1, CELL_TYPE);
	    }
	    break;

	case USE_SHORT:
	    for (j = 0; j < page.cols; j++) {
		cell[j] = (CELL) raster.s[i][j];
		if (cell[j] == 0)
		    Rast_set_null_value(&cell[j], 1, CELL_TYPE);
	    }
	    break;

	case USE_CELL:
	    cell = raster.cell[i];
	    if (cell == 0)
		Rast_set_null_value(&cell, 1, CELL_TYPE);
	    break;
	}

	G_percent(i, page.rows, 2);
	Rast_put_row(fd, cell, CELL_TYPE);
    }
    G_percent(i, page.rows, 2);
    return configure_plot();
}
Example #6
0
int cseg_write_cellfile(CSEG * cseg, char *map_name)
{
    int map_fd;
    GW_LARGE_INT row, nrows;
    CELL *buffer;

    map_fd = Rast_open_c_new(map_name);
    nrows = Rast_window_rows();
    buffer = Rast_allocate_c_buf();
    Segment_flush(&(cseg->seg));
    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 1);
	Segment_get_row(&(cseg->seg), buffer, row);
	Rast_put_row(map_fd, buffer, CELL_TYPE);
    }
    G_percent(row, nrows, 1);    /* finish it */
    G_free(buffer);
    Rast_close(map_fd);
    return 0;
}
Example #7
0
void array2raster(const void* data, const char* name,
		const RASTER_MAP_TYPE type, const int maxr, const int maxc) {
	//ORG void* rast = G_allocate_raster_buf(type);
	void* rast = Rast_allocate_buf(type);
	
	int fd;
	//ORG if ((fd = G_open_raster_new(name, type)) < 0) {
	if ((fd = Rast_open_new(name, type)) < 0) {
		G_fatal_error("Unable to create raster map <%s>", name);
	}

	int row, col;
	for (row = 0; row < maxr; ++row) {
		for (col = 0; col < maxc; ++col) {
			int i = row * maxc + col;
			switch (type) {
			case CELL_TYPE:
				((int*) rast)[col] = ((int*) data)[i];
				break;
			case FCELL_TYPE:
				((float*) rast)[col] = ((float*) data)[i];
				break;
			case DCELL_TYPE:
				((double*) rast)[col] = ((double*) data)[i];
				break;
			}
		}

		//ORG if (G_put_raster_row(fd, rast, type) < 0) {
		//ORG G_fatal_error("Failed writing raster map <%s>", name);
		//ORG }
		Rast_put_row(fd, rast, type);
	}

	G_free(rast);
	//ORG G_close_cell(fd);
	Rast_close(fd);
	 
	return;
}
Example #8
0
int renumber(int in, int out)
{
    CELL *cell, *c;
    int row, col;

    cell = Rast_allocate_c_buf();

    G_message(_("%s: STEP 3 ... "), G_program_name());
    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 5);
	Rast_get_c_row(in, c = cell, row);
	col = ncols;
	while (col-- > 0) {
	    if (!Rast_is_c_null_value(c))
		*c = table[*c];
	    c++;
	}
	Rast_put_row(out, cell, CELL_TYPE);
    }
    G_percent(row, nrows, 10);
    G_free(cell);

    return 0;
}
Example #9
0
int rectify(char *name, char *mapset, struct cache *ebuffer,
            double aver_z, char *result, char *interp_method)
{
    struct Cell_head cellhd;
    int ncols, nrows;
    int row, col;
    double row_idx, col_idx;
    int infd, outfd;
    RASTER_MAP_TYPE map_type;
    int cell_size;
    void *trast, *tptr;
    double n1, e1, z1;
    double nx, ex, nx1, ex1, zx1;
    struct cache *ibuffer;

    select_current_env();
    Rast_get_cellhd(name, mapset, &cellhd);

    /* open the file to be rectified
     * set window to cellhd first to be able to read file exactly
     */
    Rast_set_input_window(&cellhd);
    infd = Rast_open_old(name, mapset);
    map_type = Rast_get_map_type(infd);
    cell_size = Rast_cell_size(map_type);

    ibuffer = readcell(infd, seg_mb_img, 0);

    Rast_close(infd);		/* (pmx) 17 april 2000 */

    G_message(_("Rectify <%s@%s> (location <%s>)"),
	      name, mapset, G_location());
    select_target_env();
    G_set_window(&target_window);
    G_message(_("into  <%s@%s> (location <%s>) ..."),
	      result, G_mapset(), G_location());

    nrows = target_window.rows;
    ncols = target_window.cols;

    if (strcmp(interp_method, "nearest") != 0) {
	map_type = DCELL_TYPE;
	cell_size = Rast_cell_size(map_type);
    }

    /* open the result file into target window
     * this open must be first since we change the window later
     * raster maps open for writing are not affected by window changes
     * but those open for reading are
     */

    outfd = Rast_open_new(result, map_type);
    trast = Rast_allocate_output_buf(map_type);

    for (row = 0; row < nrows; row++) {
	n1 = target_window.north - (row + 0.5) * target_window.ns_res;

	G_percent(row, nrows, 2);

	Rast_set_null_value(trast, ncols, map_type);
	tptr = trast;
	for (col = 0; col < ncols; col++) {
	    DCELL *zp = CPTR(ebuffer, row, col);

	    e1 = target_window.west + (col + 0.5) * target_window.ew_res;
	    
	    /* if target cell has no elevation, set to aver_z */
	    if (Rast_is_d_null_value(zp)) {
		G_warning(_("No elevation available at row = %d, col = %d"), row, col);
		z1 = aver_z;
	    }
	    else
		z1 = *zp;

	    /* target coordinates e1, n1 to photo coordinates ex1, nx1 */
	    I_ortho_ref(e1, n1, z1, &ex1, &nx1, &zx1, &group.camera_ref,
			group.XC, group.YC, group.ZC, group.M);

	    G_debug(5, "\t\tAfter ortho ref (photo cords): ex = %f \t nx =  %f",
		    ex1, nx1);

	    /* photo coordinates ex1, nx1 to image coordinates ex, nx */
	    I_georef(ex1, nx1, &ex, &nx, group.E21, group.N21, 1);

	    G_debug(5, "\t\tAfter geo ref: ex = %f \t nx =  %f", ex, nx);

	    /* convert to row/column indices of source raster */
	    row_idx = (cellhd.north - nx) / cellhd.ns_res;
	    col_idx = (ex - cellhd.west) / cellhd.ew_res;

	    /* resample data point */
	    interpolate(ibuffer, tptr, map_type, &row_idx, &col_idx, &cellhd);

	    tptr = G_incr_void_ptr(tptr, cell_size);
	}
	Rast_put_row(outfd, trast, map_type);
    }
    G_percent(1, 1, 1);

    Rast_close(outfd);		/* (pmx) 17 april 2000 */
    G_free(trast);

    close(ibuffer->fd);
    release_cache(ibuffer);

    Rast_get_cellhd(result, G_mapset(), &cellhd);

    if (cellhd.proj == 0) {	/* x,y imagery */
	cellhd.proj = target_window.proj;
	cellhd.zone = target_window.zone;
    }

    if (target_window.proj != cellhd.proj) {
	cellhd.proj = target_window.proj;
	G_warning(_("Raster map <%s@%s>: projection don't match current settings"),
		  name, mapset);
    }

    if (target_window.zone != cellhd.zone) {
	cellhd.zone = target_window.zone;
	G_warning(_("Raster map <%s@%s>: zone don't match current settings"),
		  name, mapset);
    }

    select_current_env();

    return 1;
}
Example #10
0
int main(int argc, char **argv)
{
    int fe, fd, fm;
    int i, j, type;
    int new_id;
    int nrows, ncols, nbasins;
    int map_id, dir_id, bas_id;
    char map_name[GNAME_MAX], new_map_name[GNAME_MAX];
    const char *tempfile1, *tempfile2, *tempfile3;
    char dir_name[GNAME_MAX];
    char bas_name[GNAME_MAX];

    struct Cell_head window;
    struct GModule *module;
    struct Option *opt1, *opt2, *opt3, *opt4, *opt5;
    struct Flag *flag1;
    int in_type, bufsz;
    void *in_buf;
    CELL *out_buf;
    struct band3 bnd, bndC;

    /*  Initialize the GRASS environment variables */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("hydrology"));
    module->description =
	_("Filters and generates a depressionless elevation map and a "
	  "flow direction map from a given elevation raster map.");
    
    opt1 = G_define_standard_option(G_OPT_R_ELEV);
    
    opt2 = G_define_standard_option(G_OPT_R_OUTPUT);
    opt2->key = "depressionless";
    opt2->description = _("Name for output depressionless elevation raster map");
    
    opt4 = G_define_standard_option(G_OPT_R_OUTPUT);
    opt4->key = "direction";
    opt4->description = _("Name for output flow direction map for depressionless elevation raster map");

    opt5 = G_define_standard_option(G_OPT_R_OUTPUT);
    opt5->key = "areas";
    opt5->required = NO;
    opt5->description = _("Name for output raster map of problem areas");

    opt3 = G_define_option();
    opt3->key = "type";
    opt3->type = TYPE_STRING;
    opt3->required = NO;
    opt3->description =
	_("Aspect direction format");
    opt3->options = "agnps,answers,grass";
    opt3->answer = "grass";
    
    flag1 = G_define_flag();
    flag1->key = 'f';
    flag1->description = _("Find unresolved areas only");
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (flag1->answer && opt5->answer == NULL) {
	G_fatal_error(_("The '%c' flag requires '%s'to be specified"),
		      flag1->key, opt5->key);
    }

    type = 0;
    strcpy(map_name, opt1->answer);
    strcpy(new_map_name, opt2->answer);
    strcpy(dir_name, opt4->answer);
    if (opt5->answer != NULL)
	strcpy(bas_name, opt5->answer);

    if (strcmp(opt3->answer, "agnps") == 0)
	type = 1;
    else if (strcmp(opt3->answer, "answers") == 0)
	type = 2;
    else if (strcmp(opt3->answer, "grass") == 0)
	type = 3;
    
    G_debug(1, "output type (1=AGNPS, 2=ANSWERS, 3=GRASS): %d", type);

    if (type == 3)
	G_verbose_message(_("Direction map is D8 resolution, i.e. 45 degrees"));
    
    /* open the maps and get their file id  */
    map_id = Rast_open_old(map_name, "");

    /* allocate cell buf for the map layer */
    in_type = Rast_get_map_type(map_id);

    /* set the pointers for multi-typed functions */
    set_func_pointers(in_type);

    /* get the window information  */
    G_get_window(&window);
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* buffers for internal use */
    bndC.ns = ncols;
    bndC.sz = sizeof(CELL) * ncols;
    bndC.b[0] = G_calloc(ncols, sizeof(CELL));
    bndC.b[1] = G_calloc(ncols, sizeof(CELL));
    bndC.b[2] = G_calloc(ncols, sizeof(CELL));

    /* buffers for external use */
    bnd.ns = ncols;
    bnd.sz = ncols * bpe();
    bnd.b[0] = G_calloc(ncols, bpe());
    bnd.b[1] = G_calloc(ncols, bpe());
    bnd.b[2] = G_calloc(ncols, bpe());

    in_buf = get_buf();

    tempfile1 = G_tempfile();
    tempfile2 = G_tempfile();
    tempfile3 = G_tempfile();

    fe = open(tempfile1, O_RDWR | O_CREAT, 0666);	/* elev */
    fd = open(tempfile2, O_RDWR | O_CREAT, 0666);	/* dirn */
    fm = open(tempfile3, O_RDWR | O_CREAT, 0666);	/* problems */

    G_message(_("Reading elevation map..."));
    for (i = 0; i < nrows; i++) {
	G_percent(i, nrows, 2);
	get_row(map_id, in_buf, i);
	write(fe, in_buf, bnd.sz);
    }
    G_percent(1, 1, 1);
    Rast_close(map_id);

    /* fill single-cell holes and take a first stab at flow directions */
    G_message(_("Filling sinks..."));
    filldir(fe, fd, nrows, &bnd);

    /* determine flow directions for ambiguous cases */
    G_message(_("Determining flow directions for ambiguous cases..."));
    resolve(fd, nrows, &bndC);

    /* mark and count the sinks in each internally drained basin */
    nbasins = dopolys(fd, fm, nrows, ncols);
    if (flag1->answer) {
	/* determine the watershed for each sink */
	wtrshed(fm, fd, nrows, ncols, 4);

	/* fill all of the watersheds up to the elevation necessary for drainage */
	ppupdate(fe, fm, nrows, nbasins, &bnd, &bndC);

	/* repeat the first three steps to get the final directions */
	G_message(_("Repeat to get the final directions..."));
	filldir(fe, fd, nrows, &bnd);
	resolve(fd, nrows, &bndC);
	nbasins = dopolys(fd, fm, nrows, ncols);
    }

    G_free(bndC.b[0]);
    G_free(bndC.b[1]);
    G_free(bndC.b[2]);

    G_free(bnd.b[0]);
    G_free(bnd.b[1]);
    G_free(bnd.b[2]);

    out_buf = Rast_allocate_c_buf();
    bufsz = ncols * sizeof(CELL);

    lseek(fe, 0, SEEK_SET);
    new_id = Rast_open_new(new_map_name, in_type);

    lseek(fd, 0, SEEK_SET);
    dir_id = Rast_open_new(dir_name, CELL_TYPE);

    if (opt5->answer != NULL) {
	lseek(fm, 0, SEEK_SET);
	bas_id = Rast_open_new(bas_name, CELL_TYPE);

	for (i = 0; i < nrows; i++) {
	    read(fm, out_buf, bufsz);
	    Rast_put_row(bas_id, out_buf, CELL_TYPE);
	}

	Rast_close(bas_id);
	close(fm);
    }

    for (i = 0; i < nrows; i++) {
	read(fe, in_buf, bnd.sz);
	put_row(new_id, in_buf);

	read(fd, out_buf, bufsz);

	for (j = 0; j < ncols; j += 1)
	    out_buf[j] = dir_type(type, out_buf[j]);

	Rast_put_row(dir_id, out_buf, CELL_TYPE);

    }

    Rast_close(new_id);
    close(fe);

    Rast_close(dir_id);
    close(fd);

    G_free(in_buf);
    G_free(out_buf);

    exit(EXIT_SUCCESS);
}
Example #11
0
int main(int argc, char *argv[])
{

    struct GModule *module;
    struct Option *coord, *out_file, *min, *max, *mult;
    struct Flag *flag;
    int *int_buf;
    struct Cell_head w;
    struct History history;
    int cellfile;
    double east, north, pt[2], cur[2], row, col, fmult;
    double fmin, fmax;
    int binary;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("buffer"));
    G_add_keyword(_("geometry"));
    G_add_keyword(_("circle"));
    module->description =
	_("Creates a raster map containing concentric "
	  "rings around a given point.");

    out_file = G_define_standard_option(G_OPT_R_OUTPUT);

    coord = G_define_standard_option(G_OPT_M_COORDS);
    coord->required = YES;
    coord->description = _("The coordinate of the center (east,north)");

    min = G_define_option();
    min->key = "min";
    min->type = TYPE_DOUBLE;
    min->required = NO;
    min->description = _("Minimum radius for ring/circle map (in meters)");

    max = G_define_option();
    max->key = "max";
    max->type = TYPE_DOUBLE;
    max->required = NO;
    max->description = _("Maximum radius for ring/circle map (in meters)");

    mult = G_define_option();
    mult->key = "multiplier";
    mult->type = TYPE_DOUBLE;
    mult->required = NO;
    mult->description = _("Data value multiplier");

    flag = G_define_flag();
    flag->key = 'b';
    flag->description = _("Generate binary raster map");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_scan_easting(coord->answers[0], &east, G_projection());
    G_scan_northing(coord->answers[1], &north, G_projection());
    pt[0] = east;
    pt[1] = north;

    fmult = 1.0;

    if (min->answer)
	sscanf(min->answer, "%lf", &fmin);
    else
	fmin = 0;

    if (max->answer)
	sscanf(max->answer, "%lf", &fmax);
    else
	fmax = HUGE_VAL;

    if (fmin > fmax)
	G_fatal_error(_("Please specify a radius in which min < max"));

    if (mult->answer)
	if (1 != sscanf(mult->answer, "%lf", &fmult))
	    fmult = 1.0;

    /* nonsense test */
    if (flag->answer && (!min->answer && !max->answer))
	G_fatal_error(_("Please specify min and/or max radius when "
			"using the binary flag"));

    if (flag->answer)
	binary = 1;		/* generate binary pattern only, useful for MASK */
    else
	binary = 0;

    G_get_set_window(&w);

    cellfile = Rast_open_c_new(out_file->answer);

    int_buf = (int *)G_malloc(w.cols * sizeof(int));
    {
	int c;

	for (row = 0; row < w.rows; row++) {
	    G_percent(row, w.rows, 2);
	    cur[1] = Rast_row_to_northing(row + 0.5, &w);
	    for (col = 0; col < w.cols; col++) {
		c = col;
		cur[0] = Rast_col_to_easting(col + 0.5, &w);
		int_buf[c] =
		    (int)(distance(pt, cur, fmin, fmax, binary) * fmult);
		if (int_buf[c] == 0)
		    Rast_set_null_value(&int_buf[c], 1, CELL_TYPE);
	    }
	    Rast_put_row(cellfile, int_buf, CELL_TYPE);

	}
    }
    G_free(int_buf);
    Rast_close(cellfile);
    Rast_short_history(out_file->answer, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(out_file->answer, &history);

    G_done_msg(_("Raster map <%s> created."),
	       out_file->answer);
    
    return (EXIT_SUCCESS);
}
Example #12
0
int main(int argc, char *argv[])
{
    int fd, maskfd;
    CELL *cell, *mask;
    struct Cell_head window;
    int row, col;
    double north, east;
    double dx, dy;
    double maxdist, dist;
    double sum1, sum2;
    int i, n, max;
    struct GModule *module;
    struct History history;
    struct
    {
	struct Option *input, *npoints, *output;
    } parm;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    G_add_keyword(_("IDW"));
    module->description = _("Surface generation program.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.npoints = G_define_option();
    parm.npoints->key = "npoints";
    parm.npoints->key_desc = "count";
    parm.npoints->type = TYPE_INTEGER;
    parm.npoints->required = NO;
    parm.npoints->description = _("Number of interpolation points");
    parm.npoints->answer = "12";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* Make sure that the current projection is not lat/long */
    if ((G_projection() == PROJECTION_LL))
	G_fatal_error(_("Lat/long databases not supported by r.surf.idw2. Use r.surf.idw instead!"));

    if (sscanf(parm.npoints->answer, "%d", &search_points) != 1 ||
	search_points < 1)
	G_fatal_error(_("%s=%s - illegal number of interpolation points"),
		      parm.npoints->key, parm.npoints->answer);

    list = (struct Point *)G_calloc(search_points, sizeof(struct Point));

    /* read the elevation points from the input raster map */
    read_cell(parm.input->answer);

    if (npoints == 0)
	G_fatal_error(_("%s: no data points found"), G_program_name());
    nsearch = npoints < search_points ? npoints : search_points;

    /* get the window, allocate buffers, etc. */
    G_get_set_window(&window);

    cell = Rast_allocate_c_buf();

    if ((maskfd = Rast_maskfd()) >= 0)
	mask = Rast_allocate_c_buf();
    else
	mask = NULL;

    fd = Rast_open_c_new(parm.output->answer);

    G_message(_("Interpolating raster map <%s>... %d rows... "),
	      parm.output->answer, window.rows);

    north = window.north - window.ns_res / 2.0;
    for (row = 0; row < window.rows; row++) {
	G_percent(row, window.rows, 2);

	if (mask)
	    Rast_get_c_row(maskfd, mask, row);

	north += window.ns_res;
	east = window.west - window.ew_res / 2.0;
	for (col = 0; col < window.cols; col++) {
	    east += window.ew_res;
	    /* don't interpolate outside of the mask */
	    if (mask && mask[col] == 0) {
		cell[col] = 0;
		continue;
	    }
	    /* fill list with first nsearch points */
	    for (i = 0; i < nsearch; i++) {
		dy = points[i].north - north;
		dx = points[i].east - east;
		list[i].dist = dy * dy + dx * dx;
		list[i].z = points[i].z;
	    }
	    /* find the maximum distance */
	    maxdist = list[max = 0].dist;
	    for (n = 1; n < nsearch; n++) {
		if (maxdist < list[n].dist)
		    maxdist = list[max = n].dist;
	    }
	    /* go thru rest of the points now */
	    for (; i < npoints; i++) {
		dy = points[i].north - north;
		dx = points[i].east - east;
		dist = dy * dy + dx * dx;

		if (dist < maxdist) {
		    /* replace the largest dist */
		    list[max].z = points[i].z;
		    list[max].dist = dist;
		    maxdist = list[max = 0].dist;
		    for (n = 1; n < nsearch; n++) {
			if (maxdist < list[n].dist)
			    maxdist = list[max = n].dist;
		    }
		}
	    }

	    /* interpolate */
	    sum1 = 0.0;
	    sum2 = 0.0;
	    for (n = 0; n < nsearch; n++) {
		if ((dist = list[n].dist)) {
		    sum1 += list[n].z / dist;
		    sum2 += 1.0 / dist;
		}
		else {
		    sum1 = list[n].z;
		    sum2 = 1.0;
		    break;
		}
	    }
	    cell[col] = (CELL) (sum1 / sum2 + 0.5);
	}

	Rast_put_row(fd, cell, CELL_TYPE);
    }

    G_free(points);
    G_free(cell);
    Rast_close(fd);

    /* writing history file */
    Rast_short_history(parm.output->answer, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(parm.output->answer, &history);
    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Example #13
0
int camera_angle(char *name)
{
    int row, col, nrows, ncols;
    double XC = group.XC;
    double YC = group.YC;
    double ZC = group.ZC;
    double c_angle, c_angle_min, c_alt, c_az, slope, aspect;
    double radians_to_degrees = 180.0 / M_PI;
    /* double degrees_to_radians = M_PI / 180.0; */
    DCELL e1, e2, e3, e4, e5, e6, e7, e8, e9;
    double factor, V, H, dx, dy, dz, key;
    double north, south, east, west, ns_med;
    FCELL *fbuf0, *fbuf1, *fbuf2, *tmpbuf, *outbuf;
    int elevfd, outfd;
    struct Cell_head cellhd;
    struct Colors colr;
    FCELL clr_min, clr_max;
    struct History hist;
    char *type;

    G_message(_("Calculating camera angle to local surface..."));
    
    select_target_env();
    
    /* align target window to elevation map, otherwise we get artefacts
     * like in r.slope.aspect -a */
     
    Rast_get_cellhd(elev_name, elev_mapset, &cellhd);

    Rast_align_window(&target_window, &cellhd);
    Rast_set_window(&target_window);
    
    elevfd = Rast_open_old(elev_name, elev_mapset);
    if (elevfd < 0) {
	G_fatal_error(_("Could not open elevation raster"));
	return 1;
    }

    nrows = target_window.rows;
    ncols = target_window.cols;
    
    outfd = Rast_open_new(name, FCELL_TYPE);
    fbuf0 = Rast_allocate_buf(FCELL_TYPE);
    fbuf1 = Rast_allocate_buf(FCELL_TYPE);
    fbuf2 = Rast_allocate_buf(FCELL_TYPE);
    outbuf = Rast_allocate_buf(FCELL_TYPE);
    
    /* give warning if location units are different from meters and zfactor=1 */
    factor = G_database_units_to_meters_factor();
    if (factor != 1.0)
	G_warning(_("Converting units to meters, factor=%.6f"), factor);

    G_begin_distance_calculations();
    north = Rast_row_to_northing(0.5, &target_window);
    ns_med = Rast_row_to_northing(1.5, &target_window);
    south = Rast_row_to_northing(2.5, &target_window);
    east = Rast_col_to_easting(2.5, &target_window);
    west = Rast_col_to_easting(0.5, &target_window);
    V = G_distance(east, north, east, south) * 4;
    H = G_distance(east, ns_med, west, ns_med) * 4;
    
    c_angle_min = 90;
    Rast_get_row(elevfd, fbuf1, 0, FCELL_TYPE);
    Rast_get_row(elevfd, fbuf2, 1, FCELL_TYPE);

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);
	
	Rast_set_null_value(outbuf, ncols, FCELL_TYPE);

	/* first and last row */
	if (row == 0 || row == nrows - 1) {
	    Rast_put_row(outfd, outbuf, FCELL_TYPE);
	    continue;
	}
	
	tmpbuf = fbuf0;
	fbuf0 = fbuf1;
	fbuf1 = fbuf2;
	fbuf2 = tmpbuf;
	
	Rast_get_row(elevfd, fbuf2, row + 1, FCELL_TYPE);

	north = Rast_row_to_northing(row + 0.5, &target_window);

	for (col = 1; col < ncols - 1; col++) {
	    
	    e1 = fbuf0[col - 1];
	    if (Rast_is_d_null_value(&e1))
		continue;
	    e2 = fbuf0[col];
	    if (Rast_is_d_null_value(&e2))
		continue;
	    e3 = fbuf0[col + 1];
	    if (Rast_is_d_null_value(&e3))
		continue;
	    e4 = fbuf1[col - 1];
	    if (Rast_is_d_null_value(&e4))
		continue;
	    e5 = fbuf1[col];
	    if (Rast_is_d_null_value(&e5))
		continue;
	    e6 = fbuf1[col + 1];
	    if (Rast_is_d_null_value(&e6))
		continue;
	    e7 = fbuf2[col - 1];
	    if (Rast_is_d_null_value(&e7))
		continue;
	    e8 = fbuf2[col];
	    if (Rast_is_d_null_value(&e8))
		continue;
	    e9 = fbuf2[col + 1];
	    if (Rast_is_d_null_value(&e9))
		continue;
	    
	    dx = ((e1 + e4 + e4 + e7) - (e3 + e6 + e6 + e9)) / H;
	    dy = ((e7 + e8 + e8 + e9) - (e1 + e2 + e2 + e3)) / V;
	    
	    /* compute topographic parameters */
	    key = dx * dx + dy * dy;
	    /* slope in radians */
	    slope = atan(sqrt(key));

	    /* aspect in radians */
	    if (key == 0.)
		aspect = 0.;
	    else if (dx == 0) {
		if (dy > 0)
		    aspect = M_PI / 2;
		else
		    aspect = 1.5 * M_PI;
	    }
	    else {
		aspect = atan2(dy, dx);
		if (aspect <= 0.)
		    aspect = 2 * M_PI + aspect;
	    }
	    
	    /* camera altitude angle in radians */
	    east = Rast_col_to_easting(col + 0.5, &target_window);
	    dx = east - XC;
	    dy = north - YC;
	    dz = ZC - e5;
	    c_alt = atan(sqrt(dx * dx + dy * dy) / dz);

	    /* camera azimuth angle in radians */
	    c_az = atan(dy / dx);
	    if (east < XC && north != YC)
		c_az += M_PI;
	    else if (north < YC && east > XC)
		c_az += 2 * M_PI;
		
	    /* camera angle to real ground */
	    /* orthogonal to ground: 90 degrees */
	    /* parallel to ground: 0 degrees */
	    c_angle = asin(cos(c_alt) * cos(slope) - sin(c_alt) * sin(slope) * cos(c_az - aspect));
	    
	    outbuf[col] = c_angle * radians_to_degrees;
	    if (c_angle_min > outbuf[col])
		c_angle_min = outbuf[col];
	}
	Rast_put_row(outfd, outbuf, FCELL_TYPE);
    }
    G_percent(row, nrows, 2);

    Rast_close(elevfd);
    Rast_close(outfd);
    G_free(fbuf0);
    G_free(fbuf1);
    G_free(fbuf2);
    G_free(outbuf);

    type = "raster";
    Rast_short_history(name, type, &hist);
    Rast_command_history(&hist);
    Rast_write_history(name, &hist);
    
    Rast_init_colors(&colr);
    if (c_angle_min < 0) {
	clr_min = (FCELL)((int)(c_angle_min / 10 - 1)) * 10;
	clr_max = 0;
	Rast_add_f_color_rule(&clr_min, 0, 0, 0, &clr_max, 0,
				  0, 0, &colr);
    }
    clr_min = 0;
    clr_max = 10;
    Rast_add_f_color_rule(&clr_min, 0, 0, 0, &clr_max, 255,
			      0, 0, &colr);
    clr_min = 10;
    clr_max = 40;
    Rast_add_f_color_rule(&clr_min, 255, 0, 0, &clr_max, 255,
			      255, 0, &colr);
    clr_min = 40;
    clr_max = 90;
    Rast_add_f_color_rule(&clr_min, 255, 255, 0, &clr_max, 0,
			      255, 0, &colr);

    Rast_write_colors(name, G_mapset(), &colr);

    select_current_env();

    return 1;
}
Example #14
0
int main(int argc, char **argv)
{
    int n, verbose = 1,
	backrow, backcol,
	col, row,
	len, flag,
	srows, scols,
	backrow_fd, backcol_fd, path_fd, in_row_fd, in_col_fd, out_fd;
    const char *current_mapset,
	*search_mapset,
	*path_mapset,
	*backrow_mapset,
	*backcol_mapset, *in_row_file, *in_col_file, *out_file;
    CELL *cell;
    POINT *PRES_PT, *PRESENT_PT, *OLD_PT;
    struct Cell_head window;
    double east, north;
    struct Option *opt1, *opt2, *opt3, *opt4;
    struct Flag *flag1;
    struct GModule *module;

    G_gisinit(argv[0]);

    /* Set description */
    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("fire"));
    G_add_keyword(_("cumulative costs"));
    module->description =
	_("Recursively traces the least cost path backwards to "
	  "cells from which the cumulative cost was determined.");

    opt1 = G_define_option();
    opt1->key = "x_input";
    opt1->type = TYPE_STRING;
    opt1->required = YES;
    opt1->gisprompt = "old,cell,raster";
    opt1->description =
	_("Name of raster map containing back-path easting information");

    opt2 = G_define_option();
    opt2->key = "y_input";
    opt2->type = TYPE_STRING;
    opt2->required = YES;
    opt2->gisprompt = "old,cell,raster";
    opt2->description =
	_("Name of raster map containing back-path northing information");

    opt3 = G_define_option();
    opt3->key = "coordinate";
    opt3->type = TYPE_STRING;
    opt3->multiple = YES;
    opt3->key_desc = "x,y";
    opt3->description =
	_("The map E and N grid coordinates of starting points");

    opt4 = G_define_option();
    opt4->key = "output";
    opt4->type = TYPE_STRING;
    opt4->required = YES;
    opt4->gisprompt = "new,cell,raster";
    opt4->description = _("Name of spread path raster map");

    flag1 = G_define_flag();
    flag1->key = 'v';
    flag1->description = _("Run verbosely");

    /*   Do command line parsing    */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    current_mapset = G_mapset();
    in_row_file = G_tempfile();
    in_col_file = G_tempfile();
    out_file = G_tempfile();

    /*  Get database window parameters      */
    G_get_window(&window);

    verbose = flag1->answer;

    /*  Check if backrow layer exists in data base  */
    search_mapset = "";

    strcpy(backrow_layer, opt2->answer);
    strcpy(backcol_layer, opt1->answer);

    backrow_mapset = G_find_raster(backrow_layer, search_mapset);
    backcol_mapset = G_find_raster(backcol_layer, search_mapset);

    if (backrow_mapset == NULL)
	G_fatal_error("%s - not found", backrow_layer);

    if (backcol_mapset == NULL)
	G_fatal_error("%s - not found", backcol_layer);

    search_mapset = "";

    strcpy(path_layer, opt4->answer);

    path_mapset = G_find_raster(path_layer, search_mapset);

    /*  find number of rows and cols in window    */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    cell = Rast_allocate_c_buf();

    /*  Open back cell layers for reading  */
    backrow_fd = Rast_open_old(backrow_layer, backrow_mapset);
    backcol_fd = Rast_open_old(backcol_layer, backcol_mapset);

    /*   Parameters for map submatrices   */
    len = sizeof(CELL);

    srows = nrows / 4 + 1;
    scols = ncols / 4 + 1;

    if (verbose)
	G_message
	    ("\nReading the input map -%s- and -%s- and creating some temporary files...",
	     backrow_layer, backcol_layer);

    /* Create segmented files for back cell and output layers  */
    in_row_fd = creat(in_row_file, 0666);
    segment_format(in_row_fd, nrows, ncols, srows, scols, len);
    close(in_row_fd);
    in_col_fd = creat(in_col_file, 0666);
    segment_format(in_col_fd, nrows, ncols, srows, scols, len);
    close(in_col_fd);

    out_fd = creat(out_file, 0666);
    segment_format(out_fd, nrows, ncols, srows, scols, len);
    close(out_fd);

    /*   Open initialize and segment all files  */
    in_row_fd = open(in_row_file, 2);
    segment_init(&in_row_seg, in_row_fd, 4);
    in_col_fd = open(in_col_file, 2);
    segment_init(&in_col_seg, in_col_fd, 4);

    out_fd = open(out_file, 2);
    segment_init(&out_seg, out_fd, 4);

    /*   Write the back cell layers in the segmented files, and  
     *   Change UTM coordinates to ROWs and COLUMNs */
    for (row = 0; row < nrows; row++) {
	Rast_get_c_row(backrow_fd, cell, row);

	for (col = 0; col < ncols; col++)
	    if (cell[col] > 0)
		cell[col] =
		    (window.north - cell[col]) / window.ns_res /* - 0.5 */ ;
	    else
		cell[col] = -1;
	segment_put_row(&in_row_seg, cell, row);
	Rast_get_c_row(backcol_fd, cell, row);

	for (col = 0; col < ncols; col++)
	    if (cell[col] > 0)
		cell[col] =
		    (cell[col] - window.west) / window.ew_res /* - 0.5 */ ;
	segment_put_row(&in_col_seg, cell, row);
    }

    /* Convert easting and northing from the command line to row and col */
    if (opt3->answer) {
	for (n = 0; opt3->answers[n] != NULL; n += 2) {
	    G_scan_easting(opt3->answers[n], &east, G_projection());
	    G_scan_northing(opt3->answers[n + 1], &north, G_projection());
	    row = (window.north - north) / window.ns_res;
	    col = (east - window.west) / window.ew_res;
	    /* ignore pt outside window */
	    if (east < window.west || east > window.east ||
		north < window.south || north > window.north) {
		G_warning("Ignoring point outside window: ");
		G_warning("   %.4f,%.4f", east, north);
		continue;
	    }

	    value = (char *)&backrow;
	    segment_get(&in_row_seg, value, row, col);
	    /* ignore pt in no-data area */
	    if (backrow < 0) {
		G_warning("Ignoring point in NO-DATA area :");
		G_warning("   %.4f,%.4f", east, north);
		continue;
	    }
	    value = (char *)&backcol;
	    segment_get(&in_col_seg, value, row, col);

	    insert(&PRESENT_PT, row, col, backrow, backcol);
	}
    }

    /*  Set flag according to input */
    if (path_mapset != NULL) {
	if (head_start_pt == NULL)
	    /*output layer exists and start pts are not given on cmd line */
	    flag = 1;

	/* output layer exists and starting pts are given on cmd line */
	else
	    flag = 2;
    }
    else
	flag = 3;		/* output layer does not previously exist */

    /* If the output layer containing the starting positions */
    /* create a linked list of of them  */
    if (flag == 1) {
	path_fd = Rast_open_old(path_layer, path_mapset);

	/*  Search for the marked starting pts and make list    */
	for (row = 0; row < nrows; row++) {
	    Rast_get_c_row(path_fd, cell, row);

	    for (col = 0; col < ncols; col++) {
		if (cell[col] > 0) {
		    value = (char *)&backrow;
		    segment_get(&in_row_seg, value, row, col);
		    /* ignore pt in no-data area */
		    if (backrow < 0) {
			G_warning("Ignoring point in NO-DATA area:");
			G_warning("   %.4f,%.4f\n",
				  window.west + window.ew_res * (col + 0.5),
				  window.north - window.ns_res * (row + 0.5));
			continue;
		    }
		    value = (char *)&backcol;
		    segment_get(&in_col_seg, value, row, col);
		    insert(&PRESENT_PT, row, col, backrow, backcol);
		}
	    }			/* loop over cols */
	}			/* loop over rows */

	Rast_close(path_fd);
    }

    /* loop over the starting points to find the least cost paths */
    if (verbose)
	G_message("\nFinding the least cost paths ...");

    PRES_PT = head_start_pt;
    while (PRES_PT != NULL) {
	path_finder(PRES_PT->row, PRES_PT->col, PRES_PT->backrow,
		    PRES_PT->backcol);

	OLD_PT = PRES_PT;
	PRES_PT = NEXT_PT;
	G_free(OLD_PT);
    }

    /* Write pending updates by segment_put() to outputmap */
    segment_flush(&out_seg);

    if (verbose)
	G_message("\nWriting the output map  -%s-...", path_layer);

    path_fd = Rast_open_c_new(path_layer);
    for (row = 0; row < nrows; row++) {
	segment_get_row(&out_seg, cell, row);
	Rast_put_row(path_fd, cell, CELL_TYPE);
    }

    if (verbose)
	G_message("finished.");

    segment_release(&in_row_seg);	/* release memory  */
    segment_release(&in_col_seg);
    segment_release(&out_seg);

    close(in_row_fd);		/* close all files */
    close(in_col_fd);
    close(out_fd);

    Rast_close(path_fd);
    Rast_close(backrow_fd);
    Rast_close(backcol_fd);

    unlink(in_row_file);	/* remove submatrix files  */
    unlink(in_col_file);
    unlink(out_file);

    exit(EXIT_SUCCESS);
}
Example #15
0
void filter_holes(Gfile * out)
{
    int row, col, nrows, ncols;

    void *arast, *brast, *crast;
    int i, pixel[9], cold, warm, shadow, nulo, lim;

    Gfile tmp;

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    if (nrows < 3 || ncols < 3)
        return;

    /* Open to read */
    if ((out->fd = Rast_open_old(out->name, "")) < 0)
        G_fatal_error(_("Unable to open raster map <%s>"), out->name);

    arast = Rast_allocate_buf(CELL_TYPE);
    brast = Rast_allocate_buf(CELL_TYPE);
    crast = Rast_allocate_buf(CELL_TYPE);

    /* Open to write */
    sprintf(tmp.name, "_%d.BBB", getpid());
    tmp.rast = Rast_allocate_buf(CELL_TYPE);
    if ((tmp.fd = Rast_open_new(tmp.name, CELL_TYPE)) < 0)
        G_fatal_error(_("Unable to create raster map <%s>"), tmp.name);

    G_important_message(_("Filling small holes in clouds..."));

    /* Se puede acelerar creandolos nulos y luego arast = brast
       brast = crast y cargando crast solamente
       G_set_f_null_value(cell[2], ncols);
     */

    for (row = 0; row < nrows; row++) {
        G_percent(row, nrows, 2);
        /* Read row values */
        if (row != 0) {
            Rast_get_c_row(out->fd, arast, row - 1);
        }
        Rast_get_c_row(out->fd, brast, row);
        if (row != (nrows - 1)) {
            Rast_get_c_row(out->fd, crast, row + 1);
        }
        /* Analysis of all pixels */
        for (col = 0; col < ncols; col++) {
            pixel[0] = pval(brast, col);
            if (pixel[0] == 0) {
                if (row == 0) {
                    pixel[1] = -1;
                    pixel[2] = -1;
                    pixel[3] = -1;
                    if (col == 0) {
                        pixel[4] = -1;
                        pixel[5] = pval(brast, col + 1);
                        pixel[6] = -1;
                        pixel[7] = pval(crast, col);
                        pixel[8] = pval(crast, col + 1);
                    }
                    else if (col != (ncols - 1)) {
                        pixel[4] = pval(brast, col - 1);
                        pixel[5] = pval(brast, col + 1);
                        pixel[6] = pval(crast, col - 1);
                        pixel[7] = pval(crast, col);
                        pixel[8] = pval(crast, col + 1);
                    }
                    else {
                        pixel[4] = pval(brast, col - 1);
                        pixel[5] = -1;
                        pixel[6] = pval(crast, col - 1);
                        pixel[7] = pval(crast, col);
                        pixel[8] = -1;
                    }
                }
                else if (row != (nrows - 1)) {
                    if (col == 0) {
                        pixel[1] = -1;
                        pixel[2] = pval(arast, col);
                        pixel[3] = pval(arast, col + 1);
                        pixel[4] = -1;
                        pixel[5] = pval(brast, col + 1);
                        pixel[6] = -1;
                        pixel[7] = pval(crast, col);
                        pixel[8] = pval(crast, col + 1);
                    }
                    else if (col != (ncols - 1)) {
                        pixel[1] = pval(arast, col - 1);
                        pixel[2] = pval(arast, col);
                        pixel[3] = pval(arast, col + 1);
                        pixel[4] = pval(brast, col - 1);
                        pixel[5] = pval(brast, col + 1);
                        pixel[6] = pval(crast, col - 1);
                        pixel[7] = pval(crast, col);
                        pixel[8] = pval(crast, col + 1);
                    }
                    else {
                        pixel[1] = pval(arast, col - 1);
                        pixel[2] = pval(arast, col);
                        pixel[3] = -1;
                        pixel[4] = pval(brast, col - 1);
                        pixel[5] = -1;
                        pixel[6] = pval(crast, col - 1);
                        pixel[7] = pval(crast, col);
                        pixel[8] = -1;
                    }
                }
                else {
                    pixel[6] = -1;
                    pixel[7] = -1;
                    pixel[8] = -1;
                    if (col == 0) {
                        pixel[1] = -1;
                        pixel[2] = pval(arast, col);
                        pixel[3] = pval(arast, col + 1);
                        pixel[4] = -1;
                        pixel[5] = pval(brast, col + 1);
                    }
                    else if (col != (ncols - 1)) {
                        pixel[1] = pval(arast, col - 1);
                        pixel[2] = pval(arast, col);
                        pixel[3] = pval(arast, col + 1);
                        pixel[4] = pval(brast, col - 1);
                        pixel[5] = pval(brast, col + 1);
                    }
                    else {
                        pixel[1] = pval(arast, col - 1);
                        pixel[2] = pval(arast, col);
                        pixel[3] = -1;
                        pixel[4] = pval(brast, col - 1);
                        pixel[5] = -1;
                    }
                }

                cold = warm = shadow = nulo = 0;
                for (i = 1; i < 9; i++) {
                    switch (pixel[i]) {
                    case IS_COLD_CLOUD:
                        cold++;
                        break;
                    case IS_WARM_CLOUD:
                        warm++;
                        break;
                    case IS_SHADOW:
                        shadow++;
                        break;
                    default:
                        nulo++;
                        break;
                    }
                }
                lim = (int)(cold + warm + shadow + nulo) / 2;

                /* Entra pixel[0] = 0 */
                if (nulo < lim) {
                    if (shadow >= (cold + warm))
                        pixel[0] = IS_SHADOW;
                    else
                        pixel[0] =
                            (warm > cold) ? IS_WARM_CLOUD : IS_COLD_CLOUD;
                }
            }
            if (pixel[0] != 0) {
                ((CELL *) tmp.rast)[col] = pixel[0];
            }
            else {
                Rast_set_c_null_value((CELL *) tmp.rast + col, 1);
            }
        }
        Rast_put_row(tmp.fd, tmp.rast, CELL_TYPE);
    }
    G_percent(1, 1, 1);

    G_free(arast);
    G_free(brast);
    G_free(crast);
    Rast_close(out->fd);

    G_free(tmp.rast);
    Rast_close(tmp.fd);

    G_remove("cats", out->name);
    G_remove("cell", out->name);
    G_remove("cellhd", out->name);
    G_remove("cell_misc", out->name);
    G_remove("hist", out->name);

    G_rename("cats", tmp.name, out->name);
    G_rename("cell", tmp.name, out->name);
    G_rename("cellhd", tmp.name, out->name);
    G_rename("cell_misc", tmp.name, out->name);
    G_rename("hist", tmp.name, out->name);

    return;
}
Example #16
0
int close_array_seg(void)
{
    struct Colors colors;
    int incr, max, red, green, blue, rd, gr, bl, flag;
    int c, r, map_fd;
    CELL *cellrow, value;
    CELL *theseg;
    RAMSEG thesegseg;

    cellrow = Rast_allocate_c_buf();
    if (seg_flag || bas_flag || haf_flag) {
	if (seg_flag) {
	    theseg = bas;
	    thesegseg = bas_seg;
	}
	else if (bas_flag) {
	    theseg = bas;
	    thesegseg = bas_seg;
	}
	else {
	    theseg = haf;
	    thesegseg = haf_seg;
	}
	max = n_basins;
	G_debug(1, "%d basins created", max);
	Rast_init_colors(&colors);
	if (max > 0)
	    Rast_make_random_colors(&colors, 1, max);
	else {
	    G_warning(_("No basins were created. Verify threshold and region settings."));
	    Rast_make_random_colors(&colors, 1, 2);
	}

	if (max < 1000 && max > 0) {
	    Rast_set_c_color((CELL) 0, 0, 0, 0, &colors);
	    r = 1;
	    incr = 0;
	    while (incr >= 0) {
		G_percent(r, max, 2);
		for (gr = 130 + incr; gr <= 255; gr += 20) {
		    for (rd = 90 + incr; rd <= 255; rd += 30) {
			for (bl = 90 + incr; bl <= 255; bl += 40) {
			    flag = 1;
			    while (flag) {
				Rast_get_c_color(&r, &red, &green, &blue, &colors);
				/* if existing rule is too dark then append a new
				   rule to override it */
				if ((blue * .11 + red * .30 + green * .59) <
				    100) {
				    Rast_set_c_color(r, rd, gr, bl, &colors);
				    flag = 0;
				}
				if (++r > max) {
				    gr = rd = bl = 300;
				    flag = 0;
				    incr = -1;
				}
			    }
			}
		    }
		}
		if (incr >= 0) {
		    incr += 15;
		    if (incr > 120)
			incr = 7;
		}
	    }
	    G_percent(r - 1, max, 3);	/* finish it */
	}
	else
	    G_debug(1,
		    "Too many subbasins to reasonably check for color brightness");
	/* using the existing stack of while/for/for/for/while loops ... */
    }

    /* stream segments map */
    if (seg_flag) {
	map_fd = Rast_open_c_new(seg_name);
	for (r = 0; r < nrows; r++) {
	    Rast_set_c_null_value(cellrow, ncols);	/* reset row to all NULL */
	    for (c = 0; c < ncols; c++) {
		value = FLAG_GET(swale, r, c);
		if (value)
		    cellrow[c] = bas[SEG_INDEX(bas_seg, r, c)];
	    }
	    Rast_put_row(map_fd, cellrow, CELL_TYPE);
	}
	Rast_close(map_fd);
	Rast_write_colors(seg_name, this_mapset, &colors);
    }

    /* basins map */
    if (bas_flag) {
	map_fd = Rast_open_c_new(bas_name);
	for (r = 0; r < nrows; r++) {
	    for (c = 0; c < ncols; c++) {
		cellrow[c] = bas[SEG_INDEX(bas_seg, r, c)];
		if (cellrow[c] == 0)
		    Rast_set_c_null_value(cellrow + c, 1);
	    }
	    Rast_put_row(map_fd, cellrow, CELL_TYPE);
	}
	Rast_close(map_fd);
	Rast_write_colors(bas_name, this_mapset, &colors);
    }

    /* half_basins map */
    if (haf_flag) {
	map_fd = Rast_open_c_new(haf_name);
	for (r = 0; r < nrows; r++) {
	    for (c = 0; c < ncols; c++) {
		cellrow[c] = haf[SEG_INDEX(haf_seg, r, c)];
		if (cellrow[c] == 0)
		    Rast_set_c_null_value(cellrow + c, 1);
	    }
	    Rast_put_row(map_fd, cellrow, CELL_TYPE);
	}
	Rast_close(map_fd);
	Rast_write_colors(haf_name, this_mapset, &colors);
    }

    if (seg_flag || bas_flag || haf_flag)
	Rast_free_colors(&colors);

    G_free(haf);
    G_free(bas);
    G_free(cellrow);
    if (arm_flag)
	fclose(fp);
    close_maps();

    return 0;
}
Example #17
0
void process(void)
{

    /*--------------------------------------------------------------------------*/
    /*                              INITIALISE                                  */

    /*--------------------------------------------------------------------------*/


    DCELL *row_in,		/* Buffer large enough to hold `wsize'  */
     *row_out = NULL,		/* raster rows. When GRASS reads in a   */
	/* raster row, each element is of type  */
	/* DCELL        */
	*window_ptr,		/* Stores local terrain window.         */
	centre;			/* Elevation of central cell in window. */

    CELL *featrow_out = NULL;	/* store features in CELL */

    struct Cell_head region;	/* Structure to hold region information */

    int nrows,			/* Will store the current number of     */
      ncols,			/* rows and columns in the raster.      */
      row, col,			/* Counts through each row and column   */
	/* of the input raster.                 */
      wind_row,			/* Counts through each row and column   */
      wind_col,			/* of the local neighbourhood window.   */
     *index_ptr;		/* Row permutation vector for LU decomp. */

    double **normal_ptr,	/* Cross-products matrix.               */
     *obs_ptr,			/* Observed vector.                     */
      temp;			/* Unused */

    double *weight_ptr;		/* Weighting matrix for observed values. */


    /*--------------------------------------------------------------------------*/
    /*                     GET RASTER AND WINDOW DETAILS                        */

    /*--------------------------------------------------------------------------*/

    G_get_window(&region);	/* Fill out the region structure (the   */
    /* geographical limits etc.)            */

    nrows = Rast_window_rows();	/* Find out the number of rows and      */
    ncols = Rast_window_cols();	/* columns of the raster.               */


    if ((region.ew_res / region.ns_res >= 1.01) ||	/* If EW and NS resolns are    */
	(region.ns_res / region.ew_res >= 1.01)) {	/* >1% different, warn user.      */
	G_warning(_("E-W and N-S grid resolutions are different. Taking average."));
	resoln = (region.ns_res + region.ew_res) / 2;
    }
    else
	resoln = region.ns_res;


    /*--------------------------------------------------------------------------*/
    /*              RESERVE MEMORY TO HOLD Z VALUES AND MATRICES                */

    /*--------------------------------------------------------------------------*/

    row_in = (DCELL *) G_malloc(ncols * sizeof(DCELL) * wsize);
    /* Reserve `wsize' rows of memory.      */

    if (mparam != FEATURE)
	row_out = Rast_allocate_buf(DCELL_TYPE);	/* Initialise output row buffer.     */
    else
	featrow_out = Rast_allocate_buf(CELL_TYPE);	/* Initialise output row buffer.  */

    window_ptr = (DCELL *) G_malloc(SQR(wsize) * sizeof(DCELL));
    /* Reserve enough memory for local wind. */

    weight_ptr = (double *)G_malloc(SQR(wsize) * sizeof(double));
    /* Reserve enough memory weights matrix. */

    normal_ptr = dmatrix(0, 5, 0, 5);	/* Allocate memory for 6*6 matrix       */
    index_ptr = ivector(0, 5);	/* and for 1D vector holding indices    */
    obs_ptr = dvector(0, 5);	/* and for 1D vector holding observed z */


    /* ---------------------------------------------------------------- */
    /* -            CALCULATE LEAST SQUARES COEFFICIENTS              - */
    /* ---------------------------------------------------------------- */

    /*--- Calculate weighting matrix. ---*/

    find_weight(weight_ptr);

    /* Initial coefficients need only be found once since they are 
       constant for any given window size. The only element that 
       changes is the observed vector (RHS of normal equations). */

    /*--- Find normal equations in matrix form. ---*/

    find_normal(normal_ptr, weight_ptr);


    /*--- Apply LU decomposition to normal equations. ---*/

    if (constrained) {
	G_ludcmp(normal_ptr, 5, index_ptr, &temp);
	/* To constrain the quadtratic 
	   through the central cell, ignore 
	   the calculations involving the
	   coefficient f. Since these are 
	   all in the last row and column of
	   the matrix, simply redimension.   */
	/* disp_matrix(normal_ptr,obs_ptr,obs_ptr,5);
	 */
    }

    else {
	G_ludcmp(normal_ptr, 6, index_ptr, &temp);
	/* disp_matrix(normal_ptr,obs_ptr,obs_ptr,6);
	 */
    }


    /*--------------------------------------------------------------------------*/
    /*          PROCESS INPUT RASTER AND WRITE OUT RASTER LINE BY LINE          */

    /*--------------------------------------------------------------------------*/

    if (mparam != FEATURE)
	for (wind_row = 0; wind_row < EDGE; wind_row++)
	    Rast_put_row(fd_out, row_out, DCELL_TYPE);	/* Write out the edge cells as NULL.    */
    else
	for (wind_row = 0; wind_row < EDGE; wind_row++)
	    Rast_put_row(fd_out, featrow_out, CELL_TYPE);	/* Write out the edge cells as NULL.    */

    for (wind_row = 0; wind_row < wsize - 1; wind_row++)
	Rast_get_row(fd_in, row_in + (wind_row * ncols), wind_row,
			 DCELL_TYPE);
    /* Read in enough of the first rows to  */
    /* allow window to be examined.         */

    for (row = EDGE; row < (nrows - EDGE); row++) {
	G_percent(row + 1, nrows - EDGE, 2);

	Rast_get_row(fd_in, row_in + ((wsize - 1) * ncols), row + EDGE,
			 DCELL_TYPE);

	for (col = EDGE; col < (ncols - EDGE); col++) {
	    /* Find central z value */
	    centre = *(row_in + EDGE * ncols + col);

	    for (wind_row = 0; wind_row < wsize; wind_row++)
		for (wind_col = 0; wind_col < wsize; wind_col++)

		    /* Express all window values relative   */
		    /* to the central elevation.            */
		    *(window_ptr + (wind_row * wsize) + wind_col) =
			*(row_in + (wind_row * ncols) + col + wind_col -
			  EDGE) - centre;


	    /*--- Use LU back substitution to solve normal equations. ---*/
	    find_obs(window_ptr, obs_ptr, weight_ptr);

	    /*      disp_wind(window_ptr); 
	       disp_matrix(normal_ptr,obs_ptr,obs_ptr,6);
	     */

	    if (constrained) {
		G_lubksb(normal_ptr, 5, index_ptr, obs_ptr);
		/*
		   disp_matrix(normal_ptr,obs_ptr,obs_ptr,5);
		 */
	    }

	    else {
		G_lubksb(normal_ptr, 6, index_ptr, obs_ptr);
		/*      
		   disp_matrix(normal_ptr,obs_ptr,obs_ptr,6);
		 */

	    }

	    /*--- Calculate terrain parameter based on quad. coefficients. ---*/
	    if (mparam == FEATURE)
		*(featrow_out + col) = (CELL) feature(obs_ptr);
	    else
		*(row_out + col) = param(mparam, obs_ptr);

	    if (mparam == ELEV)
		*(row_out + col) += centre;	/* Add central elevation back */
	}

	if (mparam != FEATURE)
	    Rast_put_row(fd_out, row_out, DCELL_TYPE);	/* Write the row buffer to the output   */
	/* raster.                              */
	else			/* write FEATURE to CELL */
	    Rast_put_row(fd_out, featrow_out, CELL_TYPE);	/* Write the row buffer to the output       */
	/* raster.                              */

	/* 'Shuffle' rows down one, and read in */
	/*  one new row.                        */
	for (wind_row = 0; wind_row < wsize - 1; wind_row++)
	    for (col = 0; col < ncols; col++)
		*(row_in + (wind_row * ncols) + col) =
		    *(row_in + ((wind_row + 1) * ncols) + col);
    }

    for (wind_row = 0; wind_row < EDGE; wind_row++) {
	if (mparam != FEATURE)
	    Rast_put_row(fd_out, row_out, DCELL_TYPE);	/* Write out the edge cells as NULL. */
	else
	    Rast_put_row(fd_out, featrow_out, CELL_TYPE);	/* Write out the edge cells as NULL. */
    }

    /*--------------------------------------------------------------------------*/
    /*     FREE MEMORY USED TO STORE RASTER ROWS, LOCAL WINDOW AND MATRICES     */

    /*--------------------------------------------------------------------------*/

    G_free(row_in);
    if (mparam != FEATURE)
	G_free(row_out);
    else
	G_free(featrow_out);

    G_free(window_ptr);
    free_dmatrix(normal_ptr, 0, 5, 0, 5);
    free_dvector(obs_ptr, 0, 5);
    free_ivector(index_ptr, 0, 5);
}
Example #18
0
File: clump.c Project: caomw/grass
CELL clump(int in_fd, int out_fd, int diag, int print)
{
    register int col;
    register int n;
    CELL NEW, OLD;
    CELL *temp_cell, *temp_clump;
    CELL *prev_in, *cur_in, *out_cell;
    CELL *prev_clump, *cur_clump;
    CELL X, LEFT;
    CELL *index, *renumber;
    CELL label;
    int nrows, ncols;
    int row;
    int len;
    int nalloc;
    long cur_time;
    char *cname;
    int cfd, csize;
    CELL cat;

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* allocate clump index */
    nalloc = INCR;
    index = (CELL *) G_malloc(nalloc * sizeof(CELL));
    index[0] = 0;
    renumber = NULL;

    /* allocate CELL buffers two columns larger than current window */
    len = (ncols + 2) * sizeof(CELL);
    prev_in = (CELL *) G_malloc(len);
    cur_in = (CELL *) G_malloc(len);
    prev_clump = (CELL *) G_malloc(len);
    cur_clump = (CELL *) G_malloc(len);
    out_cell = (CELL *) G_malloc(len);

    /* temp file for initial clump IDs */
    cname = G_tempfile();
    if ((cfd = open(cname, O_RDWR | O_CREAT | O_EXCL, 0600)) < 0)
	G_fatal_error(_("Unable to open temp file"));
    csize = ncols * sizeof(CELL);

    time(&cur_time);

    /* fake a previous row which is all NULL */
    Rast_set_c_null_value(prev_in, ncols + 2);

    /* set left and right edge to NULL */
    Rast_set_c_null_value(&cur_in[0], 1);
    Rast_set_c_null_value(&cur_in[ncols + 1], 1);

    /* initialize clump labels */
    G_zero(cur_clump, len);
    G_zero(prev_clump, len);
    label = 0;

    /****************************************************
     *                      PASS 1                      *
     * pass thru the input, create initial clump labels *
     ****************************************************/

    G_message(_("Pass 1 of 2..."));
    for (row = 0; row < nrows; row++) {
	Rast_get_c_row(in_fd, cur_in + 1, row);

	G_percent(row, nrows, 4);
	Rast_set_c_null_value(&X, 1);
	for (col = 1; col <= ncols; col++) {
	    LEFT = X;
	    X = cur_in[col];
	    if (Rast_is_c_null_value(&X)) {	/* don't clump NULL data */
		cur_clump[col] = 0;
		continue;
	    }

	    /*
	     * if the cell value is different to the left and above
	     * (diagonal: and above left and above right)
	     * then we must start a new clump
	     *
	     * this new clump may eventually collide with another
	     * clump and will have to be merged
	     */

	    /* try to connect the current cell to an existing clump */
	    OLD = NEW = 0;
	    /* same clump as to the left */
	    if (X == LEFT) {
		OLD = cur_clump[col] = cur_clump[col - 1];
	    }

	    if (diag) {
		/* check above right, center, left, in that order */
		n = 2;
		temp_clump = prev_clump + col + 1;
		temp_cell = prev_in + col + 1;
		do {
		    if (X == *temp_cell) {
			cur_clump[col] = *temp_clump;
			if (OLD == 0) {
			    OLD = *temp_clump;
			    }
			else {
			    NEW = *temp_clump;
			    break;
			}
		    }
		    temp_cell--;
		    temp_clump--;
		} while (n-- > 0);
	    }
	    else {
		/* check above */
		if (X == prev_in[col]) {
		    temp_clump = prev_clump + col;
		    cur_clump[col] = *temp_clump;
		    if (OLD == 0) {
			OLD = *temp_clump;
			}
		    else {
			NEW = *temp_clump;
		    }
		}
	    }

	    if (NEW == 0 || OLD == NEW) {	/* ok */
		if (OLD == 0) {
		    /* start a new clump */
		    label++;
		    cur_clump[col] = label;
		    if (label >= nalloc) {
			nalloc += INCR;
			index =
			    (CELL *) G_realloc(index,
					       nalloc * sizeof(CELL));
		    }
		    index[label] = label;
		}
		continue;
	    }

	    /* conflict! preserve NEW clump ID and change OLD clump ID.
	     * Must go back to the left in the current row and to the right
	     * in the previous row to change all the clump values as well.
	     */

	    /* left of the current row from 1 to col - 1 */
	    temp_clump = cur_clump;
	    n = col - 1;
	    while (n-- > 0) {
		temp_clump++;	/* skip left edge */
		if (*temp_clump == OLD)
		    *temp_clump = NEW;
	    }

	    /* right of previous row from col + 1 to ncols */
	    temp_clump = prev_clump;
	    temp_clump += col;
	    n = ncols - col;
	    while (n-- > 0) {
		temp_clump++;	/* skip col */
		if (*temp_clump == OLD)
		    *temp_clump = NEW;
	    }

	    /* modify the OLD index */
	    index[OLD] = NEW;
	}

	/* write initial clump IDs */
	/* this works also with writing out cur_clump, but only 
	 * prev_clump is complete and will not change any more */
	if (row > 0) {
	    if (write(cfd, prev_clump + 1, csize) != csize)
		G_fatal_error(_("Unable to write to temp file"));
	}

	/* switch the buffers so that the current buffer becomes the previous */
	temp_cell = cur_in;
	cur_in = prev_in;
	prev_in = temp_cell;

	temp_clump = cur_clump;
	cur_clump = prev_clump;
	prev_clump = temp_clump;
    }
    /* write last row with initial clump IDs */
    if (write(cfd, prev_clump + 1, csize) != csize)
	G_fatal_error(_("Unable to write to temp file"));
    G_percent(1, 1, 1);

    /* generate a renumbering scheme */
    G_message(_("Generating renumbering scheme..."));
    G_debug(1, "%d initial labels", label);
    /* allocate final clump ID */
    renumber = (CELL *) G_malloc((label + 1) * sizeof(CELL));
    renumber[0] = 0;
    cat = 1;
    G_percent(0, label, 1);
    for (n = 1; n <= label; n++) {
	G_percent(n, label, 1);
	OLD = n;
	NEW = index[n];
	if (OLD != NEW) {
	    renumber[n] = 0;
	    /* find valid clump ID */
	    while (OLD != NEW) {
		OLD = NEW;
		NEW = index[OLD];
	    }
	    index[n] = NEW;
	}
	else
	    /* set final clump id */
	    renumber[n] = cat++;
    }
    
    /* rewind temp file */
    lseek(cfd, 0, SEEK_SET);

    if (print) {
	fprintf(stdout, "clumps=%d\n", cat - 1);
    }
    else {
	/****************************************************
	 *                      PASS 2                      *
	 * apply renumbering scheme to initial clump labels *
	 ****************************************************/

	/* the input raster is no longer needed, 
	 * using instead the temp file with initial clump labels */

	G_message(_("Pass 2 of 2..."));
	for (row = 0; row < nrows; row++) {

	    G_percent(row, nrows, 4);
	
	    if (read(cfd, cur_clump, csize) != csize)
		G_fatal_error(_("Unable to read from temp file"));

	    temp_clump = cur_clump;
	    temp_cell = out_cell;

	    for (col = 0; col < ncols; col++) {
		*temp_cell = renumber[index[*temp_clump]];
		if (*temp_cell == 0)
		    Rast_set_c_null_value(temp_cell, 1);
		temp_clump++;
		temp_cell++;
	    }
	    Rast_put_row(out_fd, out_cell, CELL_TYPE);
	}
	G_percent(1, 1, 1);
    }

    close(cfd);
    unlink(cname);

    print_time(&cur_time);

    return 0;
}
Example #19
0
/* Process the raster and do atmospheric corrections.
   Params:
   * INPUT FILE
   ifd: input file descriptor
   iref: input file has radiance values (default is reflectance) ?
   iscale: input file's range (default is min = 0, max = 255)
   ialt_fd: height map file descriptor, negative if global value is used
   ivis_fd: visibility map file descriptor, negative if global value is used

   * OUTPUT FILE
   ofd: output file descriptor
   oflt: if true use FCELL_TYPE for output
   oscale: output file's range (default is min = 0, max = 255)
 */
static void process_raster(int ifd, InputMask imask, ScaleRange iscale,
			   int ialt_fd, int ivis_fd, int ofd, bool oint,
			   ScaleRange oscale)
{
    FCELL *buf;			/* buffer for the input values */
    FCELL *alt = NULL;		/* buffer for the elevation values */
    FCELL *vis = NULL;		/* buffer for the visibility values */
    FCELL prev_alt = -1.f;
    FCELL prev_vis = -1.f;
    int row, col, nrows, ncols;
    /* switch on optimization automatically if elevation and/or visibility map is given */
    bool optimize = (ialt_fd >= 0 || ivis_fd >= 0);
    
#ifdef _NO_OPTIMIZE_
    optimize = false;
#endif

    /* do initial computation with global elevation and visibility values */
    TransformInput ti;

    ti = compute();

    /* use a cache to increase computation speed when an elevation map 
     * and/or a visibility map is given */
    TICache ticache;

    /* allocate memory for buffers */
    buf = (FCELL *) Rast_allocate_buf(FCELL_TYPE);
    if (ialt_fd >= 0)
	alt = (FCELL *) Rast_allocate_buf(FCELL_TYPE);
    if (ivis_fd >= 0)
	vis = (FCELL *) Rast_allocate_buf(FCELL_TYPE);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 1);	/* keep the user informed of our progress */

	/* read the next row */
	Rast_get_row(ifd, buf, row, FCELL_TYPE);

	/* read the next row of elevation values */
	if (ialt_fd >= 0)
	    Rast_get_row(ialt_fd, alt, row, FCELL_TYPE);

	/* read the next row of elevation values */
	if (ivis_fd >= 0)
	    Rast_get_row(ivis_fd, vis, row, FCELL_TYPE);

	/* loop over all the values in the row */
	for (col = 0; col < ncols; col++) {
	    if ((vis && Rast_is_f_null_value(&vis[col])) ||
		(alt && Rast_is_f_null_value(&alt[col])) ||
		Rast_is_f_null_value(&buf[col])) {
		Rast_set_f_null_value(&buf[col], 1);
		continue;
	    }
	    if (ialt_fd >= 0) {
		if (alt[col] < 0)
		    alt[col] = 0; /* on or below sea level, all the same for 6S */
		else
		    alt[col] /= 1000.0f;	/* converting to km from input which should be in meter */

		/* round to nearest altitude bin */
		/* rounding result: watch out for fp representation error */
		alt[col] = ((int) (alt[col] * BIN_ALT + 0.5)) / BIN_ALT;
	    }
	    if (ivis_fd >= 0) {
		if (vis[col] < 0)
		    vis[col] = 0; /* negative visibility is invalid, print a WARNING ? */

		/* round to nearest visibility bin */
		/* rounding result: watch out for fp representation error */
		vis[col] = ((int) (vis[col] + 0.5));
	    }

	    /* check if both maps are active and if whether any value has changed */
	    if ((ialt_fd >= 0) && (ivis_fd >= 0) &&
		((prev_vis != vis[col]) || (prev_alt != alt[col]))) {
		prev_alt = alt[col];	/* update new values */
		prev_vis = vis[col];
		if (optimize) {
		    int in_cache = ticache.search(alt[col], vis[col], &ti);

		    if (!in_cache) {
			pre_compute_hv(alt[col], vis[col]);	/* re-compute transformation inputs */
			ti = compute();	/* ... */

			ticache.add(ti, alt[col], vis[col]);
		    }
		}
		else {
		    pre_compute_hv(alt[col], vis[col]);	/* re-compute transformation inputs */
		    ti = compute();	/* ... */
		}
	    }
	    else {		/* only one of the maps is being used */

		if ((ivis_fd >= 0) && (prev_vis != vis[col])) {
		    prev_vis = vis[col];	/* keep track of previous visibility */

		    if (optimize) {
			int in_cache = ticache.search(0, vis[col], &ti);

			if (!in_cache) {
			    pre_compute_v(vis[col]);	/* re-compute transformation inputs */
			    ti = compute();	/* ... */

			    ticache.add(ti, 0, vis[col]);
			}
		    }
		    else {
			pre_compute_v(vis[col]);	/* re-compute transformation inputs */
			ti = compute();	/* ... */
		    }
		}

		if ((ialt_fd >= 0) && (prev_alt != alt[col])) {
		    prev_alt = alt[col];	/* keep track of previous altitude */

		    if (optimize) {
			int in_cache = ticache.search(alt[col], 0, &ti);

			if (!in_cache) {
			    pre_compute_h(alt[col]);	/* re-compute transformation inputs */
			    ti = compute();	/* ... */

			    ticache.add(ti, alt[col], 0);
			}
		    }
		    else {
			pre_compute_h(alt[col]);	/* re-compute transformation inputs */
			ti = compute();	/* ... */
		    }
		}
	    }
	    G_debug(3, "Computed r%d (%d), c%d (%d)", row, nrows, col, ncols);
	    /* transform from iscale.[min,max] to [0,1] */
	    buf[col] =
		(buf[col] - iscale.min) / ((float)iscale.max -
					   (float)iscale.min);
	    buf[col] = transform(ti, imask, buf[col]);
	    /* transform from [0,1] to oscale.[min,max] */
	    buf[col] =
		buf[col] * ((float)oscale.max - (float)oscale.min) +
		oscale.min;

	    if (oint && (buf[col] > (float)oscale.max))
		G_warning(_("The output data will overflow. Reflectance > 100%%"));
	}

	/* write output */
	if (oint)
	    write_fp_to_cell(ofd, buf);
	else
	    Rast_put_row(ofd, buf, FCELL_TYPE);
    }
    G_percent(1, 1, 1);

    /* free allocated memory */
    G_free(buf);
    if (ialt_fd >= 0)
	G_free(alt);
    if (ivis_fd >= 0)
	G_free(vis);
}
Example #20
0
int main(int argc, char *argv[])
{
    int r, c;
    DCELL con1, con2;
    double d1, d2;
    DCELL *alt_row;
    const char *con_name, *alt_name;
    int file_fd;
    DCELL value;
    struct History history;
    struct GModule *module;
    struct Option *opt1, *opt2;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    module->description =
	_("Generates surface raster map from rasterized contours.");

    opt1 = G_define_standard_option(G_OPT_R_INPUT);
    opt1->description = _("Name of input raster map containing contours");

    opt2 = G_define_standard_option(G_OPT_R_OUTPUT);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    
    con_name = opt1->answer;
    alt_name = opt2->answer;

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    i_val_l_f = nrows + ncols;
    con = read_cell(con_name);
    alt_row = (DCELL *) G_malloc(ncols * sizeof(DCELL));
    seen = flag_create(nrows, ncols);
    mask = flag_create(nrows, ncols);
    if (NULL != G_find_file("cell", "MASK", G_mapset())) {
	file_fd = Rast_open_old("MASK", G_mapset());
	for (r = 0; r < nrows; r++) {
	    Rast_get_d_row_nomask(file_fd, alt_row, r);
	    for (c = 0; c < ncols; c++)
		if (Rast_is_d_null_value(&(alt_row[c])) || alt_row[c] == 0)
		    FLAG_SET(mask, r, c);
	}
	Rast_close(file_fd);
    }
    zero = (NODE *) G_malloc(INIT_AR * sizeof(NODE));
    minc = minr = 0;
    maxc = ncols - 1;
    maxr = nrows - 1;
    array_size = INIT_AR;
    file_fd = Rast_open_new(alt_name, DCELL_TYPE);
    for (r = 0; r < nrows; r++) {
	G_percent(r, nrows, 1);
	Rast_set_d_null_value(alt_row, ncols);
	for (c = 0; c < ncols; c++) {
	    if (FLAG_GET(mask, r, c))
		continue;
	    value = con[r][c];
	    if (!Rast_is_d_null_value(&value)) {
		alt_row[c] = value;
		continue;
	    }
	    find_con(r, c, &d1, &d2, &con1, &con2);
	    if (!Rast_is_d_null_value(&con2))
		alt_row[c] = d2 * con1 / (d1 + d2) + 
		             d1 * con2 / (d1 + d2);
	    else
		alt_row[c] = con1;
	}
	Rast_put_row(file_fd, alt_row, DCELL_TYPE);
    }
    G_percent(1, 1, 1);
    
    free_cell(con);
    flag_destroy(seen);
    flag_destroy(mask);
    Rast_close(file_fd);
    
    Rast_short_history(alt_name, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(alt_name, &history);

    exit(EXIT_SUCCESS);
}
Example #21
0
int execute_random(struct rr_state *theState)
{
    long nt;
    long nc;
    struct Cell_head window;
    int nrows, ncols, row, col;
    int infd, cinfd, outfd;
    struct Map_info Out;
    struct field_info *fi;
    dbTable *table;
    dbColumn *column;
    dbString sql;
    dbDriver *driver;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int cat;
    RASTER_MAP_TYPE type;
    int do_check;

    G_get_window(&window);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* open the data files, input raster should be set-up already */
    if ((infd = theState->fd_old) < 0)
	G_fatal_error(_("Unable to open raster map <%s>"),
		      theState->inraster);
    if (theState->docover == TRUE) {
	if ((cinfd = theState->fd_cold) < 0)
	    G_fatal_error(_("Unable to open raster map <%s>"),
			  theState->inrcover);
    }

    if (theState->outraster != NULL) {
	if (theState->docover == TRUE)
	    type = theState->cover.type;
	else
	    type = theState->buf.type;
	outfd = Rast_open_new(theState->outraster, type);
	theState->fd_new = outfd;

    }

    if (theState->outvector) {
	if (Vect_open_new(&Out, theState->outvector, theState->z_geometry) < 0)
	    G_fatal_error(_("Unable to create vector map <%s>"),
			    theState->outvector);
	Vect_hist_command(&Out);

	fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);

	driver =
	    db_start_driver_open_database(fi->driver,
					  Vect_subst_var(fi->database, &Out));
	if (!driver)
	    G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			  Vect_subst_var(fi->database, &Out), fi->driver);
        db_set_error_handler_driver(driver);
        
	Vect_map_add_dblink(&Out, 1, NULL, fi->table, GV_KEY_COLUMN, fi->database,
			    fi->driver);

	if (theState->docover == TRUE)
	    table = db_alloc_table(3);
	else
	    table = db_alloc_table(2);
	db_set_table_name(table, fi->table);

	column = db_get_table_column(table, 0);
	db_set_column_name(column, GV_KEY_COLUMN);
	db_set_column_sqltype(column, DB_SQL_TYPE_INTEGER);

	column = db_get_table_column(table, 1);
	db_set_column_name(column, "value");
	db_set_column_sqltype(column, DB_SQL_TYPE_DOUBLE_PRECISION);

	if (theState->docover == TRUE) {
	    column = db_get_table_column(table, 2);
	    db_set_column_name(column, "covervalue");
	    db_set_column_sqltype(column, DB_SQL_TYPE_DOUBLE_PRECISION);
	}
	if (db_create_table(driver, table) != DB_OK)
	    G_warning(_("Cannot create new table"));

	db_begin_transaction(driver);

	Points = Vect_new_line_struct();
	Cats = Vect_new_cats_struct();
	db_init_string(&sql);
    }

    if (theState->outvector && theState->outraster)
	G_message(_("Writing raster map <%s> and vector map <%s> ..."),
		  theState->outraster, theState->outvector);
    else if (theState->outraster)
	G_message(_("Writing raster map <%s> ..."), theState->outraster);
    else if (theState->outvector)
	G_message(_("Writing vector map <%s> ..."), theState->outvector);

    G_percent(0, theState->nRand, 2);

    init_rand();
    nc = (theState->use_nulls) ? theState->nCells :
	theState->nCells - theState->nNulls;
    nt = theState->nRand;	/* Number of points to generate */
    cat = 1;

    /* Execute for loop for every row if nt>1 */
    for (row = 0; row < nrows && nt; row++) {
	Rast_get_row(infd, theState->buf.data.v, row, theState->buf.type);
	if (theState->docover == TRUE) {
	    Rast_get_row(cinfd, theState->cover.data.v, row,
			 theState->cover.type);
	}

	for (col = 0; col < ncols && nt; col++) {
	    do_check = 0;

	    if (theState->use_nulls || !is_null_value(theState->buf, col))
		do_check = 1;
	    if (do_check && theState->docover == TRUE) {	/* skip no data cover points */
		if (!theState->use_nulls &&
		    is_null_value(theState->cover, col))
		    do_check = 0;
	    }

	    if (do_check && make_rand() % nc < nt) {
		nt--;
		if (is_null_value(theState->buf, col))
		    cpvalue(&theState->nulls, 0, &theState->buf, col);
		if (theState->docover == TRUE) {
		    if (is_null_value(theState->cover, col))
			cpvalue(&theState->cnulls, 0, &theState->cover, col);
		}

		if (theState->outvector) {
		    double x, y, val, coverval;
		    char buf[500];

		    Vect_reset_line(Points);
		    Vect_reset_cats(Cats);

		    x = window.west + (col + .5) * window.ew_res;
		    y = window.north - (row + .5) * window.ns_res;

		    val = cell_as_dbl(&theState->buf, col);
		    if (theState->docover == 1)
			coverval = cell_as_dbl(&theState->cover, col);

		    if (theState->z_geometry)
			Vect_append_point(Points, x, y, val);
		    else
			Vect_append_point(Points, x, y, 0.0);
		    Vect_cat_set(Cats, 1, cat);

		    Vect_write_line(&Out, GV_POINT, Points, Cats);

		    if (theState->docover == 1)
			if (is_null_value(theState->cover, col))
			    sprintf(buf,
				    "insert into %s values ( %d, %f, NULL )",
				    fi->table, cat, val);
			else
			    sprintf(buf,
				    "insert into %s values ( %d, %f, %f )",
				    fi->table, cat, val, coverval);
		    else
			sprintf(buf, "insert into %s values ( %d, %f )",
				fi->table, cat, val);
		    db_set_string(&sql, buf);

		    if (db_execute_immediate(driver, &sql) != DB_OK)
			G_fatal_error(_("Cannot insert new record: %s"),
				      db_get_string(&sql));

		    cat++;
		}
		G_percent((theState->nRand - nt), theState->nRand, 2);
	    }
	    else {
		set_to_null(&theState->buf, col);
		if (theState->docover == 1)
		    set_to_null(&theState->cover, col);
	    }

	    if (do_check)
		nc--;
	}

	while (col < ncols) {
	    set_to_null(&theState->buf, col);
	    if (theState->docover == 1)
		set_to_null(&theState->cover, col);
	    col++;
	}

	if (theState->outraster) {
	    if (theState->docover == 1)
		Rast_put_row(outfd, theState->cover.data.v,
				 theState->cover.type);
	    else
		Rast_put_row(outfd, theState->buf.data.v,
				 theState->buf.type);
	}
    }

    /* Catch any remaining rows in the window */
    if (theState->outraster && row < nrows) {
	for (col = 0; col < ncols; col++) {
	    if (theState->docover == 1)
		set_to_null(&theState->cover, col);
	    else
		set_to_null(&theState->buf, col);
	}
	for (; row < nrows; row++) {
	    if (theState->docover == 1)
		Rast_put_row(outfd, theState->cover.data.v,
				 theState->cover.type);
	    else
		Rast_put_row(outfd, theState->buf.data.v,
				 theState->buf.type);
	}
    }

    if (nt > 0)
	G_warning(_("Only [%ld] random points created"),
		  theState->nRand - nt);

    /* close files */
    Rast_close(infd);
    if (theState->docover == TRUE)
	Rast_close(cinfd);
    if (theState->outvector) {
	db_commit_transaction(driver);
	if (db_create_index2(driver, fi->table, GV_KEY_COLUMN) != DB_OK)
	    G_warning(_("Unable to create index"));
	if (db_grant_on_table
	    (driver, fi->table, DB_PRIV_SELECT,
	     DB_GROUP | DB_PUBLIC) != DB_OK) {
	    G_fatal_error(_("Unable to grant privileges on table <%s>"),
			  fi->table);
	}
	db_close_database_shutdown_driver(driver);
	if (theState->notopol != 1)
	    Vect_build(&Out);
	Vect_close(&Out);
    }
    if (theState->outraster)
	Rast_close(outfd);

    return 0;
}				/* execute_random() */
Example #22
0
int main(int argc, char **argv)
{
    unsigned char *hue_n, *hue_r, *hue_g, *hue_b;
    unsigned char *int_n, *int_r;
    unsigned char *sat_n, *sat_r;
    unsigned char *dummy;
    CELL *r_array, *g_array, *b_array;
    char *name_h, *name_i, *name_s;
    int intensity;
    int saturation;
    int atrow, atcol;
    int hue_file;
    int int_file = 0;
    int int_used;
    int sat_file = 0;
    int sat_used;
    char *name_r, *name_g, *name_b;
    int r_file = 0;
    int r_used;
    int g_file = 0;
    int g_used;
    int b_file = 0;
    int b_used;
    struct Cell_head window;
    struct Colors hue_colors;
    struct Colors int_colors;
    struct Colors sat_colors;
    struct Colors gray_colors;
    struct History history;
    struct GModule *module;
    struct Option *opt_h, *opt_i, *opt_s;
    struct Option *opt_r, *opt_g, *opt_b;
    struct Flag *nulldraw;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("color transformation"));
    G_add_keyword(_("RGB"));
    G_add_keyword(_("HIS"));
    module->description =
	_("Generates red, green and blue raster map layers "
	  "combining hue, intensity and saturation (HIS) "
	  "values from user-specified input raster map layers.");

    opt_h = G_define_option();
    opt_h->key = "h_map";
    opt_h->type = TYPE_STRING;
    opt_h->required = YES;
    opt_h->gisprompt = "old,cell,raster";
    opt_h->description = _("Name of layer to be used for HUE");

    opt_i = G_define_option();
    opt_i->key = "i_map";
    opt_i->type = TYPE_STRING;
    opt_i->required = NO;
    opt_i->gisprompt = "old,cell,raster";
    opt_i->description = _("Name of layer to be used for INTENSITY");

    opt_s = G_define_option();
    opt_s->key = "s_map";
    opt_s->type = TYPE_STRING;
    opt_s->required = NO;
    opt_s->gisprompt = "old,cell,raster";
    opt_s->description = _("Name of layer to be used for SATURATION");

    opt_r = G_define_option();
    opt_r->key = "r_map";
    opt_r->type = TYPE_STRING;
    opt_r->required = YES;
    opt_r->gisprompt = "new,cell,raster";
    opt_r->description = _("Name of output layer to be used for RED");

    opt_g = G_define_option();
    opt_g->key = "g_map";
    opt_g->type = TYPE_STRING;
    opt_g->required = YES;
    opt_g->gisprompt = "new,cell,raster";
    opt_g->description = _("Name of output layer to be used for GREEN");

    opt_b = G_define_option();
    opt_b->key = "b_map";
    opt_b->type = TYPE_STRING;
    opt_b->required = YES;
    opt_b->gisprompt = "new,cell,raster";
    opt_b->description = _("Name of output layer to be used for BLUE");

    nulldraw = G_define_flag();
    nulldraw->key = 'n';
    nulldraw->description = _("Respect NULL values while drawing");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* read in current window */
    G_get_window(&window);

    /* Get name of layer to be used for hue */
    name_h = opt_h->answer;

    /* Make sure map is available */
    hue_file = Rast_open_old(name_h, "");

    hue_r = G_malloc(window.cols);
    hue_g = G_malloc(window.cols);
    hue_b = G_malloc(window.cols);
    hue_n = G_malloc(window.cols);

    dummy = G_malloc(window.cols);

    /* Reading color lookup table */
    if (Rast_read_colors(name_h, "", &hue_colors) == -1)
	G_fatal_error(_("Color file for <%s> not available"), name_h);

    int_used = 0;

    if (opt_i->answer != NULL) {
	/* Get name of layer to be used for intensity */
	name_i = opt_i->answer;
	int_used = 1;
	/* Make sure map is available */
	int_file = Rast_open_old(name_i, "");

	int_r = G_malloc(window.cols);
	int_n = G_malloc(window.cols);

	/* Reading color lookup table */
	if (Rast_read_colors(name_i, "", &int_colors) == -1)
	    G_fatal_error(_("Color file for <%s> not available"), name_i);
    }

    sat_used = 0;

    if (opt_s->answer != NULL) {
	/* Get name of layer to be used for saturation */
	name_s = opt_s->answer;
	    sat_used = 1;

	    /* Make sure map is available */
	    sat_file = Rast_open_old(name_s, "");

	    sat_r = G_malloc(window.cols);
	    sat_n = G_malloc(window.cols);

	    /* Reading color lookup table */
	    if (Rast_read_colors(name_s, "", &sat_colors) == -1)
		G_fatal_error(_("Color file for <%s> not available"), name_s);
    }

    r_used = 0;

    if (opt_r->answer != NULL) {
	name_r = opt_r->answer;
	r_file = Rast_open_c_new(name_r);
	r_used = 1;
    }

    g_used = 0;

    if (opt_g->answer != NULL) {
	name_g = opt_g->answer;
	g_file = Rast_open_c_new(name_g);
	g_used = 1;
    }

    b_used = 0;

    if (opt_b->answer != NULL) {
	name_b = opt_b->answer;
	b_file = Rast_open_c_new(name_b);
	b_used = 1;
    }

    r_array = Rast_allocate_c_buf();
    g_array = Rast_allocate_c_buf();
    b_array = Rast_allocate_c_buf();

    /* Make color table */
    make_gray_scale(&gray_colors);

    /* Now do the work */
    intensity = 255;		/* default is to not change intensity */
    saturation = 255;		/* default is to not change saturation */


    for (atrow = 0; atrow < window.rows; atrow++) {
	G_percent(atrow, window.rows, 2);

	Rast_get_row_colors(hue_file, atrow, &hue_colors, hue_r, hue_g, hue_b, hue_n);
	if (int_used)
	    Rast_get_row_colors(int_file, atrow, &int_colors, int_r, dummy, dummy, int_n);
	if (sat_used)
	    Rast_get_row_colors(sat_file, atrow, &sat_colors, sat_r, dummy, dummy, sat_n);

	for (atcol = 0; atcol < window.cols; atcol++) {
	    if (nulldraw->answer) {
		if (hue_n[atcol]
		    || (int_used && int_n[atcol])
		    || (sat_used && sat_n[atcol])) {
		    Rast_set_c_null_value(&r_array[atcol], 1);
		    Rast_set_c_null_value(&g_array[atcol], 1);
		    Rast_set_c_null_value(&b_array[atcol], 1);
		    continue;
		}
	    }

	    if (int_used)
		intensity = int_r[atcol];

	    if (sat_used)
		saturation = sat_r[atcol];

	    HIS_to_RGB(hue_r[atcol], hue_g[atcol], hue_b[atcol],
		       intensity, saturation,
		       &r_array[atcol], &g_array[atcol], &b_array[atcol]);
	}

	if (r_used)
	    Rast_put_row(r_file, r_array, CELL_TYPE);

	if (g_used)
	    Rast_put_row(g_file, g_array, CELL_TYPE);

	if (b_used)
	    Rast_put_row(b_file, b_array, CELL_TYPE);
    }
    G_percent(window.rows, window.rows, 5);

    /* Close the cell files */
    Rast_close(hue_file);
    if (int_used)
	Rast_close(int_file);
    if (sat_used)
	Rast_close(sat_file);

    if (r_used) {
	Rast_close(r_file);
	Rast_write_colors(name_r, G_mapset(), &gray_colors);
	Rast_short_history(name_r, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(name_r, &history);
	Rast_put_cell_title(name_r, "Red extracted from HIS");
    }
    if (g_used) {
	Rast_close(g_file);
	Rast_write_colors(name_g, G_mapset(), &gray_colors);
	Rast_short_history(name_g, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(name_g, &history);
	Rast_put_cell_title(name_g, "Green extracted from HIS");
    }
    if (b_used) {
	Rast_close(b_file);
	Rast_write_colors(name_b, G_mapset(), &gray_colors);
	Rast_short_history(name_b, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(name_b, &history);
	Rast_put_cell_title(name_b, "Blue extracted from HIS");
    }

    return EXIT_SUCCESS;
}
Example #23
0
static int
write_pca(double **eigmat, int *inp_fd, char *out_basename,
	  int bands, int scale, int scale_min, int scale_max)
{
    int i, j;
    void *outbuf, *outptr;
    double min = 0.;
    double max = 0.;
    double old_range = 0.;
    double new_range = 0.;
    int rows = Rast_window_rows();
    int cols = Rast_window_cols();
    int cell_mapsiz = Rast_cell_size(CELL_TYPE);
    int dcell_mapsiz = Rast_cell_size(DCELL_TYPE);
    DCELL *d_buf;

    /* 2 passes for rescale.  1 pass for no rescale */
    int PASSES = (scale) ? 2 : 1;

    /* temporary row storage */
    d_buf = (DCELL *) G_malloc(cols * sizeof(double));

    /* allocate memory for output row buffer */
    outbuf = (scale) ? Rast_allocate_buf(CELL_TYPE) :
	Rast_allocate_buf(DCELL_TYPE);

    if (!outbuf)
	G_fatal_error(_("Unable to allocate memory for raster row"));

    for (i = 0; i < bands; i++) {
	char name[100];
	int out_fd;
	int pass;

	sprintf(name, "%s.%d", out_basename, i + 1);

	G_message(_("Transforming <%s>..."), name);

	/* open a new file for output */
	if (scale)
	    out_fd = Rast_open_c_new(name);
	else {
	    out_fd = Rast_open_fp_new(name);
	    Rast_set_fp_type(DCELL_TYPE);
	}

	for (pass = 1; pass <= PASSES; pass++) {
	    void *rowbuf = NULL;
	    int row, col;

	    if (scale && (pass == PASSES)) {
		G_message(_("Rescaling <%s> to range %d,%d..."),
			  name, scale_min, scale_max);

		old_range = max - min;
		new_range = (double)(scale_max - scale_min);
	    }

	    for (row = 0; row < rows; row++) {
		void *rowptr;

		G_percent(row, rows, 2);

		/* reset d_buf */
		for (col = 0; col < cols; col++)
		    d_buf[col] = 0.;

		for (j = 0; j < bands; j++) {
		    RASTER_MAP_TYPE maptype =
			Rast_get_map_type(inp_fd[j]);

		    /* don't assume each image is of the same type */
		    if (rowbuf)
			G_free(rowbuf);
		    if (!(rowbuf = Rast_allocate_buf(maptype)))
			G_fatal_error(_("Unable allocate memory for row buffer"));

		    Rast_get_row(inp_fd[j], rowbuf, row, maptype);

		    rowptr = rowbuf;
		    outptr = outbuf;

		    /* add into the output cell eigmat[i][j] * corresp cell 
		     * of j-th band for current j */
		    for (col = 0; col < cols; col++) {
			/* handle null cells */
			if (Rast_is_null_value(rowptr, maptype)) {
			    if (scale) {
				Rast_set_null_value(outptr, 1, CELL_TYPE);
				outptr = G_incr_void_ptr(outptr, cell_mapsiz);
			    }
			    else {
				Rast_set_null_value(outptr, 1, DCELL_TYPE);
				outptr =
				    G_incr_void_ptr(outptr, dcell_mapsiz);
			    }

			    rowptr =
				G_incr_void_ptr(rowptr,
						Rast_cell_size(maptype));
			    continue;
			}

			/* corresp. cell of j-th band */
			d_buf[col] +=
			    eigmat[i][j] * Rast_get_d_value(rowptr,
								maptype);

			/* the cell entry is complete */
			if (j == (bands - 1)) {
			    if (scale && (pass == 1)) {
				if ((row == 0) && (col == 0))
				    min = max = d_buf[0];

				if (d_buf[col] < min)
				    min = d_buf[col];

				if (d_buf[col] > max)
				    max = d_buf[col];
			    }
			    else if (scale) {

				if (min == max) {
				    Rast_set_c_value(outptr, 1,
							 CELL_TYPE);
				}
				else {
				    /* map data to 0, (new_range-1) and then adding new_min */
				    CELL tmpcell =
					round_c((new_range *
						 (d_buf[col] -
						  min) / old_range) +
						scale_min);

				    Rast_set_c_value(outptr, tmpcell,
							 CELL_TYPE);
				}
			    }
			    else {	/* (!scale) */

				Rast_set_d_value(outptr, d_buf[col],
						     DCELL_TYPE);
			    }
			}

			outptr = (scale) ?
			    G_incr_void_ptr(outptr, cell_mapsiz) :
			    G_incr_void_ptr(outptr, dcell_mapsiz);

			rowptr =
			    G_incr_void_ptr(rowptr, Rast_cell_size(maptype));
		    }
		}		/* for j = 0 to bands */

		if (pass == PASSES) {
		    if (scale)
			Rast_put_row(out_fd, outbuf, CELL_TYPE);
		    else
			Rast_put_row(out_fd, outbuf, DCELL_TYPE);
		}
	    }

	    G_percent(row, rows, 2);

	    /* close output file */
	    if (pass == PASSES)
		Rast_close(out_fd);
	}
    }

    if (d_buf)
	G_free(d_buf);
    if (outbuf)
	G_free(outbuf);

    return 0;
}
Example #24
0
void Indep(void)
{
    int Count, DRow, DCol;
    int Found, R, C;
    double RowDist, RowDistSq, ColDist;
    struct History history;

    G_debug(2, "indep()");

    Count = 0;
    Found = 0;

    while (CellCount > 0) {
	G_debug(3, "(CellCount):%d", CellCount);
	G_debug(3, "(Count):%d", Count);

	DRow = DoNext[Count].R;
	DCol = DoNext[Count++].C;

	if (0 != FlagGet(Cells, DRow, DCol)) {
	    /* FLAG_SET( Out, DRow, DCol); */
	    Out[DRow][DCol] = ++Found;
	    for (R = DRow; R < Rs; R++) {
		RowDist = NS * (R - DRow);
		if (RowDist > MaxDistSq) {
		    R = Rs;
		}
		else {
		    RowDistSq = RowDist * RowDist;
		    for (C = DCol; C < Cs; C++) {
			ColDist = EW * (C - DCol);
			G_debug(3, "(RowDistSq):%.12lf", RowDistSq);
			G_debug(3, "(ColDist):%.12lf", ColDist);
			G_debug(3, "(MaxDistSq):%.12lf", MaxDistSq);
			
			if (MaxDistSq >= RowDistSq + ColDist * ColDist) {
			    if (0 != FlagGet(Cells, R, C)) {
				G_debug(2, "unset()");
				FLAG_UNSET(Cells, R, C);
				CellCount--;
			    }
			}
			else {
			    C = Cs;
			}
		    }
		}
	    }

	    G_debug(2, "it1()");
	    for (R = DRow - 1; R >= 0; R--) {
		RowDist = NS * (DRow - R);
		if (RowDist > MaxDistSq) {
		    R = 0;
		}
		else {
		    RowDistSq = RowDist * RowDist;
		    for (C = DCol; C < Cs; C++) {
			ColDist = EW * (C - DCol);
			if (MaxDistSq >= RowDistSq + ColDist * ColDist) {
			    if (0 != FlagGet(Cells, R, C)) {
				G_debug(2, "unset()");
				FLAG_UNSET(Cells, R, C);
				CellCount--;
			    }
			}
			else {
			    C = Cs;
			}
		    }
		}
	    }

	    G_debug(2, "it2()");
	    for (R = DRow; R < Rs; R++) {
		RowDist = NS * (R - DRow);
		if (RowDist > MaxDistSq) {
		    R = Rs;
		}
		else {
		    RowDistSq = RowDist * RowDist;
		    for (C = DCol - 1; C >= 0; C--) {
			ColDist = EW * (DCol - C);
			if (MaxDistSq >= RowDistSq + ColDist * ColDist) {
			    if (0 != FlagGet(Cells, R, C)) {
				G_debug(2, "unset()");
				FLAG_UNSET(Cells, R, C);
				CellCount--;
			    }
			}
			else {
			    C = 0;
			}
		    }
		}
	    }

	    G_debug(2, "it3()");
	    for (R = DRow - 1; R >= 0; R--) {
		RowDist = NS * (DRow - R);
		if (RowDist > MaxDistSq) {
		    R = 0;
		}
		else {
		    RowDistSq = RowDist * RowDist;
		    for (C = DCol - 1; C >= 0; C--) {
			ColDist = EW * (DCol - C);
			if (MaxDistSq >= RowDistSq + ColDist * ColDist) {
			    if (0 != FlagGet(Cells, R, C)) {
				G_debug(2, "unset()");
				FLAG_UNSET(Cells, R, C);
				CellCount--;
			    }
			}
			else {
			    C = 0;
			}
		    }
		}
	    }
	}
    }

    G_debug(2, "outputting()");
    OutFD = Rast_open_c_new(Output->answer);

    G_message(_("Writing raster map <%s>..."),
	      Output->answer);
    for (R = 0; R < Rs; R++) {
	G_percent(R, Rs, 2);
	for (C = 0; C < Cs; C++) {
	    CellBuffer[C] = Out[R][C];
	}
	Rast_put_row(OutFD, CellBuffer, CELL_TYPE);
    }
    G_percent(1, 1, 1);
    
    Rast_close(OutFD);
    Rast_short_history(Output->answer, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(Output->answer, &history);
}
Example #25
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    int infile;
    const char *mapset;
    size_t cell_size;
    int ytile, xtile, y, overlap;
    int *outfiles;
    void *inbuf;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("tiling"));
    module->description =
	_("Splits a raster map into tiles.");

    parm.rastin = G_define_standard_option(G_OPT_R_INPUT);

    parm.rastout = G_define_option();
    parm.rastout->key = "output";
    parm.rastout->type = TYPE_STRING;
    parm.rastout->required = YES;
    parm.rastout->multiple = NO;
    parm.rastout->description = _("Output base name");

    parm.width = G_define_option();
    parm.width->key = "width";
    parm.width->type = TYPE_INTEGER;
    parm.width->required = YES;
    parm.width->multiple = NO;
    parm.width->description = _("Width of tiles (columns)");

    parm.height = G_define_option();
    parm.height->key = "height";
    parm.height->type = TYPE_INTEGER;
    parm.height->required = YES;
    parm.height->multiple = NO;
    parm.height->description = _("Height of tiles (rows)");

    parm.overlap = G_define_option();
    parm.overlap->key = "overlap";
    parm.overlap->type = TYPE_INTEGER;
    parm.overlap->required = NO;
    parm.overlap->multiple = NO;
    parm.overlap->description = _("Overlap of tiles");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_set_window(&src_w);
    overlap = parm.overlap->answer ? atoi(parm.overlap->answer) : 0;

    mapset = G_find_raster2(parm.rastin->answer, "");
    if (mapset == NULL)
        G_fatal_error(_("Raster map <%s> not found"), parm.rastin->answer);

    /* set window to old map */
    Rast_get_cellhd(parm.rastin->answer, "", &src_w);
    dst_w = src_w;
    dst_w.cols = atoi(parm.width->answer);
    dst_w.rows = atoi(parm.height->answer);
    G_adjust_Cell_head(&dst_w, 1, 1);

    xtiles = (src_w.cols + dst_w.cols - 1) / dst_w.cols;
    ytiles = (src_w.rows + dst_w.rows - 1) / dst_w.rows;

    G_debug(1, "X: %d * %d, Y: %d * %d",
	    xtiles, dst_w.cols, ytiles, dst_w.rows);

    src_w.cols = xtiles * dst_w.cols + 2 * overlap;
    src_w.rows = ytiles * dst_w.rows + 2 * overlap;
    src_w.west = src_w.west - overlap * src_w.ew_res;
    src_w.east = src_w.west + (src_w.cols + 2 * overlap) * src_w.ew_res;
    src_w.north = src_w.north + overlap * src_w.ns_res;
    src_w.south = src_w.north - (src_w.rows + 2 * overlap) * src_w.ns_res;

    Rast_set_input_window(&src_w);

    /* set the output region */
    ovl_w = dst_w;
    ovl_w.cols = ovl_w.cols + 2 * overlap;
    ovl_w.rows = ovl_w.rows + 2 * overlap;

    G_adjust_Cell_head(&ovl_w, 1, 1);
    Rast_set_output_window(&ovl_w);

    infile = Rast_open_old(parm.rastin->answer, "");
    map_type = Rast_get_map_type(infile);
    cell_size = Rast_cell_size(map_type);

    inbuf = Rast_allocate_input_buf(map_type);

    outfiles = G_malloc(xtiles * sizeof(int));

    G_debug(1, "X: %d * %d, Y: %d * %d",
	    xtiles, dst_w.cols, ytiles, dst_w.rows);

    G_message(_("Generating %d x %d = %d tiles..."), xtiles, ytiles, xtiles * ytiles);
    for (ytile = 0; ytile < ytiles; ytile++) {
	G_debug(1, "reading y tile: %d", ytile);
	G_percent(ytile, ytiles, 2);
	for (xtile = 0; xtile < xtiles; xtile++) {
	    char name[GNAME_MAX];
	    sprintf(name, "%s-%03d-%03d", parm.rastout->answer, ytile, xtile);
	    outfiles[xtile] = Rast_open_new(name, map_type);
	}
	
	for (y = 0; y < ovl_w.rows; y++) {
	    int row = ytile * dst_w.rows + y;
	    G_debug(1, "reading row: %d", row);
	    Rast_get_row(infile, inbuf, row, map_type);
	    
	    for (xtile = 0; xtile < xtiles; xtile++) {
		int cells = xtile * dst_w.cols;
		void *ptr = G_incr_void_ptr(inbuf, cells * cell_size);
		Rast_put_row(outfiles[xtile], ptr, map_type);
	    }
	}

	for (xtile = 0; xtile < xtiles; xtile++) {
	    Rast_close(outfiles[xtile]);
	    write_support_files(xtile, ytile, overlap);
	}
    }

    Rast_close(infile);

    return EXIT_SUCCESS;
}
Example #26
0
int main( int argc, char **argv )
{
  char *name = nullptr;
  struct Option *map;
  struct Cell_head window;

  G_gisinit( argv[0] );

  G_define_module();

  map = G_define_standard_option( G_OPT_R_OUTPUT );

  if ( G_parser( argc, argv ) )
    exit( EXIT_FAILURE );

  name = map->answer;

#ifdef Q_OS_WIN
  _setmode( _fileno( stdin ), _O_BINARY );
  _setmode( _fileno( stdout ), _O_BINARY );
  //setvbuf( stdin, NULL, _IONBF, BUFSIZ );
  // setting _IONBF on stdout works on windows correctly, data written immediately even without fflush(stdout)
  //setvbuf( stdout, NULL, _IONBF, BUFSIZ );
#endif

  QgsGrassDataFile stdinFile;
  stdinFile.open( stdin );
  QDataStream stdinStream( &stdinFile );

  QFile stdoutFile;
  stdoutFile.open( stdout, QIODevice::WriteOnly | QIODevice::Unbuffered );
  QDataStream stdoutStream( &stdoutFile );

  qint32 proj, zone;
  stdinStream >> proj >> zone;

  QgsRectangle extent;
  qint32 rows, cols;
  stdinStream >> extent >> cols >> rows;
  checkStream( stdinStream );

  QString err = QgsGrass::setRegion( &window, extent, rows, cols );
  if ( !err.isEmpty() )
  {
    G_fatal_error( "Cannot set region: %s", err.toUtf8().constData() );
  }
  window.proj = ( int ) proj;
  window.zone = ( int ) zone;

  G_set_window( &window );

  Qgis::DataType qgis_type;
  qint32 type;
  stdinStream >> type;
  checkStream( stdinStream );
  qgis_type = ( Qgis::DataType )type;

  RASTER_MAP_TYPE grass_type;
  switch ( qgis_type )
  {
    case Qgis::Int32:
      grass_type = CELL_TYPE;
      break;
    case Qgis::Float32:
      grass_type = FCELL_TYPE;
      break;
    case Qgis::Float64:
      grass_type = DCELL_TYPE;
      break;
    default:
      G_fatal_error( "QGIS data type %d not supported", qgis_type );
      return 1;
  }

  cf = Rast_open_new( name, grass_type );
  if ( cf < 0 )
  {
    G_fatal_error( "Unable to create raster map <%s>", name );
    return 1;
  }

  void *buf = Rast_allocate_buf( grass_type );

  int expectedSize = cols * QgsRasterBlock::typeSize( qgis_type );
  bool isCanceled = false;
  QByteArray byteArray;
  for ( int row = 0; row < rows; row++ )
  {
    stdinStream >> isCanceled;
    checkStream( stdinStream );
    if ( isCanceled )
    {
      break;
    }
    double noDataValue;
    stdinStream >> noDataValue;
    stdinStream >> byteArray;
    checkStream( stdinStream );

    if ( byteArray.size() != expectedSize )
    {
      G_fatal_error( "Wrong byte array size, expected %d bytes, got %d, row %d / %d", expectedSize, byteArray.size(), row, rows );
      return 1;
    }

    qint32 *cell = nullptr;
    float *fcell = nullptr;
    double *dcell = nullptr;
    if ( grass_type == CELL_TYPE )
      cell = ( qint32 * ) byteArray.data();
    else if ( grass_type == FCELL_TYPE )
      fcell = ( float * ) byteArray.data();
    else if ( grass_type == DCELL_TYPE )
      dcell = ( double * ) byteArray.data();

    void *ptr = buf;
    for ( int col = 0; col < cols; col++ )
    {
      if ( grass_type == CELL_TYPE )
      {
        if ( ( CELL )cell[col] == ( CELL )noDataValue )
        {
          Rast_set_c_null_value( ( CELL * )ptr, 1 );
        }
        else
        {
          Rast_set_c_value( ptr, ( CELL )( cell[col] ), grass_type );
        }
      }
      else if ( grass_type == FCELL_TYPE )
      {
        if ( ( FCELL )fcell[col] == ( FCELL )noDataValue )
        {
          Rast_set_f_null_value( ( FCELL * )ptr, 1 );
        }
        else
        {
          Rast_set_f_value( ptr, ( FCELL )( fcell[col] ), grass_type );
        }
      }
      else if ( grass_type == DCELL_TYPE )
      {
        if ( ( DCELL )dcell[col] == ( DCELL )noDataValue )
        {
          Rast_set_d_null_value( ( DCELL * )ptr, 1 );
        }
        else
        {
          Rast_set_d_value( ptr, ( DCELL )dcell[col], grass_type );
        }
      }

      ptr = G_incr_void_ptr( ptr, Rast_cell_size( grass_type ) );
    }
    Rast_put_row( cf, buf, grass_type );

#ifndef Q_OS_WIN
    // Because stdin is somewhere buffered on Windows (not clear if in QProcess or by Windows)
    // we cannot in QgsGrassImport wait for this because it hangs. Setting _IONBF on stdin does not help
    // and there is no flush() on QProcess.
    // OTOH, smaller stdin buffer is probably blocking QgsGrassImport so that the import can be canceled immediately.
    stdoutStream << ( bool )true; // row written
    stdoutFile.flush();
#endif
  }

  if ( isCanceled )
  {
    Rast_unopen( cf );
  }
  else
  {
    Rast_close( cf );
    struct History history;
    Rast_short_history( name, "raster", &history );
    Rast_command_history( &history );
    Rast_write_history( name, &history );
  }

  exit( EXIT_SUCCESS );
}
Example #27
0
int close_maps(char *stream_rast, char *stream_vect, char *dir_rast)
{
    int stream_fd, dir_fd, r, c, i;
    CELL *cell_buf1, *cell_buf2;
    struct History history;
    CELL stream_id;
    ASP_FLAG af;

    /* cheating... */
    stream_fd = dir_fd = -1;
    cell_buf1 = cell_buf2 = NULL;

    G_message(_("Writing output raster maps..."));
    
    /* write requested output rasters */
    if (stream_rast) {
	stream_fd = Rast_open_new(stream_rast, CELL_TYPE);
	cell_buf1 = Rast_allocate_c_buf();
    }
    if (dir_rast) {
	dir_fd = Rast_open_new(dir_rast, CELL_TYPE);
	cell_buf2 = Rast_allocate_c_buf();
    }

    for (r = 0; r < nrows; r++) {
	G_percent(r, nrows, 2);
	if (stream_rast)
	    Rast_set_c_null_value(cell_buf1, ncols);	/* reset row to all NULL */
	if (dir_rast)
	    Rast_set_c_null_value(cell_buf2, ncols);	/* reset row to all NULL */

	for (c = 0; c < ncols; c++) {
	    if (stream_rast) {
		cseg_get(&stream, &stream_id, r, c);
		if (stream_id)
		    cell_buf1[c] = stream_id;
	    }
	    if (dir_rast) {
		seg_get(&aspflag, (char *)&af, r, c);
		if (!FLAG_GET(af.flag, NULLFLAG)) {
		    cell_buf2[c] = af.asp;
		}
	    }
	    
	}
	if (stream_rast)
	    Rast_put_row(stream_fd, cell_buf1, CELL_TYPE);
	if (dir_rast)
	    Rast_put_row(dir_fd, cell_buf2, CELL_TYPE);
    }
    G_percent(nrows, nrows, 2);	/* finish it */

    if (stream_rast) {
	Rast_close(stream_fd);
	G_free(cell_buf1);
	Rast_short_history(stream_rast, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(stream_rast, &history);
    }
    if (dir_rast) {
	struct Colors colors;

	Rast_close(dir_fd);
	G_free(cell_buf2);

	Rast_short_history(dir_rast, "raster", &history);
	Rast_command_history(&history);
	Rast_write_history(dir_rast, &history);

	Rast_init_colors(&colors);
	Rast_make_aspect_colors(&colors, -8, 8);
	Rast_write_colors(dir_rast, G_mapset(), &colors);
    }

    /* close stream vector */
    if (stream_vect) {
	if (close_streamvect(stream_vect) < 0)
	    G_fatal_error(_("Unable to write vector map <%s>"), stream_vect);
    }

    /* rearranging desk chairs on the Titanic... */
    G_free(outlets);

    /* free stream nodes */
    for (i = 1; i <= n_stream_nodes; i++) {
	if (stream_node[i].n_alloc > 0) {
	    G_free(stream_node[i].trib);
	}
    }
    G_free(stream_node);

    return 1;
}
Example #28
0
int
interpolate(MELEMENT rowlist[], SHORT nrows, SHORT ncols, SHORT datarows,
	    int npoints, int out_fd, int maskfd)
{
    extern CELL *cell;

    MELEMENT *Rptr;
    EW *search, *ewptr, *current_row,	/* start row for north/south search */
     *lastrow;			/* last element in search array */
    SHORT row, col;
    NEIGHBOR *nbr_head, *Nptr;
    double sum1, sum2;

    /* initialize search array and neighbors array */
    current_row = search = (EW *) G_calloc(datarows, sizeof(EW));
    lastrow = search + datarows - 1;
    nbr_head = (NEIGHBOR *) G_calloc(npoints + 1, sizeof(NEIGHBOR));
#if 0
    nbr_head->distance = maxdist;
    nbr_head->searchptr = &(nbr_head->Mptr);	/* see replace_neighbor */
#endif

    G_message(_("Interpolating raster map <%s> (%d rows)..."), output,
	      nrows);

    for (row = 0; row < nrows; row++) {	/*  loop over rows      */
	G_percent(row+1, nrows, 2);

	/* if mask occurs, read current row of the mask */
	if (mask)
	    Rast_get_c_row(maskfd, mask, row);

	/* prepare search array for next row of interpolations */
	for (ewptr = search, Rptr = rowlist; ewptr <= lastrow;
	     Rptr++, ewptr++)
	    ewptr->start = Rptr->next;	/* start at first item in row */

	for (col = 0; col < ncols; col++) {	/*  loop over columns   */

	    /* if (row != 279 && col != 209) continue; */

	    /* don't interpolate outside of the mask */
	    if (mask && mask[col] == 0) {
		cell[col] = 0;
		continue;
	    }

	    /* make a list of npoints neighboring data pts */
	    nbr_head->next = NULL;
	    if (make_neighbors_list(search, lastrow, current_row, row, col, nbr_head, npoints)) {	/* otherwise, known data value assigned */

		/* calculate value to be set for the cell from the data values
		 * of npoints closest neighboring points        */
		sum1 = sum2 = 0.0;
		Nptr = nbr_head->next;

		do {
		    sum1 += Nptr->Mptr->value / Nptr->distance;
		    sum2 += 1.0 / Nptr->distance;
		    Nptr = Nptr->next;
		} while (Nptr);	/* to end of list */

		cell[col] = (CELL) (sum1 / sum2 + .5);
		/* fprintf (stdout,"%d,%d = %d\n", col, row, cell[col]); */

		if (error_flag)	/* output interpolation error for this cell */
		    cell[col] -= mask[col];
	    }
	}			/* end of loop over columns */

	Rast_put_row(out_fd, cell, CELL_TYPE);

	/* advance current row pointer if necessary */
	if (current_row->start->y == row && current_row != lastrow)
	    ++current_row;
    }				/* end of loop over rows */

    G_free(search);

    return 0;
}
Example #29
0
int main(int argc, char **argv)
{
    char *mapname,		/* ptr to name of output layer  */
     *setname,			/* ptr to name of input mapset  */
     *ipolname;			/* name of interpolation method */

    int fdi,			/* input map file descriptor    */
      fdo,			/* output map file descriptor   */
      method,			/* position of method in table  */
      permissions,		/* mapset permissions           */
      cell_type,		/* output celltype              */
      cell_size,		/* size of a cell in bytes      */
      row, col,			/* counters                     */
      irows, icols,		/* original rows, cols          */
      orows, ocols, have_colors,	/* Input map has a colour table */
      overwrite,		/* Overwrite                    */
      curr_proj;		/* output projection (see gis.h) */

    void *obuffer,		/* buffer that holds one output row     */
     *obufptr;			/* column ptr in output buffer  */
    struct cache *ibuffer;	/* buffer that holds the input map      */
    func interpolate;		/* interpolation routine        */

    double xcoord1, xcoord2,	/* temporary x coordinates      */
      ycoord1, ycoord2,		/* temporary y coordinates      */
      col_idx,			/* column index in input matrix */
      row_idx,			/* row index in input matrix    */
      onorth, osouth,		/* save original border coords  */
      oeast, owest, inorth, isouth, ieast, iwest;
    char north_str[30], south_str[30], east_str[30], west_str[30];

    struct Colors colr;		/* Input map colour table       */
    struct History history;

    struct pj_info iproj,	/* input map proj parameters    */
      oproj;			/* output map proj parameters   */

    struct Key_Value *in_proj_info,	/* projection information of    */
     *in_unit_info,		/* input and output mapsets     */
     *out_proj_info, *out_unit_info;

    struct GModule *module;

    struct Flag *list,		/* list files in source location */
     *nocrop,			/* don't crop output map        */
     *print_bounds,		/* print output bounds and exit */
     *gprint_bounds;		/* same but print shell style	*/

    struct Option *imapset,	/* name of input mapset         */
     *inmap,			/* name of input layer          */
     *inlocation,		/* name of input location       */
     *outmap,			/* name of output layer         */
     *indbase,			/* name of input database       */
     *interpol,			/* interpolation method:
				   nearest neighbor, bilinear, cubic */
     *memory,			/* amount of memory for cache   */
     *res;			/* resolution of target map     */
    struct Cell_head incellhd,	/* cell header of input map     */
      outcellhd;		/* and output map               */


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    module->description =
	_("Re-projects a raster map from given location to the current location.");

    inmap = G_define_standard_option(G_OPT_R_INPUT);
    inmap->description = _("Name of input raster map to re-project");
    inmap->required = NO;
    inmap->guisection = _("Source");

    inlocation = G_define_option();
    inlocation->key = "location";
    inlocation->type = TYPE_STRING;
    inlocation->required = YES;
    inlocation->description = _("Location containing input raster map");
    inlocation->gisprompt = "old,location,location";
    inlocation->key_desc = "name";

    imapset = G_define_standard_option(G_OPT_M_MAPSET);
    imapset->label = _("Mapset containing input raster map");
    imapset->description = _("default: name of current mapset");
    imapset->guisection = _("Source");

    indbase = G_define_option();
    indbase->key = "dbase";
    indbase->type = TYPE_STRING;
    indbase->required = NO;
    indbase->description = _("Path to GRASS database of input location");
    indbase->gisprompt = "old,dbase,dbase";
    indbase->key_desc = "path";
    indbase->guisection = _("Source");

    outmap = G_define_standard_option(G_OPT_R_OUTPUT);
    outmap->required = NO;
    outmap->description = _("Name for output raster map (default: same as 'input')");
    outmap->guisection = _("Target");

    ipolname = make_ipol_list();
    
    interpol = G_define_option();
    interpol->key = "method";
    interpol->type = TYPE_STRING;
    interpol->required = NO;
    interpol->answer = "nearest";
    interpol->options = ipolname;
    interpol->description = _("Interpolation method to use");
    interpol->guisection = _("Target");
    interpol->descriptions = make_ipol_desc();

    memory = G_define_option();
    memory->key = "memory";
    memory->type = TYPE_INTEGER;
    memory->required = NO;
    memory->description = _("Cache size (MiB)");

    res = G_define_option();
    res->key = "resolution";
    res->type = TYPE_DOUBLE;
    res->required = NO;
    res->description = _("Resolution of output raster map");
    res->guisection = _("Target");

    list = G_define_flag();
    list->key = 'l';
    list->description = _("List raster maps in input location and exit");

    nocrop = G_define_flag();
    nocrop->key = 'n';
    nocrop->description = _("Do not perform region cropping optimization");

    print_bounds = G_define_flag();
    print_bounds->key = 'p';
    print_bounds->description =
	_("Print input map's bounds in the current projection and exit");
    print_bounds->guisection = _("Target");
    
    gprint_bounds = G_define_flag();
    gprint_bounds->key = 'g';
    gprint_bounds->description =
	_("Print input map's bounds in the current projection and exit (shell style)");
    gprint_bounds->guisection = _("Target");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* get the method */
    for (method = 0; (ipolname = menu[method].name); method++)
	if (strcmp(ipolname, interpol->answer) == 0)
	    break;

    if (!ipolname)
	G_fatal_error(_("<%s=%s> unknown %s"),
		      interpol->key, interpol->answer, interpol->key);
    interpolate = menu[method].method;

    mapname = outmap->answer ? outmap->answer : inmap->answer;
    if (mapname && !list->answer && !overwrite &&
	G_find_raster(mapname, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists."), "output", mapname);

    setname = imapset->answer ? imapset->answer : G_store(G_mapset());
    if (strcmp(inlocation->answer, G_location()) == 0 &&
        (!indbase->answer || strcmp(indbase->answer, G_gisdbase()) == 0))
#if 0
	G_fatal_error(_("Input and output locations can not be the same"));
#else
	G_warning(_("Input and output locations are the same"));
#endif
    G_get_window(&outcellhd);

    if(gprint_bounds->answer && !print_bounds->answer)
	print_bounds->answer = gprint_bounds->answer;
    curr_proj = G_projection();

    /* Get projection info for output mapset */
    if ((out_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of output raster map"));

    if ((out_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of output raster map"));

    if (pj_get_kv(&oproj, out_proj_info, out_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of output raster map"));

    /* Change the location           */
    G__create_alt_env();
    G__setenv("GISDBASE", indbase->answer ? indbase->answer : G_gisdbase());
    G__setenv("LOCATION_NAME", inlocation->answer);

    permissions = G__mapset_permissions(setname);
    if (permissions < 0)	/* can't access mapset       */
	G_fatal_error(_("Mapset <%s> in input location <%s> - %s"),
		      setname, inlocation->answer,
		      permissions == 0 ? _("permission denied")
		      : _("not found"));

    /* if requested, list the raster maps in source location - MN 5/2001 */
    if (list->answer) {
	int i;
	char **list;
	G_verbose_message(_("Checking location <%s> mapset <%s>"),
			  inlocation->answer, setname);
	list = G_list(G_ELEMENT_RASTER, G__getenv("GISDBASE"),
		      G__getenv("LOCATION_NAME"), setname);
	for (i = 0; list[i]; i++) {
	    fprintf(stdout, "%s\n", list[i]);
	}
	fflush(stdout);
	exit(EXIT_SUCCESS);	/* leave r.proj after listing */
    }

    if (!inmap->answer)
	G_fatal_error(_("Required parameter <%s> not set"), inmap->key);

    if (!G_find_raster(inmap->answer, setname))
	G_fatal_error(_("Raster map <%s> in location <%s> in mapset <%s> not found"),
		      inmap->answer, inlocation->answer, setname);

    /* Read input map colour table */
    have_colors = Rast_read_colors(inmap->answer, setname, &colr);

    /* Get projection info for input mapset */
    if ((in_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of input map"));

    if ((in_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of input map"));

    if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of input map"));

    G_free_key_value(in_proj_info);
    G_free_key_value(in_unit_info);
    G_free_key_value(out_proj_info);
    G_free_key_value(out_unit_info);
    if (G_verbose() > G_verbose_std())
	pj_print_proj_params(&iproj, &oproj);

    /* this call causes r.proj to read the entire map into memeory */
    Rast_get_cellhd(inmap->answer, setname, &incellhd);

    Rast_set_input_window(&incellhd);

    if (G_projection() == PROJECTION_XY)
	G_fatal_error(_("Unable to work with unprojected data (xy location)"));

    /* Save default borders so we can show them later */
    inorth = incellhd.north;
    isouth = incellhd.south;
    ieast = incellhd.east;
    iwest = incellhd.west;
    irows = incellhd.rows;
    icols = incellhd.cols;

    onorth = outcellhd.north;
    osouth = outcellhd.south;
    oeast = outcellhd.east;
    owest = outcellhd.west;
    orows = outcellhd.rows;
    ocols = outcellhd.cols;


    if (print_bounds->answer) {
	G_message(_("Input map <%s@%s> in location <%s>:"),
	    inmap->answer, setname, inlocation->answer);

	if (pj_do_proj(&iwest, &isouth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));
	if (pj_do_proj(&ieast, &inorth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));

	G_format_northing(inorth, north_str, curr_proj);
	G_format_northing(isouth, south_str, curr_proj);
	G_format_easting(ieast, east_str, curr_proj);
	G_format_easting(iwest, west_str, curr_proj);

	if(gprint_bounds->answer) {
	    fprintf(stdout, "n=%s s=%s w=%s e=%s rows=%d cols=%d\n",
		north_str, south_str, west_str, east_str, irows, icols);
	}
	else {
	    fprintf(stdout, "Source cols: %d\n", icols);
	    fprintf(stdout, "Source rows: %d\n", irows);
	    fprintf(stdout, "Local north: %s\n",  north_str);
	    fprintf(stdout, "Local south: %s\n", south_str);
	    fprintf(stdout, "Local west: %s\n", west_str);
	    fprintf(stdout, "Local east: %s\n", east_str);
	}

	/* somehow approximate local ewres, nsres ?? (use 'g.region -m' on lat/lon side) */

	exit(EXIT_SUCCESS);
    }


    /* Cut non-overlapping parts of input map */
    if (!nocrop->answer)
	bordwalk(&outcellhd, &incellhd, &oproj, &iproj);

    /* Add 2 cells on each side for bilinear/cubic & future interpolation methods */
    /* (should probably be a factor based on input and output resolution) */
    incellhd.north += 2 * incellhd.ns_res;
    incellhd.east += 2 * incellhd.ew_res;
    incellhd.south -= 2 * incellhd.ns_res;
    incellhd.west -= 2 * incellhd.ew_res;
    if (incellhd.north > inorth)
	incellhd.north = inorth;
    if (incellhd.east > ieast)
	incellhd.east = ieast;
    if (incellhd.south < isouth)
	incellhd.south = isouth;
    if (incellhd.west < iwest)
	incellhd.west = iwest;

    Rast_set_input_window(&incellhd);

    /* And switch back to original location */

    G__switch_env();

    /* Adjust borders of output map */

    if (!nocrop->answer)
	bordwalk(&incellhd, &outcellhd, &iproj, &oproj);

#if 0
    outcellhd.west = outcellhd.south = HUGE_VAL;
    outcellhd.east = outcellhd.north = -HUGE_VAL;
    for (row = 0; row < incellhd.rows; row++) {
	ycoord1 = Rast_row_to_northing((double)(row + 0.5), &incellhd);
	for (col = 0; col < incellhd.cols; col++) {
	    xcoord1 = Rast_col_to_easting((double)(col + 0.5), &incellhd);
	    pj_do_proj(&xcoord1, &ycoord1, &iproj, &oproj);
	    if (xcoord1 > outcellhd.east)
		outcellhd.east = xcoord1;
	    if (ycoord1 > outcellhd.north)
		outcellhd.north = ycoord1;
	    if (xcoord1 < outcellhd.west)
		outcellhd.west = xcoord1;
	    if (ycoord1 < outcellhd.south)
		outcellhd.south = ycoord1;
	}
    }
#endif

    if (res->answer != NULL)	/* set user defined resolution */
	outcellhd.ns_res = outcellhd.ew_res = atof(res->answer);

    G_adjust_Cell_head(&outcellhd, 0, 0);
    Rast_set_output_window(&outcellhd);

    G_message(" ");
    G_message(_("Input:"));
    G_message(_("Cols: %d (%d)"), incellhd.cols, icols);
    G_message(_("Rows: %d (%d)"), incellhd.rows, irows);
    G_message(_("North: %f (%f)"), incellhd.north, inorth);
    G_message(_("South: %f (%f)"), incellhd.south, isouth);
    G_message(_("West: %f (%f)"), incellhd.west, iwest);
    G_message(_("East: %f (%f)"), incellhd.east, ieast);
    G_message(_("EW-res: %f"), incellhd.ew_res);
    G_message(_("NS-res: %f"), incellhd.ns_res);
    G_message(" ");

    G_message(_("Output:"));
    G_message(_("Cols: %d (%d)"), outcellhd.cols, ocols);
    G_message(_("Rows: %d (%d)"), outcellhd.rows, orows);
    G_message(_("North: %f (%f)"), outcellhd.north, onorth);
    G_message(_("South: %f (%f)"), outcellhd.south, osouth);
    G_message(_("West: %f (%f)"), outcellhd.west, owest);
    G_message(_("East: %f (%f)"), outcellhd.east, oeast);
    G_message(_("EW-res: %f"), outcellhd.ew_res);
    G_message(_("NS-res: %f"), outcellhd.ns_res);
    G_message(" ");

    /* open and read the relevant parts of the input map and close it */
    G__switch_env();
    Rast_set_input_window(&incellhd);
    fdi = Rast_open_old(inmap->answer, setname);
    cell_type = Rast_get_map_type(fdi);
    ibuffer = readcell(fdi, memory->answer);
    Rast_close(fdi);

    G__switch_env();
    Rast_set_output_window(&outcellhd);

    if (strcmp(interpol->answer, "nearest") == 0) {
	fdo = Rast_open_new(mapname, cell_type);
	obuffer = (CELL *) Rast_allocate_output_buf(cell_type);
    }
    else {
	fdo = Rast_open_fp_new(mapname);
	cell_type = FCELL_TYPE;
	obuffer = (FCELL *) Rast_allocate_output_buf(cell_type);
    }

    cell_size = Rast_cell_size(cell_type);

    xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
    /**/ ycoord1 = ycoord2 = outcellhd.north - (outcellhd.ns_res / 2);
    /**/ G_important_message(_("Projecting..."));
    G_percent(0, outcellhd.rows, 2);

    for (row = 0; row < outcellhd.rows; row++) {
	obufptr = obuffer;

	for (col = 0; col < outcellhd.cols; col++) {
	    /* project coordinates in output matrix to       */
	    /* coordinates in input matrix                   */
	    if (pj_do_proj(&xcoord1, &ycoord1, &oproj, &iproj) < 0)
		Rast_set_null_value(obufptr, 1, cell_type);
	    else {
		/* convert to row/column indices of input matrix */
		col_idx = (xcoord1 - incellhd.west) / incellhd.ew_res;
		row_idx = (incellhd.north - ycoord1) / incellhd.ns_res;

		/* and resample data point               */
		interpolate(ibuffer, obufptr, cell_type,
			    &col_idx, &row_idx, &incellhd);
	    }

	    obufptr = G_incr_void_ptr(obufptr, cell_size);
	    xcoord2 += outcellhd.ew_res;
	    xcoord1 = xcoord2;
	    ycoord1 = ycoord2;
	}

	Rast_put_row(fdo, obuffer, cell_type);

	xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
	ycoord2 -= outcellhd.ns_res;
	ycoord1 = ycoord2;
	G_percent(row, outcellhd.rows - 1, 2);
    }

    Rast_close(fdo);

    if (have_colors > 0) {
	Rast_write_colors(mapname, G_mapset(), &colr);
	Rast_free_colors(&colr);
    }

    Rast_short_history(mapname, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(mapname, &history);

    G_done_msg(NULL);
    exit(EXIT_SUCCESS);
}
Example #30
0
int main(int argc, char *argv[])
{
    int out_fd, base_raster;
    char *infile, *outmap;
    int percent;
    double zrange_min, zrange_max, d_tmp;
    double irange_min, irange_max;
    unsigned long estimated_lines;

    RASTER_MAP_TYPE rtype, base_raster_data_type;
    struct History history;
    char title[64];
    SEGMENT base_segment;
    struct PointBinning point_binning;
    void *base_array;
    void *raster_row;
    struct Cell_head region;
    struct Cell_head input_region;
    int rows, last_rows, row0, cols;		/* scan box size */
    int row;		/* counters */

    int pass, npasses;
    unsigned long line, line_total;
    unsigned int counter;
    unsigned long n_invalid;
    char buff[BUFFSIZE];
    double x, y, z;
    double intensity;
    int arr_row, arr_col;
    unsigned long count, count_total;
    int point_class;

    double zscale = 1.0;
    double iscale = 1.0;
    double res = 0.0;

    struct BinIndex bin_index_nodes;
    bin_index_nodes.num_nodes = 0;
    bin_index_nodes.max_nodes = 0;
    bin_index_nodes.nodes = 0;

    struct GModule *module;
    struct Option *input_opt, *output_opt, *percent_opt, *type_opt, *filter_opt, *class_opt;
    struct Option *method_opt, *base_raster_opt;
    struct Option *zrange_opt, *zscale_opt;
    struct Option *irange_opt, *iscale_opt;
    struct Option *trim_opt, *pth_opt, *res_opt;
    struct Option *file_list_opt;
    struct Flag *print_flag, *scan_flag, *shell_style, *over_flag, *extents_flag;
    struct Flag *intens_flag, *intens_import_flag;
    struct Flag *set_region_flag;
    struct Flag *base_rast_res_flag;
    struct Flag *only_valid_flag;

    /* LAS */
    LASReaderH LAS_reader;
    LASHeaderH LAS_header;
    LASSRSH LAS_srs;
    LASPointH LAS_point;
    int return_filter;

    const char *projstr;
    struct Cell_head cellhd, loc_wind;

    unsigned int n_filtered;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("import"));
    G_add_keyword(_("LIDAR"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("conversion"));
    G_add_keyword(_("aggregation"));
    G_add_keyword(_("binning"));
    module->description =
	_("Creates a raster map from LAS LiDAR points using univariate statistics.");

    input_opt = G_define_standard_option(G_OPT_F_BIN_INPUT);
    input_opt->required = NO;
    input_opt->label = _("LAS input file");
    input_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    input_opt->guisection = _("Input");

    output_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    output_opt->required = NO;
    output_opt->guisection = _("Output");

    file_list_opt = G_define_standard_option(G_OPT_F_INPUT);
    file_list_opt->key = "file";
    file_list_opt->label = _("File containing names of LAS input files");
    file_list_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    file_list_opt->required = NO;
    file_list_opt->guisection = _("Input");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->description = _("Statistic to use for raster values");
    method_opt->options =
	"n,min,max,range,sum,mean,stddev,variance,coeff_var,median,percentile,skewness,trimmean";
    method_opt->answer = "mean";
    method_opt->guisection = _("Statistic");
    G_asprintf((char **)&(method_opt->descriptions),
               "n;%s;"
               "min;%s;"
               "max;%s;"
               "range;%s;"
               "sum;%s;"
               "mean;%s;"
               "stddev;%s;"
               "variance;%s;"
               "coeff_var;%s;"
               "median;%s;"
               "percentile;%s;"
               "skewness;%s;"
               "trimmean;%s",
               _("Number of points in cell"),
               _("Minimum value of point values in cell"),
               _("Maximum value of point values in cell"),
               _("Range of point values in cell"),
               _("Sum of point values in cell"),
               _("Mean (average) value of point values in cell"),
               _("Standard deviation of point values in cell"),
               _("Variance of point values in cell"),
               _("Coefficient of variance of point values in cell"),
               _("Median value of point values in cell"),
               _("pth (nth) percentile of point values in cell"),
               _("Skewness of point values in cell"),
               _("Trimmed mean of point values in cell"));

    type_opt = G_define_standard_option(G_OPT_R_TYPE);
    type_opt->required = NO;
    type_opt->answer = "FCELL";

    base_raster_opt = G_define_standard_option(G_OPT_R_INPUT);
    base_raster_opt->key = "base_raster";
    base_raster_opt->required = NO;
    base_raster_opt->label =
        _("Subtract raster values from the Z coordinates");
    base_raster_opt->description =
        _("The scale for Z is applied beforehand, the range filter for"
          " Z afterwards");
    base_raster_opt->guisection = _("Transform");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->description = _("Filter range for Z data (min,max)");
    zrange_opt->guisection = _("Selection");

    zscale_opt = G_define_option();
    zscale_opt->key = "zscale";
    zscale_opt->type = TYPE_DOUBLE;
    zscale_opt->required = NO;
    zscale_opt->answer = "1.0";
    zscale_opt->description = _("Scale to apply to Z data");
    zscale_opt->guisection = _("Transform");

    irange_opt = G_define_option();
    irange_opt->key = "intensity_range";
    irange_opt->type = TYPE_DOUBLE;
    irange_opt->required = NO;
    irange_opt->key_desc = "min,max";
    irange_opt->description = _("Filter range for intensity values (min,max)");
    irange_opt->guisection = _("Selection");

    iscale_opt = G_define_option();
    iscale_opt->key = "intensity_scale";
    iscale_opt->type = TYPE_DOUBLE;
    iscale_opt->required = NO;
    iscale_opt->answer = "1.0";
    iscale_opt->description = _("Scale to apply to intensity values");
    iscale_opt->guisection = _("Transform");

    percent_opt = G_define_option();
    percent_opt->key = "percent";
    percent_opt->type = TYPE_INTEGER;
    percent_opt->required = NO;
    percent_opt->answer = "100";
    percent_opt->options = "1-100";
    percent_opt->description = _("Percent of map to keep in memory");

    /* I would prefer to call the following "percentile", but that has too
     * much namespace overlap with the "percent" option above */
    pth_opt = G_define_option();
    pth_opt->key = "pth";
    pth_opt->type = TYPE_INTEGER;
    pth_opt->required = NO;
    pth_opt->options = "1-100";
    pth_opt->description = _("pth percentile of the values");
    pth_opt->guisection = _("Statistic");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->options = "0-50";
    trim_opt->label = _("Discard given percentage of the smallest and largest values");
    trim_opt->description =
	_("Discard <trim> percent of the smallest and <trim> percent of the largest observations");
    trim_opt->guisection = _("Statistic");

    res_opt = G_define_option();
    res_opt->key = "resolution";
    res_opt->type = TYPE_DOUBLE;
    res_opt->required = NO;
    res_opt->description =
	_("Output raster resolution");
    res_opt->guisection = _("Output");

    filter_opt = G_define_option();
    filter_opt->key = "return_filter";
    filter_opt->type = TYPE_STRING;
    filter_opt->required = NO;
    filter_opt->label = _("Only import points of selected return type");
    filter_opt->description = _("If not specified, all points are imported");
    filter_opt->options = "first,last,mid";
    filter_opt->guisection = _("Selection");

    class_opt = G_define_option();
    class_opt->key = "class_filter";
    class_opt->type = TYPE_INTEGER;
    class_opt->multiple = YES;
    class_opt->required = NO;
    class_opt->label = _("Only import points of selected class(es)");
    class_opt->description = _("Input is comma separated integers. "
                               "If not specified, all points are imported.");
    class_opt->guisection = _("Selection");

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->description =
	_("Print LAS file info and exit");

    extents_flag = G_define_flag();
    extents_flag->key = 'e';
    extents_flag->label =
        _("Use the extent of the input for the raster extent");
    extents_flag->description =
        _("Set internally computational region extents based on the"
          " point cloud");
    extents_flag->guisection = _("Output");

    set_region_flag = G_define_flag();
    set_region_flag->key = 'n';
    set_region_flag->label =
        _("Set computation region to match the new raster map");
    set_region_flag->description =
        _("Set computation region to match the 2D extent and resolution"
          " of the newly created new raster map");
    set_region_flag->guisection = _("Output");

    over_flag = G_define_flag();
    over_flag->key = 'o';
    over_flag->label =
	_("Override projection check (use current location's projection)");
    over_flag->description =
	_("Assume that the dataset has same projection as the current location");

    scan_flag = G_define_flag();
    scan_flag->key = 's';
    scan_flag->description = _("Scan data file for extent then exit");

    shell_style = G_define_flag();
    shell_style->key = 'g';
    shell_style->description =
	_("In scan mode, print using shell script style");

    intens_flag = G_define_flag();
    intens_flag->key = 'i';
    intens_flag->label =
        _("Use intensity values rather than Z values");
    intens_flag->description =
        _("Uses intensity values everywhere as if they would be Z"
          " coordinates");

    intens_import_flag = G_define_flag();
    intens_import_flag->key = 'j';
    intens_import_flag->description =
        _("Use Z values for filtering, but intensity values for statistics");

    base_rast_res_flag = G_define_flag();
    base_rast_res_flag->key = 'd';
    base_rast_res_flag->label =
        _("Use base raster resolution instead of computational region");
    base_rast_res_flag->description =
        _("For getting values from base raster, use its actual"
          " resolution instead of computational region resolution");

    only_valid_flag = G_define_flag();
    only_valid_flag->key = 'v';
    only_valid_flag->label = _("Use only valid points");
    only_valid_flag->description =
        _("Points invalid according to APSRS LAS specification will be"
          " filtered out");
    only_valid_flag->guisection = _("Selection");

    G_option_required(input_opt, file_list_opt, NULL);
    G_option_exclusive(input_opt, file_list_opt, NULL);
    G_option_required(output_opt, print_flag, scan_flag, shell_style, NULL);
    G_option_exclusive(intens_flag, intens_import_flag, NULL);
    G_option_requires(base_rast_res_flag, base_raster_opt, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    int only_valid = FALSE;
    n_invalid = 0;
    if (only_valid_flag->answer)
        only_valid = TRUE;

    /* we could use rules but this gives more info and allows continuing */
    if (set_region_flag->answer && !(extents_flag->answer || res_opt->answer)) {
        G_warning(_("Flag %c makes sense only with %s option or -%c flag"),
                  set_region_flag->key, res_opt->key, extents_flag->key);
        /* avoid the call later on */
        set_region_flag->answer = '\0';
    }

    struct StringList infiles;

    if (file_list_opt->answer) {
        if (access(file_list_opt->answer, F_OK) != 0)
            G_fatal_error(_("File <%s> does not exist"), file_list_opt->answer);
        string_list_from_file(&infiles, file_list_opt->answer);
    }
    else {
        string_list_from_one_item(&infiles, input_opt->answer);
    }

    /* parse input values */
    outmap = output_opt->answer;

    if (shell_style->answer && !scan_flag->answer) {
	scan_flag->answer = 1; /* pointer not int, so set = shell_style->answer ? */
    }

    /* check zrange and extent relation */
    if (scan_flag->answer || extents_flag->answer) {
        if (zrange_opt->answer)
            G_warning(_("zrange will not be taken into account during scan"));
    }

    Rast_get_window(&region);
    /* G_get_window seems to be unreliable if the location has been changed */
    G_get_set_window(&loc_wind);        /* TODO: v.in.lidar uses G_get_default_window() */

    estimated_lines = 0;
    int i;
    for (i = 0; i < infiles.num_items; i++) {
        infile = infiles.items[i];
        /* don't if file not found */
        if (access(infile, F_OK) != 0)
            G_fatal_error(_("Input file <%s> does not exist"), infile);
        /* Open LAS file*/
        LAS_reader = LASReader_Create(infile);
        if (LAS_reader == NULL)
            G_fatal_error(_("Unable to open file <%s> as a LiDAR point cloud"),
                          infile);
        LAS_header = LASReader_GetHeader(LAS_reader);
        if  (LAS_header == NULL) {
            G_fatal_error(_("Unable to read LAS header of <%s>"), infile);
        }

        LAS_srs = LASHeader_GetSRS(LAS_header);

        /* print info or check projection if we are actually importing */
        if (print_flag->answer) {
            /* print filename when there is more than one file */
            if (infiles.num_items > 1)
                fprintf(stdout, "File: %s\n", infile);
            /* Print LAS header */
            print_lasinfo(LAS_header, LAS_srs);
        }
        else {
            /* report that we are checking more files */
            if (i == 1)
                G_message(_("First file's projection checked,"
                            " checking projection of the other files..."));
            /* Fetch input map projection in GRASS form. */
            projstr = LASSRS_GetWKT_CompoundOK(LAS_srs);
            /* we are printing the non-warning messages only for first file */
            projection_check_wkt(cellhd, loc_wind, projstr, over_flag->answer,
                                 shell_style->answer || i);
            /* if there is a problem in some other file, first OK message
             * is printed but than a warning, this is not ideal but hopefully
             * not so confusing when importing multiple files */
        }
        if (scan_flag->answer || extents_flag->answer) {
            /* we assign to the first one (i==0) but update for the rest */
            scan_bounds(LAS_reader, shell_style->answer, extents_flag->answer, i,
                        zscale, &region);
        }
        /* number of estimated point across all files */
        /* TODO: this should be ull which won't work with percent report */
        estimated_lines += LASHeader_GetPointRecordsCount(LAS_header);
        /* We are closing all again and we will be opening them later,
         * so we don't have to worry about limit for open files. */
        LASSRS_Destroy(LAS_srs);
        LASHeader_Destroy(LAS_header);
        LASReader_Destroy(LAS_reader);
    }
    /* if we are not importing, end */
    if (print_flag->answer || scan_flag->answer)
        exit(EXIT_SUCCESS);

    return_filter = LAS_ALL;
    if (filter_opt->answer) {
	if (strcmp(filter_opt->answer, "first") == 0)
	    return_filter = LAS_FIRST;
	else if (strcmp(filter_opt->answer, "last") == 0)
	    return_filter = LAS_LAST;
	else if (strcmp(filter_opt->answer, "mid") == 0)
	    return_filter = LAS_MID;
	else
	    G_fatal_error(_("Unknown filter option <%s>"), filter_opt->answer);
    }
    struct ReturnFilter return_filter_struct;
    return_filter_struct.filter = return_filter;
    struct ClassFilter class_filter;
    class_filter_create_from_strings(&class_filter, class_opt->answers);

    percent = atoi(percent_opt->answer);
    /* TODO: we already used zscale */
    /* TODO: we don't report intensity range */
    if (zscale_opt->answer)
        zscale = atof(zscale_opt->answer);
    if (iscale_opt->answer)
        iscale = atof(iscale_opt->answer);

    /* parse zrange */
    if (zrange_opt->answer != NULL) {
	if (zrange_opt->answers[0] == NULL)
	    G_fatal_error(_("Invalid zrange"));

	sscanf(zrange_opt->answers[0], "%lf", &zrange_min);
	sscanf(zrange_opt->answers[1], "%lf", &zrange_max);

	if (zrange_min > zrange_max) {
	    d_tmp = zrange_max;
	    zrange_max = zrange_min;
	    zrange_min = d_tmp;
	}
    }
    /* parse irange */
    if (irange_opt->answer != NULL) {
        if (irange_opt->answers[0] == NULL)
            G_fatal_error(_("Invalid %s"), irange_opt->key);

        sscanf(irange_opt->answers[0], "%lf", &irange_min);
        sscanf(irange_opt->answers[1], "%lf", &irange_max);

        if (irange_min > irange_max) {
            d_tmp = irange_max;
            irange_max = irange_min;
            irange_min = d_tmp;
        }
    }

    point_binning_set(&point_binning, method_opt->answer, pth_opt->answer,
                      trim_opt->answer, FALSE);

    base_array = NULL;

    if (strcmp("CELL", type_opt->answer) == 0)
	rtype = CELL_TYPE;
    else if (strcmp("DCELL", type_opt->answer) == 0)
	rtype = DCELL_TYPE;
    else
	rtype = FCELL_TYPE;

    if (point_binning.method == METHOD_N)
	rtype = CELL_TYPE;

    if (res_opt->answer) {
	/* align to resolution */
	res = atof(res_opt->answer);

	if (!G_scan_resolution(res_opt->answer, &res, region.proj))
	    G_fatal_error(_("Invalid input <%s=%s>"), res_opt->key, res_opt->answer);

	if (res <= 0)
	    G_fatal_error(_("Option '%s' must be > 0.0"), res_opt->key);
	
	region.ns_res = region.ew_res = res;

	region.north = ceil(region.north / res) * res;
	region.south = floor(region.south / res) * res;
	region.east = ceil(region.east / res) * res;
	region.west = floor(region.west / res) * res;

	G_adjust_Cell_head(&region, 0, 0);
    }
    else if (extents_flag->answer) {
	/* align to current region */
	Rast_align_window(&region, &loc_wind);
    }
    Rast_set_output_window(&region);

    rows = last_rows = region.rows;
    npasses = 1;
    if (percent < 100) {
	rows = (int)(region.rows * (percent / 100.0));
	npasses = region.rows / rows;
	last_rows = region.rows - npasses * rows;
	if (last_rows)
	    npasses++;
	else
	    last_rows = rows;

    }
    cols = region.cols;

    G_debug(2, "region.n=%f  region.s=%f  region.ns_res=%f", region.north,
	    region.south, region.ns_res);
    G_debug(2, "region.rows=%d  [box_rows=%d]  region.cols=%d", region.rows,
	    rows, region.cols);

    /* using row-based chunks (used for output) when input and output
     * region matches and using segment library when they don't */
    int use_segment = 0;
    int use_base_raster_res = 0;
    /* TODO: see if the input region extent is smaller than the raster
     * if yes, the we need to load the whole base raster if the -e
     * flag was defined (alternatively clip the regions) */
    if (base_rast_res_flag->answer)
        use_base_raster_res = 1;
    if (base_raster_opt->answer && (res_opt->answer || use_base_raster_res
                                    || extents_flag->answer))
        use_segment = 1;
    if (base_raster_opt->answer && !use_segment) {
        /* TODO: do we need to test existence first? mapset? */
        base_raster = Rast_open_old(base_raster_opt->answer, "");
        base_raster_data_type = Rast_get_map_type(base_raster);
        base_array = G_calloc((size_t)rows * (cols + 1), Rast_cell_size(base_raster_data_type));
    }
    if (base_raster_opt->answer && use_segment) {
        if (use_base_raster_res) {
            /* read raster actual extent and resolution */
            Rast_get_cellhd(base_raster_opt->answer, "", &input_region);
            /* TODO: make it only as small as the output is or points are */
            Rast_set_input_window(&input_region);  /* we have split window */
        } else {
            Rast_get_input_window(&input_region);
        }
        rast_segment_open(&base_segment, base_raster_opt->answer, &base_raster_data_type);
    }

    if (!scan_flag->answer) {
        if (!check_rows_cols_fit_to_size_t(rows, cols))
		G_fatal_error(_("Unable to process the hole map at once. "
                        "Please set the '%s' option to some value lower than 100."),
				percent_opt->key);
        point_binning_memory_test(&point_binning, rows, cols, rtype);
	}

    /* open output map */
    out_fd = Rast_open_new(outmap, rtype);

    /* allocate memory for a single row of output data */
    raster_row = Rast_allocate_output_buf(rtype);

    G_message(_("Reading data ..."));

    count_total = line_total = 0;

    /* main binning loop(s) */
    for (pass = 1; pass <= npasses; pass++) {

	if (npasses > 1)
	    G_message(_("Pass #%d (of %d) ..."), pass, npasses);

	/* figure out segmentation */
	row0 = (pass - 1) * rows;
	if (pass == npasses) {
	    rows = last_rows;
	}

        if (base_array) {
            G_debug(2, "filling base raster array");
            for (row = 0; row < rows; row++) {
                Rast_get_row(base_raster, base_array + ((size_t) row * cols * Rast_cell_size(base_raster_data_type)), row, base_raster_data_type);
            }
        }

	G_debug(2, "pass=%d/%d  rows=%d", pass, npasses, rows);

    point_binning_allocate(&point_binning, rows, cols, rtype);

	line = 0;
	count = 0;
	counter = 0;
	G_percent_reset();

        /* loop of input files */
        for (i = 0; i < infiles.num_items; i++) {
            infile = infiles.items[i];
            /* we already know file is there, so just do basic checks */
            LAS_reader = LASReader_Create(infile);
            if (LAS_reader == NULL)
                G_fatal_error(_("Unable to open file <%s>"), infile);

            while ((LAS_point = LASReader_GetNextPoint(LAS_reader)) != NULL) {
                line++;
                counter++;

                if (counter == 100000) {        /* speed */
                    if (line < estimated_lines)
                        G_percent(line, estimated_lines, 3);
                    counter = 0;
                }

                /* We always count them and report because behavior
                 * changed in between 7.0 and 7.2 from undefined (but skipping
                 * invalid points) to filtering them out only when requested. */
                if (!LASPoint_IsValid(LAS_point)) {
                    n_invalid++;
                    if (only_valid)
                        continue;
                }

                x = LASPoint_GetX(LAS_point);
                y = LASPoint_GetY(LAS_point);
                if (intens_flag->answer)
                    /* use intensity as z here to allow all filters (and
                     * modifications) below to be applied for intensity */
                    z = LASPoint_GetIntensity(LAS_point);
                else
                    z = LASPoint_GetZ(LAS_point);

                int return_n = LASPoint_GetReturnNumber(LAS_point);
                int n_returns = LASPoint_GetNumberOfReturns(LAS_point);
                if (return_filter_is_out(&return_filter_struct, return_n, n_returns)) {
                    n_filtered++;
                    continue;
                }
                point_class = (int) LASPoint_GetClassification(LAS_point);
                if (class_filter_is_out(&class_filter, point_class))
                    continue;

                if (y <= region.south || y > region.north) {
                    continue;
                }
                if (x < region.west || x >= region.east) {
                    continue;
                }

                /* find the bin in the current array box */
		arr_row = (int)((region.north - y) / region.ns_res) - row0;
		if (arr_row < 0 || arr_row >= rows)
		    continue;
                arr_col = (int)((x - region.west) / region.ew_res);

                z = z * zscale;

                if (base_array) {
                    double base_z;
                    if (row_array_get_value_row_col(base_array, arr_row, arr_col,
                                                    cols, base_raster_data_type,
                                                    &base_z))
                        z -= base_z;
                    else
                        continue;
                }
                else if (use_segment) {
                    double base_z;
                    if (rast_segment_get_value_xy(&base_segment, &input_region,
                                                  base_raster_data_type, x, y,
                                                  &base_z))
                        z -= base_z;
                    else
                        continue;
                }

                if (zrange_opt->answer) {
                    if (z < zrange_min || z > zrange_max) {
                        continue;
                    }
                }

                if (intens_import_flag->answer || irange_opt->answer) {
                    intensity = LASPoint_GetIntensity(LAS_point);
                    intensity *= iscale;
                    if (irange_opt->answer) {
                        if (intensity < irange_min || intensity > irange_max) {
                            continue;
                        }
                    }
                    /* use intensity for statistics */
                    if (intens_import_flag->answer)
                        z = intensity;
                }

                count++;
                /*          G_debug(5, "x: %f, y: %f, z: %f", x, y, z); */

                update_value(&point_binning, &bin_index_nodes, cols,
                             arr_row, arr_col, rtype, x, y, z);
            }                        /* while !EOF of one input file */
            /* close input LAS file */
            LASReader_Destroy(LAS_reader);
        }           /* end of loop for all input files files */

	G_percent(1, 1, 1);	/* flush */
	G_debug(2, "pass %d finished, %lu coordinates in box", pass, count);
	count_total += count;
	line_total += line;

	/* calc stats and output */
	G_message(_("Writing to map ..."));
	for (row = 0; row < rows; row++) {
        /* potentially vector writing can be independent on the binning */
        write_values(&point_binning, &bin_index_nodes, raster_row, row,
            cols, rtype, NULL);
	    /* write out line of raster data */
        Rast_put_row(out_fd, raster_row, rtype);
	}

	/* free memory */
	point_binning_free(&point_binning, &bin_index_nodes);
    }				/* passes loop */
    if (base_array)
        Rast_close(base_raster);
    if (use_segment)
        Segment_close(&base_segment);

    G_percent(1, 1, 1);		/* flush */
    G_free(raster_row);

    /* close raster file & write history */
    Rast_close(out_fd);

    sprintf(title, "Raw X,Y,Z data binned into a raster grid by cell %s",
            method_opt->answer);
    Rast_put_cell_title(outmap, title);

    Rast_short_history(outmap, "raster", &history);
    Rast_command_history(&history);
    Rast_set_history(&history, HIST_DATSRC_1, infile);
    Rast_write_history(outmap, &history);

    /* set computation region to the new raster map */
    /* TODO: should be in the done message */
    if (set_region_flag->answer)
        G_put_window(&region);

    if (n_invalid && only_valid)
        G_message(_("%lu input points were invalid and filtered out"),
                  n_invalid);
    if (n_invalid && !only_valid)
        G_message(_("%lu input points were invalid, use -%c flag to filter"
                    " them out"), n_invalid, only_valid_flag->key);
    if (infiles.num_items > 1) {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points from %d files found in region."),
                outmap, count_total, infiles.num_items);
    }
    else {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points found in region."),
                outmap, count_total);
    }

    G_done_msg("%s", buff);
    G_debug(1, "Processed %lu points.", line_total);

    string_list_free(&infiles);

    exit(EXIT_SUCCESS);

}