Example #1
0
/*
 * pgstat_index -- returns live/dead tuples info in a generic index
 */
static Datum
pgstat_index(Relation rel, BlockNumber start, pgstat_page pagefn,
			 FunctionCallInfo fcinfo)
{
	BlockNumber nblocks;
	BlockNumber blkno;
	BufferAccessStrategy bstrategy;
	pgstattuple_type stat = {0};

	/* prepare access strategy for this index */
	bstrategy = GetAccessStrategy(BAS_BULKREAD);

	blkno = start;
	for (;;)
	{
		/* Get the current relation length */
		LockRelationForExtension(rel, ExclusiveLock);
		nblocks = RelationGetNumberOfBlocks(rel);
		UnlockRelationForExtension(rel, ExclusiveLock);

		/* Quit if we've scanned the whole relation */
		if (blkno >= nblocks)
		{
			stat.table_len = (uint64) nblocks *BLCKSZ;

			break;
		}

		for (; blkno < nblocks; blkno++)
		{
			CHECK_FOR_INTERRUPTS();

			pagefn(&stat, rel, blkno, bstrategy);
		}
	}

	relation_close(rel, AccessShareLock);

	return build_pgstattuple_type(&stat, fcinfo);
}
Example #2
0
/*
 * Build a new bloom index.
 */
IndexBuildResult *
blbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	double		reltuples;
	BloomBuildState buildstate;

	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	/* Initialize the meta page */
	BloomInitMetapage(index);

	/* Initialize the bloom build state */
	memset(&buildstate, 0, sizeof(buildstate));
	initBloomState(&buildstate.blstate, index);
	buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
											  "Bloom build temporary context",
											  ALLOCSET_DEFAULT_SIZES);
	initCachedPage(&buildstate);

	/* Do the heap scan */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
								   bloomBuildCallback, (void *) &buildstate);

	/*
	 * There are could be some items in cached page.  Flush this page if
	 * needed.
	 */
	if (buildstate.count > 0)
		flushCachedPage(index, &buildstate);

	MemoryContextDelete(buildstate.tmpCtx);

	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));
	result->heap_tuples = result->index_tuples = reltuples;

	return result;
}
Example #3
0
Datum
pg_relpagesbyid(PG_FUNCTION_ARGS)
{
	Oid			relid = PG_GETARG_OID(0);
	int64		relpages;
	Relation	rel;

	if (!superuser())
		ereport(ERROR,
				(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
				 (errmsg("must be superuser to use pgstattuple functions"))));

	rel = relation_open(relid, AccessShareLock);

	/* note: this will work OK on non-local temp tables */

	relpages = RelationGetNumberOfBlocks(rel);

	relation_close(rel, AccessShareLock);

	PG_RETURN_INT64(relpages);
}
Example #4
0
/* No need for superuser checks in v1.5, see above */
Datum
pg_relpages_v1_5(PG_FUNCTION_ARGS)
{
	text	   *relname = PG_GETARG_TEXT_PP(0);
	int64		relpages;
	Relation	rel;
	RangeVar   *relrv;

	relrv = makeRangeVarFromNameList(textToQualifiedNameList(relname));
	rel = relation_openrv(relrv, AccessShareLock);

	/* only some relkinds have storage */
	check_relation_relkind(rel);

	/* note: this will work OK on non-local temp tables */

	relpages = RelationGetNumberOfBlocks(rel);

	relation_close(rel, AccessShareLock);

	PG_RETURN_INT64(relpages);
}
Example #5
0
/*
 *	hashbuild() -- build a new hash index.
 */
Datum
hashbuild(PG_FUNCTION_ARGS)
{
	Relation	heap = (Relation) PG_GETARG_POINTER(0);
	Relation	index = (Relation) PG_GETARG_POINTER(1);
	IndexInfo  *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
	IndexBuildResult *result;
	double		reltuples;
	HashBuildState buildstate;

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	/* initialize the hash index metadata page */
	_hash_metapinit(index);

	/* build the index */
	buildstate.indtuples = 0;

	/* do the heap scan */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo,
								   hashbuildCallback, (void *) &buildstate);

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	PG_RETURN_POINTER(result);
}
Example #6
0
/* --------------------------------------------------------
 * pg_relpages()
 *
 * Get a number of pages of the table/index.
 *
 * Usage: SELECT pg_relpages('t1');
 *		  SELECT pg_relpages('t1_pkey');
 * --------------------------------------------------------
 */
Datum
pg_relpages(PG_FUNCTION_ARGS)
{
	text	   *relname = PG_GETARG_TEXT_P(0);

	Relation	rel;
	RangeVar   *relrv;
	int4		relpages;

	if (!superuser())
		ereport(ERROR,
				(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
				 (errmsg("must be superuser to use pgstattuple functions"))));

	relrv = makeRangeVarFromNameList(textToQualifiedNameList(relname));
	rel = relation_openrv(relrv, AccessShareLock);

	relpages = RelationGetNumberOfBlocks(rel);

	relation_close(rel, AccessShareLock);

	PG_RETURN_INT32(relpages);
}
Example #7
0
/*
 * GetPageWithFreeSpace - try to find a page in the given relation with
 *		at least the specified amount of free space.
 *
 * If successful, return the block number; if not, return InvalidBlockNumber.
 *
 * The caller must be prepared for the possibility that the returned page
 * will turn out to have too little space available by the time the caller
 * gets a lock on it.  In that case, the caller should report the actual
 * amount of free space available on that page and then try again (see
 * RecordAndGetPageWithFreeSpace).  If InvalidBlockNumber is returned,
 * extend the relation.
 *
 * For very small heap relations that don't have a FSM, we try every other
 * page before extending the relation.  To keep track of which pages have
 * been tried, initialize a local in-memory map of pages.
 */
BlockNumber
GetPageWithFreeSpace(Relation rel, Size spaceNeeded, bool check_fsm_only)
{
	uint8		min_cat = fsm_space_needed_to_cat(spaceNeeded);
	BlockNumber target_block,
				nblocks;

	/* First try the FSM, if it exists. */
	target_block = fsm_search(rel, min_cat);

	if (target_block == InvalidBlockNumber &&
		(rel->rd_rel->relkind == RELKIND_RELATION ||
		 rel->rd_rel->relkind == RELKIND_TOASTVALUE) &&
		!check_fsm_only)
	{
		nblocks = RelationGetNumberOfBlocks(rel);

		if (nblocks > HEAP_FSM_CREATION_THRESHOLD)
		{
			/*
			 * If the FSM knows nothing of the rel, try the last page before
			 * we give up and extend.  This avoids one-tuple-per-page syndrome
			 * during bootstrapping or in a recently-started system.
			 */
			target_block = nblocks - 1;
		}
		else if (nblocks > 0)
		{
			/* Create or update local map and get first candidate block. */
			fsm_local_set(rel, nblocks);
			target_block = fsm_local_search();
		}
	}

	return target_block;
}
Example #8
0
/*
 * Post-VACUUM cleanup.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
Datum bingo_vacuumcleanup(PG_FUNCTION_ARGS) {
   IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
   IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
   Relation rel = info->index;
   BlockNumber num_pages = 0;

   elog(NOTICE, "start test vacuum");
   /* 
    * If bulkdelete wasn't called, return NULL signifying no change
    * Note: this covers the analyze_only case too
    */
   if (stats == NULL) {
      PG_RETURN_POINTER(NULL);
   }
   /*
    * update statistics
    */
   num_pages = RelationGetNumberOfBlocks(rel);
   stats->num_pages = num_pages;
   stats->num_index_tuples = 1;
   stats->estimated_count = false;

   PG_RETURN_POINTER(stats);
}
Example #9
0
/*
 * Main entry point to GiST index build. Initially calls insert over and over,
 * but switches to more efficient buffering build algorithm after a certain
 * number of tuples (unless buffering mode is disabled).
 */
Datum
gistbuild(PG_FUNCTION_ARGS)
{
	Relation	heap = (Relation) PG_GETARG_POINTER(0);
	Relation	index = (Relation) PG_GETARG_POINTER(1);
	IndexInfo  *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
	IndexBuildResult *result;
	double		reltuples;
	GISTBuildState buildstate;
	Buffer		buffer;
	Page		page;
	MemoryContext oldcxt = CurrentMemoryContext;
	int			fillfactor;

	buildstate.indexrel = index;
	if (index->rd_options)
	{
		/* Get buffering mode from the options string */
		GiSTOptions *options = (GiSTOptions *) index->rd_options;
		char	   *bufferingMode = (char *) options + options->bufferingModeOffset;

		if (strcmp(bufferingMode, "on") == 0)
			buildstate.bufferingMode = GIST_BUFFERING_STATS;
		else if (strcmp(bufferingMode, "off") == 0)
			buildstate.bufferingMode = GIST_BUFFERING_DISABLED;
		else
			buildstate.bufferingMode = GIST_BUFFERING_AUTO;

		fillfactor = options->fillfactor;
	}
	else
	{
		/*
		 * By default, switch to buffering mode when the index grows too large
		 * to fit in cache.
		 */
		buildstate.bufferingMode = GIST_BUFFERING_AUTO;
		fillfactor = GIST_DEFAULT_FILLFACTOR;
	}
	/* Calculate target amount of free space to leave on pages */
	buildstate.freespace = BLCKSZ * (100 - fillfactor) / 100;

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	/* no locking is needed */
	buildstate.giststate = initGISTstate(index);

	/*
	 * Create a temporary memory context that is reset once for each tuple
	 * processed.  (Note: we don't bother to make this a child of the
	 * giststate's scanCxt, so we have to delete it separately at the end.)
	 */
	buildstate.giststate->tempCxt = createTempGistContext();

	/* initialize the root page */
	buffer = gistNewBuffer(index);
	Assert(BufferGetBlockNumber(buffer) == GIST_ROOT_BLKNO);
	page = BufferGetPage(buffer);

	START_CRIT_SECTION();

	GISTInitBuffer(buffer, F_LEAF);

	MarkBufferDirty(buffer);

	if (RelationNeedsWAL(index))
	{
		XLogRecPtr	recptr;
		XLogRecData rdata;

		rdata.data = (char *) &(index->rd_node);
		rdata.len = sizeof(RelFileNode);
		rdata.buffer = InvalidBuffer;
		rdata.next = NULL;

		recptr = XLogInsert(RM_GIST_ID, XLOG_GIST_CREATE_INDEX, &rdata);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
	}
	else
		PageSetLSN(page, gistGetFakeLSN(heap));

	UnlockReleaseBuffer(buffer);

	END_CRIT_SECTION();

	/* build the index */
	buildstate.indtuples = 0;
	buildstate.indtuplesSize = 0;

	/*
	 * Do the heap scan.
	 */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
								   gistBuildCallback, (void *) &buildstate);

	/*
	 * If buffering was used, flush out all the tuples that are still in the
	 * buffers.
	 */
	if (buildstate.bufferingMode == GIST_BUFFERING_ACTIVE)
	{
		elog(DEBUG1, "all tuples processed, emptying buffers");
		gistEmptyAllBuffers(&buildstate);
		gistFreeBuildBuffers(buildstate.gfbb);
	}

	/* okay, all heap tuples are indexed */
	MemoryContextSwitchTo(oldcxt);
	MemoryContextDelete(buildstate.giststate->tempCxt);

	freeGISTstate(buildstate.giststate);

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = (double) buildstate.indtuples;

	PG_RETURN_POINTER(result);
}
Example #10
0
/*
 *	hashbuild() -- build a new hash index.
 */
IndexBuildResult *
hashbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	BlockNumber relpages;
	double		reltuples;
	double		allvisfrac;
	uint32		num_buckets;
	long		sort_threshold;
	HashBuildState buildstate;

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	/* Estimate the number of rows currently present in the table */
	estimate_rel_size(heap, NULL, &relpages, &reltuples, &allvisfrac);

	/* Initialize the hash index metadata page and initial buckets */
	num_buckets = _hash_init(index, reltuples, MAIN_FORKNUM);

	/*
	 * If we just insert the tuples into the index in scan order, then
	 * (assuming their hash codes are pretty random) there will be no locality
	 * of access to the index, and if the index is bigger than available RAM
	 * then we'll thrash horribly.  To prevent that scenario, we can sort the
	 * tuples by (expected) bucket number.  However, such a sort is useless
	 * overhead when the index does fit in RAM.  We choose to sort if the
	 * initial index size exceeds maintenance_work_mem, or the number of
	 * buffers usable for the index, whichever is less.  (Limiting by the
	 * number of buffers should reduce thrashing between PG buffers and kernel
	 * buffers, which seems useful even if no physical I/O results.  Limiting
	 * by maintenance_work_mem is useful to allow easy testing of the sort
	 * code path, and may be useful to DBAs as an additional control knob.)
	 *
	 * NOTE: this test will need adjustment if a bucket is ever different from
	 * one page.  Also, "initial index size" accounting does not include the
	 * metapage, nor the first bitmap page.
	 */
	sort_threshold = (maintenance_work_mem * 1024L) / BLCKSZ;
	if (index->rd_rel->relpersistence != RELPERSISTENCE_TEMP)
		sort_threshold = Min(sort_threshold, NBuffers);
	else
		sort_threshold = Min(sort_threshold, NLocBuffer);

	if (num_buckets >= (uint32) sort_threshold)
		buildstate.spool = _h_spoolinit(heap, index, num_buckets);
	else
		buildstate.spool = NULL;

	/* prepare to build the index */
	buildstate.indtuples = 0;
	buildstate.heapRel = heap;

	/* do the heap scan */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
								   hashbuildCallback, (void *) &buildstate);

	if (buildstate.spool)
	{
		/* sort the tuples and insert them into the index */
		_h_indexbuild(buildstate.spool, buildstate.heapRel);
		_h_spooldestroy(buildstate.spool);
	}

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	return result;
}
Example #11
0
static Datum
pgstatindex_impl(Relation rel, FunctionCallInfo fcinfo)
{
	Datum		result;
	BlockNumber nblocks;
	BlockNumber blkno;
	BTIndexStat indexStat;
	BufferAccessStrategy bstrategy = GetAccessStrategy(BAS_BULKREAD);

	if (!IS_INDEX(rel) || !IS_BTREE(rel))
		elog(ERROR, "relation \"%s\" is not a btree index",
			 RelationGetRelationName(rel));

	/*
	 * Reject attempts to read non-local temporary relations; we would be
	 * likely to get wrong data since we have no visibility into the owning
	 * session's local buffers.
	 */
	if (RELATION_IS_OTHER_TEMP(rel))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot access temporary tables of other sessions")));

	/*
	 * Read metapage
	 */
	{
		Buffer		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, 0, RBM_NORMAL, bstrategy);
		Page		page = BufferGetPage(buffer);
		BTMetaPageData *metad = BTPageGetMeta(page);

		indexStat.version = metad->btm_version;
		indexStat.level = metad->btm_level;
		indexStat.root_blkno = metad->btm_root;

		ReleaseBuffer(buffer);
	}

	/* -- init counters -- */
	indexStat.internal_pages = 0;
	indexStat.leaf_pages = 0;
	indexStat.empty_pages = 0;
	indexStat.deleted_pages = 0;

	indexStat.max_avail = 0;
	indexStat.free_space = 0;

	indexStat.fragments = 0;

	/*
	 * Scan all blocks except the metapage
	 */
	nblocks = RelationGetNumberOfBlocks(rel);

	for (blkno = 1; blkno < nblocks; blkno++)
	{
		Buffer		buffer;
		Page		page;
		BTPageOpaque opaque;

		CHECK_FOR_INTERRUPTS();

		/* Read and lock buffer */
		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL, bstrategy);
		LockBuffer(buffer, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buffer);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);

		/* Determine page type, and update totals */

		if (P_ISDELETED(opaque))
			indexStat.deleted_pages++;
		else if (P_IGNORE(opaque))
			indexStat.empty_pages++;	/* this is the "half dead" state */
		else if (P_ISLEAF(opaque))
		{
			int			max_avail;

			max_avail = BLCKSZ - (BLCKSZ - ((PageHeader) page)->pd_special + SizeOfPageHeaderData);
			indexStat.max_avail += max_avail;
			indexStat.free_space += PageGetFreeSpace(page);

			indexStat.leaf_pages++;

			/*
			 * If the next leaf is on an earlier block, it means a
			 * fragmentation.
			 */
			if (opaque->btpo_next != P_NONE && opaque->btpo_next < blkno)
				indexStat.fragments++;
		}
		else
			indexStat.internal_pages++;

		/* Unlock and release buffer */
		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
		ReleaseBuffer(buffer);
	}

	relation_close(rel, AccessShareLock);

	/*----------------------------
	 * Build a result tuple
	 *----------------------------
	 */
	{
		TupleDesc	tupleDesc;
		int			j;
		char	   *values[10];
		HeapTuple	tuple;

		/* Build a tuple descriptor for our result type */
		if (get_call_result_type(fcinfo, NULL, &tupleDesc) != TYPEFUNC_COMPOSITE)
			elog(ERROR, "return type must be a row type");

		j = 0;
		values[j++] = psprintf("%d", indexStat.version);
		values[j++] = psprintf("%d", indexStat.level);
		values[j++] = psprintf(INT64_FORMAT,
							   (1 +		/* include the metapage in index_size */
								indexStat.leaf_pages +
								indexStat.internal_pages +
								indexStat.deleted_pages +
								indexStat.empty_pages) * BLCKSZ);
		values[j++] = psprintf("%u", indexStat.root_blkno);
		values[j++] = psprintf(INT64_FORMAT, indexStat.internal_pages);
		values[j++] = psprintf(INT64_FORMAT, indexStat.leaf_pages);
		values[j++] = psprintf(INT64_FORMAT, indexStat.empty_pages);
		values[j++] = psprintf(INT64_FORMAT, indexStat.deleted_pages);
		if (indexStat.max_avail > 0)
			values[j++] = psprintf("%.2f",
								   100.0 - (double) indexStat.free_space / (double) indexStat.max_avail * 100.0);
		else
			values[j++] = pstrdup("NaN");
		if (indexStat.leaf_pages > 0)
			values[j++] = psprintf("%.2f",
								   (double) indexStat.fragments / (double) indexStat.leaf_pages * 100.0);
		else
			values[j++] = pstrdup("NaN");

		tuple = BuildTupleFromCStrings(TupleDescGetAttInMetadata(tupleDesc),
									   values);

		result = HeapTupleGetDatum(tuple);
	}

	return result;
}
Example #12
0
/*
 * get_relation_info -
 *	  Retrieves catalog information for a given relation.
 *
 * Given the Oid of the relation, return the following info into fields
 * of the RelOptInfo struct:
 *
 *	min_attr	lowest valid AttrNumber
 *	max_attr	highest valid AttrNumber
 *	indexlist	list of IndexOptInfos for relation's indexes
 *	pages		number of pages
 *	tuples		number of tuples
 *
 * Also, initialize the attr_needed[] and attr_widths[] arrays.  In most
 * cases these are left as zeroes, but sometimes we need to compute attr
 * widths here, and we may as well cache the results for costsize.c.
 *
 * If inhparent is true, all we need to do is set up the attr arrays:
 * the RelOptInfo actually represents the appendrel formed by an inheritance
 * tree, and so the parent rel's physical size and index information isn't
 * important for it.
 */
void
get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
				  RelOptInfo *rel)
{
	Index		varno = rel->relid;
	Relation	relation;
	bool		hasindex;
	List	   *indexinfos = NIL;

	/*
	 * We need not lock the relation since it was already locked, either by
	 * the rewriter or when expand_inherited_rtentry() added it to the query's
	 * rangetable.
	 */
	relation = heap_open(relationObjectId, NoLock);

	rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
	rel->max_attr = RelationGetNumberOfAttributes(relation);
	rel->reltablespace = RelationGetForm(relation)->reltablespace;

	Assert(rel->max_attr >= rel->min_attr);
	rel->attr_needed = (Relids *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
	rel->attr_widths = (int32 *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));

	/*
	 * Estimate relation size --- unless it's an inheritance parent, in which
	 * case the size will be computed later in set_append_rel_pathlist, and we
	 * must leave it zero for now to avoid bollixing the total_table_pages
	 * calculation.
	 */
	if (!inhparent)
		estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
						  &rel->pages, &rel->tuples);

	/*
	 * Make list of indexes.  Ignore indexes on system catalogs if told to.
	 * Don't bother with indexes for an inheritance parent, either.
	 */
	if (inhparent ||
		(IgnoreSystemIndexes && IsSystemClass(relation->rd_rel)))
		hasindex = false;
	else
		hasindex = relation->rd_rel->relhasindex;

	if (hasindex)
	{
		List	   *indexoidlist;
		ListCell   *l;
		LOCKMODE	lmode;

		indexoidlist = RelationGetIndexList(relation);

		/*
		 * For each index, we get the same type of lock that the executor will
		 * need, and do not release it.  This saves a couple of trips to the
		 * shared lock manager while not creating any real loss of
		 * concurrency, because no schema changes could be happening on the
		 * index while we hold lock on the parent rel, and neither lock type
		 * blocks any other kind of index operation.
		 */
		if (rel->relid == root->parse->resultRelation)
			lmode = RowExclusiveLock;
		else
			lmode = AccessShareLock;

		foreach(l, indexoidlist)
		{
			Oid			indexoid = lfirst_oid(l);
			Relation	indexRelation;
			Form_pg_index index;
			IndexOptInfo *info;
			int			ncolumns;
			int			i;

			/*
			 * Extract info from the relation descriptor for the index.
			 */
			indexRelation = index_open(indexoid, lmode);
			index = indexRelation->rd_index;

			/*
			 * Ignore invalid indexes, since they can't safely be used for
			 * queries.  Note that this is OK because the data structure we
			 * are constructing is only used by the planner --- the executor
			 * still needs to insert into "invalid" indexes!
			 */
			if (!index->indisvalid)
			{
				index_close(indexRelation, NoLock);
				continue;
			}

			/*
			 * If the index is valid, but cannot yet be used, ignore it; but
			 * mark the plan we are generating as transient. See
			 * src/backend/access/heap/README.HOT for discussion.
			 */
			if (index->indcheckxmin &&
				!TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
									   TransactionXmin))
			{
				root->glob->transientPlan = true;
				index_close(indexRelation, NoLock);
				continue;
			}

			info = makeNode(IndexOptInfo);

			info->indexoid = index->indexrelid;
			info->reltablespace =
				RelationGetForm(indexRelation)->reltablespace;
			info->rel = rel;
			info->ncolumns = ncolumns = index->indnatts;

			/*
			 * Allocate per-column info arrays.  To save a few palloc cycles
			 * we allocate all the Oid-type arrays in one request.	Note that
			 * the opfamily array needs an extra, terminating zero at the end.
			 * We pre-zero the ordering info in case the index is unordered.
			 */
			info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
			info->opfamily = (Oid *) palloc0(sizeof(Oid) * (4 * ncolumns + 1));
			info->opcintype = info->opfamily + (ncolumns + 1);
			info->fwdsortop = info->opcintype + ncolumns;
			info->revsortop = info->fwdsortop + ncolumns;
			info->nulls_first = (bool *) palloc0(sizeof(bool) * ncolumns);

			for (i = 0; i < ncolumns; i++)
			{
				info->indexkeys[i] = index->indkey.values[i];
				info->opfamily[i] = indexRelation->rd_opfamily[i];
				info->opcintype[i] = indexRelation->rd_opcintype[i];
			}

			info->relam = indexRelation->rd_rel->relam;
			info->amcostestimate = indexRelation->rd_am->amcostestimate;
			info->amoptionalkey = indexRelation->rd_am->amoptionalkey;
			info->amsearchnulls = indexRelation->rd_am->amsearchnulls;
			info->amhasgettuple = OidIsValid(indexRelation->rd_am->amgettuple);
			info->amhasgetbitmap = OidIsValid(indexRelation->rd_am->amgetbitmap);

			/*
			 * Fetch the ordering operators associated with the index, if any.
			 * We expect that all ordering-capable indexes use btree's
			 * strategy numbers for the ordering operators.
			 */
			if (indexRelation->rd_am->amcanorder)
			{
				int			nstrat = indexRelation->rd_am->amstrategies;

				for (i = 0; i < ncolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];
					int			fwdstrat;
					int			revstrat;

					if (opt & INDOPTION_DESC)
					{
						fwdstrat = BTGreaterStrategyNumber;
						revstrat = BTLessStrategyNumber;
					}
					else
					{
						fwdstrat = BTLessStrategyNumber;
						revstrat = BTGreaterStrategyNumber;
					}

					/*
					 * Index AM must have a fixed set of strategies for it to
					 * make sense to specify amcanorder, so we need not allow
					 * the case amstrategies == 0.
					 */
					if (fwdstrat > 0)
					{
						Assert(fwdstrat <= nstrat);
						info->fwdsortop[i] = indexRelation->rd_operator[i * nstrat + fwdstrat - 1];
					}
					if (revstrat > 0)
					{
						Assert(revstrat <= nstrat);
						info->revsortop[i] = indexRelation->rd_operator[i * nstrat + revstrat - 1];
					}
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
				}
			}

			/*
			 * Fetch the index expressions and predicate, if any.  We must
			 * modify the copies we obtain from the relcache to have the
			 * correct varno for the parent relation, so that they match up
			 * correctly against qual clauses.
			 */
			info->indexprs = RelationGetIndexExpressions(indexRelation);
			info->indpred = RelationGetIndexPredicate(indexRelation);
			if (info->indexprs && varno != 1)
				ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
			if (info->indpred && varno != 1)
				ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
			info->predOK = false;		/* set later in indxpath.c */
			info->unique = index->indisunique;

			/*
			 * Estimate the index size.  If it's not a partial index, we lock
			 * the number-of-tuples estimate to equal the parent table; if it
			 * is partial then we have to use the same methods as we would for
			 * a table, except we can be sure that the index is not larger
			 * than the table.
			 */
			if (info->indpred == NIL)
			{
				info->pages = RelationGetNumberOfBlocks(indexRelation);
				info->tuples = rel->tuples;
			}
			else
			{
				estimate_rel_size(indexRelation, NULL,
								  &info->pages, &info->tuples);
				if (info->tuples > rel->tuples)
					info->tuples = rel->tuples;
			}

			index_close(indexRelation, NoLock);

			indexinfos = lcons(info, indexinfos);
		}

		list_free(indexoidlist);
	}
Example #13
0
/*
 * lazy_truncate_heap - try to truncate off any empty pages at the end
 */
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber old_rel_pages = vacrelstats->rel_pages;
	BlockNumber new_rel_pages;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);

	/*
	 * We need full exclusive lock on the relation in order to do truncation.
	 * If we can't get it, give up rather than waiting --- we don't want to
	 * block other backends, and we don't want to deadlock (which is quite
	 * possible considering we already hold a lower-grade lock).
	 */
	if (!ConditionalLockRelation(onerel, AccessExclusiveLock))
		return;

	/*
	 * Now that we have exclusive lock, look to see if the rel has grown
	 * whilst we were vacuuming with non-exclusive lock.  If so, give up; the
	 * newly added pages presumably contain non-deletable tuples.
	 */
	new_rel_pages = RelationGetNumberOfBlocks(onerel);
	if (new_rel_pages != old_rel_pages)
	{
		/*
		 * Note: we intentionally don't update vacrelstats->rel_pages with the
		 * new rel size here.  If we did, it would amount to assuming that the
		 * new pages are empty, which is unlikely.	Leaving the numbers alone
		 * amounts to assuming that the new pages have the same tuple density
		 * as existing ones, which is less unlikely.
		 */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Scan backwards from the end to verify that the end pages actually
	 * contain no tuples.  This is *necessary*, not optional, because other
	 * backends could have added tuples to these pages whilst we were
	 * vacuuming.
	 */
	new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);

	if (new_rel_pages >= old_rel_pages)
	{
		/* can't do anything after all */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Okay to truncate.
	 */
	RelationTruncate(onerel, new_rel_pages);

	/*
	 * We can release the exclusive lock as soon as we have truncated.	Other
	 * backends can't safely access the relation until they have processed the
	 * smgr invalidation that smgrtruncate sent out ... but that should happen
	 * as part of standard invalidation processing once they acquire lock on
	 * the relation.
	 */
	UnlockRelation(onerel, AccessExclusiveLock);

	/*
	 * Update statistics.  Here, it *is* correct to adjust rel_pages without
	 * also touching reltuples, since the tuple count wasn't changed by the
	 * truncation.
	 */
	vacrelstats->rel_pages = new_rel_pages;
	vacrelstats->pages_removed = old_rel_pages - new_rel_pages;

	ereport(elevel,
			(errmsg("\"%s\": truncated %u to %u pages",
					RelationGetRelationName(onerel),
					old_rel_pages, new_rel_pages),
			 errdetail("%s.",
					   pg_rusage_show(&ru0))));
}
Example #14
0
File: nbtree.c Project: LJoNe/gpdb
/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_DECLARE;

	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber blkno;
	bool		needLock;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_ENTER;

	/*
	 * Reset counts that will be incremented during the scan; needed in case
	 * of multiple scans during a single VACUUM command
	 */
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;
	vstate.freePages = NULL;	/* temporarily */
	vstate.nFreePages = 0;
	vstate.maxFreePages = 0;
	vstate.totFreePages = 0;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_MINSIZE,
												  ALLOCSET_DEFAULT_INITSIZE,
												  ALLOCSET_DEFAULT_MAXSIZE);

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  (See also vacuumlazy.c, which has the same
	 * issue.)	Also, we need not worry if a page is added immediately after
	 * we look; the page splitting code already has write-lock on the left
	 * page before it adds a right page, so we must already have processed any
	 * tuples due to be moved into such a page.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	blkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Allocate freePages after we read num_pages the first time */
		if (vstate.freePages == NULL)
		{
			/* No point in remembering more than MaxFSMPages pages */
			vstate.maxFreePages = MaxFSMPages;
			if ((BlockNumber) vstate.maxFreePages > num_pages)
				vstate.maxFreePages = (int) num_pages;
			vstate.freePages = (BlockNumber *)
				palloc(vstate.maxFreePages * sizeof(BlockNumber));
		}

		/* Quit if we've scanned the whole relation */
		if (blkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; blkno < num_pages; blkno++)
		{
			btvacuumpage(&vstate, blkno, blkno);
		}
	}

	/*
	 * During VACUUM FULL, we truncate off any recyclable pages at the end of
	 * the index.  In a normal vacuum it'd be unsafe to do this except by
	 * acquiring exclusive lock on the index and then rechecking all the
	 * pages; doesn't seem worth it.
	 */
	if (info->vacuum_full && vstate.nFreePages > 0)
	{
		BlockNumber new_pages = num_pages;

		while (vstate.nFreePages > 0 &&
			   vstate.freePages[vstate.nFreePages - 1] == new_pages - 1)
		{
			new_pages--;
			stats->pages_deleted--;
			vstate.nFreePages--;
			vstate.totFreePages = vstate.nFreePages;	/* can't be more */
		}
		if (new_pages != num_pages)
		{
			/*
			 * Okay to truncate.
			 */
			RelationTruncate(rel, new_pages,
							 /* markPersistentAsPhysicallyTruncated */ true);

			/* update statistics */
			stats->pages_removed += num_pages - new_pages;

			num_pages = new_pages;
		}
	}

	/*
	 * Update the shared Free Space Map with the info we now have about free
	 * pages in the index, discarding any old info the map may have. We do not
	 * need to sort the page numbers; they're in order already.
	 */
	RecordIndexFreeSpace(&rel->rd_node, vstate.totFreePages,
						 vstate.nFreePages, vstate.freePages);

	pfree(vstate.freePages);

	MemoryContextDelete(vstate.pagedelcontext);

	/* update statistics */
	stats->num_pages = num_pages;
	stats->pages_free = vstate.totFreePages;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_EXIT;

}
Example #15
0
/*
 *	btbuild() -- build a new btree index.
 */
IndexBuildResult *
btbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	double		reltuples;
	BTBuildState buildstate;

	buildstate.isUnique = indexInfo->ii_Unique;
	buildstate.haveDead = false;
	buildstate.heapRel = heap;
	buildstate.spool = NULL;
	buildstate.spool2 = NULL;
	buildstate.indtuples = 0;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
		ResetUsage();
#endif							/* BTREE_BUILD_STATS */

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	buildstate.spool = _bt_spoolinit(heap, index, indexInfo->ii_Unique, false);

	/*
	 * If building a unique index, put dead tuples in a second spool to keep
	 * them out of the uniqueness check.
	 */
	if (indexInfo->ii_Unique)
		buildstate.spool2 = _bt_spoolinit(heap, index, false, true);

	/* do the heap scan */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
								   btbuildCallback, (void *) &buildstate);

	/* okay, all heap tuples are indexed */
	if (buildstate.spool2 && !buildstate.haveDead)
	{
		/* spool2 turns out to be unnecessary */
		_bt_spooldestroy(buildstate.spool2);
		buildstate.spool2 = NULL;
	}

	/*
	 * Finish the build by (1) completing the sort of the spool file, (2)
	 * inserting the sorted tuples into btree pages and (3) building the upper
	 * levels.
	 */
	_bt_leafbuild(buildstate.spool, buildstate.spool2);
	_bt_spooldestroy(buildstate.spool);
	if (buildstate.spool2)
		_bt_spooldestroy(buildstate.spool2);

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD STATS");
		ResetUsage();
	}
#endif							/* BTREE_BUILD_STATS */

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	return result;
}
Example #16
0
File: nbtree.c Project: LJoNe/gpdb
/*
 * For a newly inserted heap tid, check if an entry with this tid
 * already exists in a unique index.  If it does, abort the inserting
 * transaction.
 */
static void
_bt_validate_tid(Relation irel, ItemPointer h_tid)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	BlockNumber blkno;
	BlockNumber num_pages;
	Buffer buf;
	Page page;
	BTPageOpaque opaque;
	IndexTuple itup;
	OffsetNumber maxoff,
			minoff,
			offnum;

	elog(DEBUG1, "validating tid (%d,%d) for index (%s)",
		 ItemPointerGetBlockNumber(h_tid), ItemPointerGetOffsetNumber(h_tid),
		 RelationGetRelationName(irel));

	blkno = BTREE_METAPAGE + 1;
	num_pages = RelationGetNumberOfBlocks(irel);

	MIRROREDLOCK_BUFMGR_LOCK;
	for (; blkno < num_pages; blkno++)
	{
		buf = ReadBuffer(irel, blkno);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		if (!PageIsNew(page))
			_bt_checkpage(irel, buf);
		if (P_ISLEAF(opaque))
		{
			minoff = P_FIRSTDATAKEY(opaque);
			maxoff = PageGetMaxOffsetNumber(page);
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				if (ItemPointerEquals(&itup->t_tid, h_tid))
				{
					Form_pg_attribute key_att = RelationGetDescr(irel)->attrs[0];
					Oid key = InvalidOid;
					bool isnull;
					if (key_att->atttypid == OIDOID)
					{
						key = DatumGetInt32(
								index_getattr(itup, 1, RelationGetDescr(irel), &isnull));
						elog(ERROR, "found tid (%d,%d), %s (%d) already in index (%s)",
							 ItemPointerGetBlockNumber(h_tid), ItemPointerGetOffsetNumber(h_tid),
							 NameStr(key_att->attname), key, RelationGetRelationName(irel));
					}
					else
					{
						elog(ERROR, "found tid (%d,%d) already in index (%s)",
							 ItemPointerGetBlockNumber(h_tid), ItemPointerGetOffsetNumber(h_tid),
							 RelationGetRelationName(irel));
					}
				}
			}
		}
		ReleaseBuffer(buf);
	}
	MIRROREDLOCK_BUFMGR_UNLOCK;
}
Example #17
0
/*
 *	hashbuild() -- build a new hash index.
 */
IndexBuildResult *
hashbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	BlockNumber relpages;
	double		reltuples;
	double		allvisfrac;
	uint32		num_buckets;
	HashBuildState buildstate;

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	/* Estimate the number of rows currently present in the table */
	estimate_rel_size(heap, NULL, &relpages, &reltuples, &allvisfrac);

	/* Initialize the hash index metadata page and initial buckets */
	num_buckets = _hash_metapinit(index, reltuples, MAIN_FORKNUM);

	/*
	 * If we just insert the tuples into the index in scan order, then
	 * (assuming their hash codes are pretty random) there will be no locality
	 * of access to the index, and if the index is bigger than available RAM
	 * then we'll thrash horribly.  To prevent that scenario, we can sort the
	 * tuples by (expected) bucket number.  However, such a sort is useless
	 * overhead when the index does fit in RAM.  We choose to sort if the
	 * initial index size exceeds NBuffers.
	 *
	 * NOTE: this test will need adjustment if a bucket is ever different from
	 * one page.
	 */
	if (num_buckets >= (uint32) NBuffers)
		buildstate.spool = _h_spoolinit(heap, index, num_buckets);
	else
		buildstate.spool = NULL;

	/* prepare to build the index */
	buildstate.indtuples = 0;

	/* do the heap scan */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
								   hashbuildCallback, (void *) &buildstate);

	if (buildstate.spool)
	{
		/* sort the tuples and insert them into the index */
		_h_indexbuild(buildstate.spool);
		_h_spooldestroy(buildstate.spool);
	}

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	return result;
}
Example #18
0
/*
 * This function takes an already open relation and scans its pages,
 * skipping those that have the corresponding visibility map bit set.
 * For pages we skip, we find the free space from the free space map
 * and approximate tuple_len on that basis. For the others, we count
 * the exact number of dead tuples etc.
 *
 * This scan is loosely based on vacuumlazy.c:lazy_scan_heap(), but
 * we do not try to avoid skipping single pages.
 */
static void
statapprox_heap(Relation rel, output_type *stat)
{
	BlockNumber scanned,
				nblocks,
				blkno;
	Buffer		vmbuffer = InvalidBuffer;
	BufferAccessStrategy bstrategy;
	TransactionId OldestXmin;
	uint64		misc_count = 0;

	OldestXmin = GetOldestXmin(rel, PROCARRAY_FLAGS_VACUUM);
	bstrategy = GetAccessStrategy(BAS_BULKREAD);

	nblocks = RelationGetNumberOfBlocks(rel);
	scanned = 0;

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		Size		freespace;

		CHECK_FOR_INTERRUPTS();

		/*
		 * If the page has only visible tuples, then we can find out the free
		 * space from the FSM and move on.
		 */
		if (VM_ALL_VISIBLE(rel, blkno, &vmbuffer))
		{
			freespace = GetRecordedFreeSpace(rel, blkno);
			stat->tuple_len += BLCKSZ - freespace;
			stat->free_space += freespace;
			continue;
		}

		buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno,
								 RBM_NORMAL, bstrategy);

		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		/*
		 * It's not safe to call PageGetHeapFreeSpace() on new pages, so we
		 * treat them as being free space for our purposes.
		 */
		if (!PageIsNew(page))
			stat->free_space += PageGetHeapFreeSpace(page);
		else
			stat->free_space += BLCKSZ - SizeOfPageHeaderData;

		if (PageIsNew(page) || PageIsEmpty(page))
		{
			UnlockReleaseBuffer(buf);
			continue;
		}

		scanned++;

		/*
		 * Look at each tuple on the page and decide whether it's live or
		 * dead, then count it and its size. Unlike lazy_scan_heap, we can
		 * afford to ignore problems and special cases.
		 */
		maxoff = PageGetMaxOffsetNumber(page);

		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			HeapTupleData tuple;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid) || ItemIdIsRedirected(itemid) ||
				ItemIdIsDead(itemid))
			{
				continue;
			}

			Assert(ItemIdIsNormal(itemid));

			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			tuple.t_tableOid = RelationGetRelid(rel);

			/*
			 * We count live and dead tuples, but we also need to add up
			 * others in order to feed vac_estimate_reltuples.
			 */
			switch (HeapTupleSatisfiesVacuum(&tuple, OldestXmin, buf))
			{
				case HEAPTUPLE_RECENTLY_DEAD:
					misc_count++;
					/* Fall through */
				case HEAPTUPLE_DEAD:
					stat->dead_tuple_len += tuple.t_len;
					stat->dead_tuple_count++;
					break;
				case HEAPTUPLE_LIVE:
					stat->tuple_len += tuple.t_len;
					stat->tuple_count++;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					misc_count++;
					break;
				default:
					elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
					break;
			}
		}

		UnlockReleaseBuffer(buf);
	}

	stat->table_len = (uint64) nblocks *BLCKSZ;

	stat->tuple_count = vac_estimate_reltuples(rel, false, nblocks, scanned,
											 stat->tuple_count + misc_count);

	/*
	 * Calculate percentages if the relation has one or more pages.
	 */
	if (nblocks != 0)
	{
		stat->scanned_percent = 100 * scanned / nblocks;
		stat->tuple_percent = 100.0 * stat->tuple_len / stat->table_len;
		stat->dead_tuple_percent = 100.0 * stat->dead_tuple_len / stat->table_len;
		stat->free_percent = 100.0 * stat->free_space / stat->table_len;
	}

	if (BufferIsValid(vmbuffer))
	{
		ReleaseBuffer(vmbuffer);
		vmbuffer = InvalidBuffer;
	}
}
Example #19
0
/*
 * Insert all matching tuples into to a bitmap.
 */
int64
blgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
{
	int64		ntids = 0;
	BlockNumber blkno = BLOOM_HEAD_BLKNO,
				npages;
	int			i;
	BufferAccessStrategy bas;
	BloomScanOpaque so = (BloomScanOpaque) scan->opaque;

	if (so->sign == NULL)
	{
		/* New search: have to calculate search signature */
		ScanKey		skey = scan->keyData;

		so->sign = palloc0(sizeof(SignType) * so->state.opts.bloomLength);

		for (i = 0; i < scan->numberOfKeys; i++)
		{
			/*
			 * Assume bloom-indexable operators to be strict, so nothing could
			 * be found for NULL key.
			 */
			if (skey->sk_flags & SK_ISNULL)
			{
				pfree(so->sign);
				so->sign = NULL;
				return 0;
			}

			/* Add next value to the signature */
			signValue(&so->state, so->sign, skey->sk_argument,
					  skey->sk_attno - 1);

			skey++;
		}
	}

	/*
	 * We're going to read the whole index. This is why we use appropriate
	 * buffer access strategy.
	 */
	bas = GetAccessStrategy(BAS_BULKREAD);
	npages = RelationGetNumberOfBlocks(scan->indexRelation);

	for (blkno = BLOOM_HEAD_BLKNO; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		buffer = ReadBufferExtended(scan->indexRelation, MAIN_FORKNUM,
									blkno, RBM_NORMAL, bas);

		LockBuffer(buffer, BUFFER_LOCK_SHARE);
		page = BufferGetPage(buffer);
		TestForOldSnapshot(scan->xs_snapshot, scan->indexRelation, page);

		if (!BloomPageIsDeleted(page))
		{
			OffsetNumber offset,
						maxOffset = BloomPageGetMaxOffset(page);

			for (offset = 1; offset <= maxOffset; offset++)
			{
				BloomTuple *itup = BloomPageGetTuple(&so->state, page, offset);
				bool		res = true;

				/* Check index signature with scan signature */
				for (i = 0; i < so->state.opts.bloomLength; i++)
				{
					if ((itup->sign[i] & so->sign[i]) != so->sign[i])
					{
						res = false;
						break;
					}
				}

				/* Add matching tuples to bitmap */
				if (res)
				{
					tbm_add_tuples(tbm, &itup->heapPtr, 1, true);
					ntids++;
				}
			}
		}

		UnlockReleaseBuffer(buffer);
		CHECK_FOR_INTERRUPTS();
	}
	FreeAccessStrategy(bas);

	return ntids;
}
Example #20
0
/*
 * VACUUM cleanup: update FSM
 */
IndexBulkDeleteResult *
gistvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	bool		needLock;

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		return stats;

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		/* use heap's tuple count */
		stats->num_index_tuples = info->num_heap_tuples;
		stats->estimated_count = info->estimated_count;

		/*
		 * XXX the above is wrong if index is partial.  Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	totFreePages = 0;
	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
									info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			totFreePages++;
			RecordFreeIndexPage(rel, blkno);
		}
		UnlockReleaseBuffer(buffer);
	}

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	/* return statistics */
	stats->pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	return stats;
}
Example #21
0
File: nbtree.c Project: LJoNe/gpdb
/*
 * Post vacuum, iterate over all entries in index, check if the h_tid
 * of each entry exists and is not dead.  For specific system tables,
 * also ensure that the key in index entry matches the corresponding
 * attribute in the heap tuple.
 */
void
_bt_validate_vacuum(Relation irel, Relation hrel, TransactionId oldest_xmin)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	BlockNumber blkno;
	BlockNumber num_pages;
	Buffer ibuf = InvalidBuffer;
	Buffer hbuf = InvalidBuffer;
	Page ipage;
	BTPageOpaque opaque;
	IndexTuple itup;
	HeapTupleData htup;
	OffsetNumber maxoff,
			minoff,
			offnum;
	Oid ioid,
		hoid;
	bool isnull;

	blkno = BTREE_METAPAGE + 1;
	num_pages = RelationGetNumberOfBlocks(irel);

	elog(LOG, "btvalidatevacuum: index %s, heap %s",
		 RelationGetRelationName(irel), RelationGetRelationName(hrel));

	MIRROREDLOCK_BUFMGR_LOCK;
	for (; blkno < num_pages; blkno++)
	{
		ibuf = ReadBuffer(irel, blkno);
		ipage = BufferGetPage(ibuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(ipage);
		if (!PageIsNew(ipage))
			_bt_checkpage(irel, ibuf);
		if (P_ISLEAF(opaque))
		{
			minoff = P_FIRSTDATAKEY(opaque);
			maxoff = PageGetMaxOffsetNumber(ipage);
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				itup = (IndexTuple) PageGetItem(ipage,
												PageGetItemId(ipage, offnum));
				ItemPointerCopy(&itup->t_tid, &htup.t_self);
				/*
				 * TODO: construct a tid bitmap based on index tids
				 * and fetch heap tids in order afterwards.  That will
				 * also allow validating if a heap tid appears twice
				 * in a unique index.
				 */
				if (!heap_release_fetch(hrel, SnapshotAny, &htup,
										&hbuf, true, NULL))
				{
					elog(ERROR, "btvalidatevacuum: tid (%d,%d) from index %s "
						 "not found in heap %s",
						 ItemPointerGetBlockNumber(&itup->t_tid),
						 ItemPointerGetOffsetNumber(&itup->t_tid),
						 RelationGetRelationName(irel),
						 RelationGetRelationName(hrel));
				}
				switch (HeapTupleSatisfiesVacuum(hrel, htup.t_data, oldest_xmin, hbuf))
				{
					case HEAPTUPLE_RECENTLY_DEAD:
					case HEAPTUPLE_LIVE:
					case HEAPTUPLE_INSERT_IN_PROGRESS:
					case HEAPTUPLE_DELETE_IN_PROGRESS:
						/* these tuples are considered alive by vacuum */
						break;
					case HEAPTUPLE_DEAD:
						elog(ERROR, "btvalidatevacuum: vacuum did not remove "
							 "dead tuple (%d,%d) from heap %s and index %s",
							 ItemPointerGetBlockNumber(&itup->t_tid),
							 ItemPointerGetOffsetNumber(&itup->t_tid),
							 RelationGetRelationName(hrel),
							 RelationGetRelationName(irel));
						break;
					default:
						elog(ERROR, "btvalidatevacuum: invalid visibility");
						break;
				}
				switch(RelationGetRelid(irel))
				{
					case DatabaseOidIndexId:
					case TypeOidIndexId:
					case ClassOidIndexId:
					case ConstraintOidIndexId:
						hoid = HeapTupleGetOid(&htup);
						ioid = index_getattr(itup, 1, RelationGetDescr(irel), &isnull);
						if (hoid != ioid)
						{
							elog(ERROR,
								 "btvalidatevacuum: index oid(%d) != heap oid(%d)"
								 " tuple (%d,%d) index %s", ioid, hoid,
								 ItemPointerGetBlockNumber(&itup->t_tid),
								 ItemPointerGetOffsetNumber(&itup->t_tid),
								 RelationGetRelationName(irel));
						}
						break;
					case GpRelationNodeOidIndexId:
						hoid = heap_getattr(&htup, 1, RelationGetDescr(hrel), &isnull);
						ioid = index_getattr(itup, 1, RelationGetDescr(irel), &isnull);
						if (hoid != ioid)
						{
							elog(ERROR,
								 "btvalidatevacuum: index oid(%d) != heap oid(%d)"
								 " tuple (%d,%d) index %s", ioid, hoid,
								 ItemPointerGetBlockNumber(&itup->t_tid),
								 ItemPointerGetOffsetNumber(&itup->t_tid),
								 RelationGetRelationName(irel));
						}
						int4 hsegno = heap_getattr(&htup, 2, RelationGetDescr(hrel), &isnull);
						int4 isegno = index_getattr(itup, 2, RelationGetDescr(irel), &isnull);
						if (isegno != hsegno)
						{
							elog(ERROR,
								 "btvalidatevacuum: index segno(%d) != heap segno(%d)"
								 " tuple (%d,%d) index %s", isegno, hsegno,
								 ItemPointerGetBlockNumber(&itup->t_tid),
								 ItemPointerGetOffsetNumber(&itup->t_tid),
								 RelationGetRelationName(irel));
						}
						break;
					default:
						break;
				}
				if (RelationGetNamespace(irel) == PG_AOSEGMENT_NAMESPACE)
				{
					int4 isegno = index_getattr(itup, 1, RelationGetDescr(irel), &isnull);
					int4 hsegno = heap_getattr(&htup, 1, RelationGetDescr(hrel), &isnull);
					if (isegno != hsegno)
					{
						elog(ERROR,
							 "btvalidatevacuum: index segno(%d) != heap segno(%d)"
							 " tuple (%d,%d) index %s", isegno, hsegno,
							 ItemPointerGetBlockNumber(&itup->t_tid),
							 ItemPointerGetOffsetNumber(&itup->t_tid),
							 RelationGetRelationName(irel));
					}
				}
			}
		}
		if (BufferIsValid(ibuf))
			ReleaseBuffer(ibuf);
	}
	if (BufferIsValid(hbuf))
		ReleaseBuffer(hbuf);
	MIRROREDLOCK_BUFMGR_UNLOCK;
}
Example #22
0
/* ------------------------------------------------------
 * pgstathashindex()
 *
 * Usage: SELECT * FROM pgstathashindex('hashindex');
 * ------------------------------------------------------
 */
Datum
pgstathashindex(PG_FUNCTION_ARGS)
{
	Oid			relid = PG_GETARG_OID(0);
	BlockNumber	nblocks;
	BlockNumber	blkno;
	Relation	rel;
	HashIndexStat stats;
	BufferAccessStrategy bstrategy;
	HeapTuple	tuple;
	TupleDesc	tupleDesc;
	Datum		values[8];
	bool		nulls[8];
	Buffer		metabuf;
	HashMetaPage	metap;
	float8		free_percent;
	uint64		total_space;

	rel = index_open(relid, AccessShareLock);

	/* index_open() checks that it's an index */
	if (!IS_HASH(rel))
		ereport(ERROR,
				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
				 errmsg("relation \"%s\" is not a HASH index",
						RelationGetRelationName(rel))));


	/*
	 * Reject attempts to read non-local temporary relations; we would be
	 * likely to get wrong data since we have no visibility into the owning
	 * session's local buffers.
	 */
	if (RELATION_IS_OTHER_TEMP(rel))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			   errmsg("cannot access temporary indexes of other sessions")));

	/* Get the information we need from the metapage. */
	memset(&stats, 0, sizeof(stats));
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));
	stats.version = metap->hashm_version;
	stats.space_per_page = metap->hashm_bsize;
	_hash_relbuf(rel, metabuf);

	/* Get the current relation length */
	nblocks = RelationGetNumberOfBlocks(rel);

	/* prepare access strategy for this index */
	bstrategy = GetAccessStrategy(BAS_BULKREAD);

	/* Start from blkno 1 as 0th block is metapage */
	for (blkno = 1; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;

		CHECK_FOR_INTERRUPTS();

		buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
								 bstrategy);
		LockBuffer(buf, BUFFER_LOCK_SHARE);
		page = (Page) BufferGetPage(buf);

		if (PageIsNew(page))
			stats.unused_pages++;
		else if (PageGetSpecialSize(page) !=
				 MAXALIGN(sizeof(HashPageOpaqueData)))
			ereport(ERROR,
					(errcode(ERRCODE_INDEX_CORRUPTED),
					 errmsg("index \"%s\" contains corrupted page at block %u",
							RelationGetRelationName(rel),
							BufferGetBlockNumber(buf))));
		else
		{
			HashPageOpaque	opaque;
			int		pagetype;

			opaque = (HashPageOpaque) PageGetSpecialPointer(page);
			pagetype = opaque->hasho_flag & LH_PAGE_TYPE;

			if (pagetype == LH_BUCKET_PAGE)
			{
				stats.bucket_pages++;
				GetHashPageStats(page, &stats);
			}
			else if (pagetype == LH_OVERFLOW_PAGE)
			{
				stats.overflow_pages++;
				GetHashPageStats(page, &stats);
			}
			else if (pagetype == LH_BITMAP_PAGE)
				stats.bitmap_pages++;
			else if (pagetype == LH_UNUSED_PAGE)
				stats.unused_pages++;
			else
				ereport(ERROR,
						(errcode(ERRCODE_INDEX_CORRUPTED),
					errmsg("unexpected page type 0x%04X in HASH index \"%s\" block %u",
							opaque->hasho_flag, RelationGetRelationName(rel),
							BufferGetBlockNumber(buf))));
		}
		UnlockReleaseBuffer(buf);
	}

	/* Done accessing the index */
	index_close(rel, AccessShareLock);

	/* Count unused pages as free space. */
	stats.free_space += stats.unused_pages * stats.space_per_page;

	/*
	 * Total space available for tuples excludes the metapage and the bitmap
	 * pages.
	 */
	total_space = (nblocks - (stats.bitmap_pages + 1)) * stats.space_per_page;

	if (total_space == 0)
		free_percent = 0.0;
	else
		free_percent = 100.0 * stats.free_space / total_space;

	/*
	 * Build a tuple descriptor for our result type
	 */
	if (get_call_result_type(fcinfo, NULL, &tupleDesc) != TYPEFUNC_COMPOSITE)
		elog(ERROR, "return type must be a row type");

	tupleDesc = BlessTupleDesc(tupleDesc);

	/*
	 * Build and return the tuple
	 */
	MemSet(nulls, 0, sizeof(nulls));
	values[0] = Int32GetDatum(stats.version);
	values[1] = Int64GetDatum((int64) stats.bucket_pages);
	values[2] = Int64GetDatum((int64) stats.overflow_pages);
	values[3] = Int64GetDatum((int64) stats.bitmap_pages);
	values[4] = Int64GetDatum((int64) stats.unused_pages);
	values[5] = Int64GetDatum(stats.live_items);
	values[6] = Int64GetDatum(stats.dead_items);
	values[7] = Float8GetDatum(free_percent);
	tuple = heap_form_tuple(tupleDesc, values, nulls);

	PG_RETURN_DATUM(HeapTupleGetDatum(tuple));
}
Example #23
0
File: nbtree.c Project: LJoNe/gpdb
/*
 *	btbuild() -- build a new btree index.
 */
Datum
btbuild(PG_FUNCTION_ARGS)
{
	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_DECLARE;

	Relation	heap = (Relation) PG_GETARG_POINTER(0);
	Relation	index = (Relation) PG_GETARG_POINTER(1);
	IndexInfo  *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
	IndexBuildResult *result;
	double		reltuples;
	BTBuildState buildstate;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_ENTER;

	buildstate.isUnique = indexInfo->ii_Unique;
	buildstate.haveDead = false;
	buildstate.heapRel = heap;
	buildstate.spool = NULL;
	buildstate.spool2 = NULL;
	buildstate.indtuples = 0;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
		ResetUsage();
#endif   /* BTREE_BUILD_STATS */

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	PG_TRY();
	{
		buildstate.spool = _bt_spoolinit(index, indexInfo->ii_Unique, false);

		/*
		 * If building a unique index, put dead tuples in a second spool to keep
		 * them out of the uniqueness check.
		 */
		if (indexInfo->ii_Unique)
			buildstate.spool2 = _bt_spoolinit(index, false, true);

		/* do the heap scan */
		reltuples = IndexBuildScan(heap, index, indexInfo, false,
				btbuildCallback, (void *) &buildstate);

		/* okay, all heap tuples are indexed */
		if (buildstate.spool2 && !buildstate.haveDead)
		{
			/* spool2 turns out to be unnecessary */
			_bt_spooldestroy(buildstate.spool2);
			buildstate.spool2 = NULL;
		}

		/*
		 * Finish the build by (1) completing the sort of the spool file, (2)
		 * inserting the sorted tuples into btree pages and (3) building the upper
		 * levels.
		 */
		_bt_leafbuild(buildstate.spool, buildstate.spool2);
		_bt_spooldestroy(buildstate.spool);
		buildstate.spool = NULL;

		if (buildstate.spool2)
		{
			_bt_spooldestroy(buildstate.spool2);
			buildstate.spool2 = NULL;
		}
	}
	PG_CATCH();
	{
		/* Clean up the sort state on error */
		if (buildstate.spool)
		{
			_bt_spooldestroy(buildstate.spool);
			buildstate.spool = NULL;
		}

		if (buildstate.spool2)
		{
			_bt_spooldestroy(buildstate.spool2);
			buildstate.spool2 = NULL;
		}

		PG_RE_THROW();
	}
	PG_END_TRY();

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD STATS");
		ResetUsage();
	}
#endif   /* BTREE_BUILD_STATS */

	/*
	 * If we are reindexing a pre-existing index, it is critical to send out a
	 * relcache invalidation SI message to ensure all backends re-read the
	 * index metapage.	We expect that the caller will ensure that happens
	 * (typically as a side effect of updating index stats, but it must happen
	 * even if the stats don't change!)
	 */

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_EXIT;

	PG_RETURN_POINTER(result);
}
Example #24
0
Datum
ginbuild(PG_FUNCTION_ARGS)
{
	Relation	heap = (Relation) PG_GETARG_POINTER(0);
	Relation	index = (Relation) PG_GETARG_POINTER(1);
	IndexInfo  *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
	IndexBuildResult *result;
	double		reltuples;
	GinBuildState buildstate;
	Buffer		RootBuffer,
				MetaBuffer;
	ItemPointerData *list;
	Datum		key;
	GinNullCategory category;
	uint32		nlist;
	MemoryContext oldCtx;
	OffsetNumber attnum;

	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	initGinState(&buildstate.ginstate, index);
	buildstate.indtuples = 0;
	memset(&buildstate.buildStats, 0, sizeof(GinStatsData));

	/* initialize the meta page */
	MetaBuffer = GinNewBuffer(index);

	/* initialize the root page */
	RootBuffer = GinNewBuffer(index);

	START_CRIT_SECTION();
	GinInitMetabuffer(MetaBuffer);
	MarkBufferDirty(MetaBuffer);
	GinInitBuffer(RootBuffer, GIN_LEAF);
	MarkBufferDirty(RootBuffer);

	if (RelationNeedsWAL(index))
	{
		XLogRecPtr	recptr;
		XLogRecData rdata;
		Page		page;

		rdata.buffer = InvalidBuffer;
		rdata.data = (char *) &(index->rd_node);
		rdata.len = sizeof(RelFileNode);
		rdata.next = NULL;

		recptr = XLogInsert(RM_GIN_ID, XLOG_GIN_CREATE_INDEX, &rdata);

		page = BufferGetPage(RootBuffer);
		PageSetLSN(page, recptr);

		page = BufferGetPage(MetaBuffer);
		PageSetLSN(page, recptr);
	}

	UnlockReleaseBuffer(MetaBuffer);
	UnlockReleaseBuffer(RootBuffer);
	END_CRIT_SECTION();

	/* count the root as first entry page */
	buildstate.buildStats.nEntryPages++;

	/*
	 * create a temporary memory context that is reset once for each tuple
	 * inserted into the index
	 */
	buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
											  "Gin build temporary context",
											  ALLOCSET_DEFAULT_MINSIZE,
											  ALLOCSET_DEFAULT_INITSIZE,
											  ALLOCSET_DEFAULT_MAXSIZE);

	buildstate.funcCtx = AllocSetContextCreate(buildstate.tmpCtx,
					 "Gin build temporary context for user-defined function",
											   ALLOCSET_DEFAULT_MINSIZE,
											   ALLOCSET_DEFAULT_INITSIZE,
											   ALLOCSET_DEFAULT_MAXSIZE);

	buildstate.accum.ginstate = &buildstate.ginstate;
	ginInitBA(&buildstate.accum);

	/*
	 * Do the heap scan.  We disallow sync scan here because dataPlaceToPage
	 * prefers to receive tuples in TID order.
	 */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, false,
								   ginBuildCallback, (void *) &buildstate);

	/* dump remaining entries to the index */
	oldCtx = MemoryContextSwitchTo(buildstate.tmpCtx);
	ginBeginBAScan(&buildstate.accum);
	while ((list = ginGetBAEntry(&buildstate.accum,
								 &attnum, &key, &category, &nlist)) != NULL)
	{
		/* there could be many entries, so be willing to abort here */
		CHECK_FOR_INTERRUPTS();
		ginEntryInsert(&buildstate.ginstate, attnum, key, category,
					   list, nlist, &buildstate.buildStats);
	}
	MemoryContextSwitchTo(oldCtx);

	MemoryContextDelete(buildstate.tmpCtx);

	/*
	 * Update metapage stats
	 */
	buildstate.buildStats.nTotalPages = RelationGetNumberOfBlocks(index);
	ginUpdateStats(index, &buildstate.buildStats);

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	PG_RETURN_POINTER(result);
}
Example #25
0
IndexBuildResult *
ginbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	double		reltuples;
	GinBuildState buildstate;
	Buffer		RootBuffer,
				MetaBuffer;
	ItemPointerData *list;
	Datum		key;
	GinNullCategory category;
	uint32		nlist;
	MemoryContext oldCtx;
	OffsetNumber attnum;

	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	initGinState(&buildstate.ginstate, index);
	buildstate.indtuples = 0;
	memset(&buildstate.buildStats, 0, sizeof(GinStatsData));

	/* initialize the meta page */
	MetaBuffer = GinNewBuffer(index);

	/* initialize the root page */
	RootBuffer = GinNewBuffer(index);

	START_CRIT_SECTION();
	GinInitMetabuffer(MetaBuffer);
	MarkBufferDirty(MetaBuffer);
	GinInitBuffer(RootBuffer, GIN_LEAF);
	MarkBufferDirty(RootBuffer);

	if (RelationNeedsWAL(index))
	{
		XLogRecPtr	recptr;
		Page		page;

		XLogBeginInsert();
		XLogRegisterBuffer(0, MetaBuffer, REGBUF_WILL_INIT | REGBUF_STANDARD);
		XLogRegisterBuffer(1, RootBuffer, REGBUF_WILL_INIT);

		recptr = XLogInsert(RM_GIN_ID, XLOG_GIN_CREATE_INDEX);

		page = BufferGetPage(RootBuffer);
		PageSetLSN(page, recptr);

		page = BufferGetPage(MetaBuffer);
		PageSetLSN(page, recptr);
	}

	UnlockReleaseBuffer(MetaBuffer);
	UnlockReleaseBuffer(RootBuffer);
	END_CRIT_SECTION();

	/* count the root as first entry page */
	buildstate.buildStats.nEntryPages++;

	/*
	 * create a temporary memory context that is used to hold data not yet
	 * dumped out to the index
	 */
	buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
											  "Gin build temporary context",
											  ALLOCSET_DEFAULT_SIZES);

	/*
	 * create a temporary memory context that is used for calling
	 * ginExtractEntries(), and can be reset after each tuple
	 */
	buildstate.funcCtx = AllocSetContextCreate(CurrentMemoryContext,
											   "Gin build temporary context for user-defined function",
											   ALLOCSET_DEFAULT_SIZES);

	buildstate.accum.ginstate = &buildstate.ginstate;
	ginInitBA(&buildstate.accum);

	/*
	 * Do the heap scan.  We disallow sync scan here because dataPlaceToPage
	 * prefers to receive tuples in TID order.
	 */
	reltuples = IndexBuildHeapScan(heap, index, indexInfo, false,
								   ginBuildCallback, (void *) &buildstate, NULL);

	/* dump remaining entries to the index */
	oldCtx = MemoryContextSwitchTo(buildstate.tmpCtx);
	ginBeginBAScan(&buildstate.accum);
	while ((list = ginGetBAEntry(&buildstate.accum,
								 &attnum, &key, &category, &nlist)) != NULL)
	{
		/* there could be many entries, so be willing to abort here */
		CHECK_FOR_INTERRUPTS();
		ginEntryInsert(&buildstate.ginstate, attnum, key, category,
					   list, nlist, &buildstate.buildStats);
	}
	MemoryContextSwitchTo(oldCtx);

	MemoryContextDelete(buildstate.funcCtx);
	MemoryContextDelete(buildstate.tmpCtx);

	/*
	 * Update metapage stats
	 */
	buildstate.buildStats.nTotalPages = RelationGetNumberOfBlocks(index);
	ginUpdateStats(index, &buildstate.buildStats);

	/*
	 * Return statistics
	 */
	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

	return result;
}
Example #26
0
Datum
ginvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	index = info->index;
	bool		needLock;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	GinState	ginstate;
	GinStatsData idxStat;

	/*
	 * In an autovacuum analyze, we want to clean up pending insertions.
	 * Otherwise, an ANALYZE-only call is a no-op.
	 */
	if (info->analyze_only)
	{
		if (IsAutoVacuumWorkerProcess())
		{
			initGinState(&ginstate, index);
			ginInsertCleanup(&ginstate, true, stats);
		}
		PG_RETURN_POINTER(stats);
	}

	/*
	 * Set up all-zero stats and cleanup pending inserts if ginbulkdelete
	 * wasn't called
	 */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		initGinState(&ginstate, index);
		ginInsertCleanup(&ginstate, true, stats);
	}

	memset(&idxStat, 0, sizeof(idxStat));

	/*
	 * XXX we always report the heap tuple count as the number of index
	 * entries.  This is bogus if the index is partial, but it's real hard to
	 * tell how many distinct heap entries are referenced by a GIN index.
	 */
	stats->num_index_tuples = info->num_heap_tuples;
	stats->estimated_count = info->estimated_count;

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(index);

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	totFreePages = 0;

	for (blkno = GIN_ROOT_BLKNO; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, GIN_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (GinPageIsDeleted(page))
		{
			Assert(blkno != GIN_ROOT_BLKNO);
			RecordFreeIndexPage(index, blkno);
			totFreePages++;
		}
		else if (GinPageIsData(page))
		{
			idxStat.nDataPages++;
		}
		else if (!GinPageIsList(page))
		{
			idxStat.nEntryPages++;

			if (GinPageIsLeaf(page))
				idxStat.nEntries += PageGetMaxOffsetNumber(page);
		}

		UnlockReleaseBuffer(buffer);
	}

	/* Update the metapage with accurate page and entry counts */
	idxStat.nTotalPages = npages;
	ginUpdateStats(info->index, &idxStat);

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	stats->pages_free = totFreePages;

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Example #27
0
/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber blkno;
	bool		needLock;

	/*
	 * Reset counts that will be incremented during the scan; needed in case
	 * of multiple scans during a single VACUUM command
	 */
	stats->estimated_count = false;
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;
	vstate.lastBlockVacuumed = BTREE_METAPAGE;	/* Initialise at first block */
	vstate.lastBlockLocked = BTREE_METAPAGE;
	vstate.totFreePages = 0;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_SIZES);

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  (See also vacuumlazy.c, which has the same
	 * issue.)	Also, we need not worry if a page is added immediately after
	 * we look; the page splitting code already has write-lock on the left
	 * page before it adds a right page, so we must already have processed any
	 * tuples due to be moved into such a page.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	blkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Quit if we've scanned the whole relation */
		if (blkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; blkno < num_pages; blkno++)
		{
			btvacuumpage(&vstate, blkno, blkno);
		}
	}

	/*
	 * Check to see if we need to issue one final WAL record for this index,
	 * which may be needed for correctness on a hot standby node when non-MVCC
	 * index scans could take place.
	 *
	 * If the WAL is replayed in hot standby, the replay process needs to get
	 * cleanup locks on all index leaf pages, just as we've been doing here.
	 * However, we won't issue any WAL records about pages that have no items
	 * to be deleted.  For pages between pages we've vacuumed, the replay code
	 * will take locks under the direction of the lastBlockVacuumed fields in
	 * the XLOG_BTREE_VACUUM WAL records.  To cover pages after the last one
	 * we vacuum, we need to issue a dummy XLOG_BTREE_VACUUM WAL record
	 * against the last leaf page in the index, if that one wasn't vacuumed.
	 */
	if (XLogStandbyInfoActive() &&
		vstate.lastBlockVacuumed < vstate.lastBlockLocked)
	{
		Buffer		buf;

		/*
		 * The page should be valid, but we can't use _bt_getbuf() because we
		 * want to use a nondefault buffer access strategy.  Since we aren't
		 * going to delete any items, getting cleanup lock again is probably
		 * overkill, but for consistency do that anyway.
		 */
		buf = ReadBufferExtended(rel, MAIN_FORKNUM, vstate.lastBlockLocked,
								 RBM_NORMAL, info->strategy);
		LockBufferForCleanup(buf);
		_bt_checkpage(rel, buf);
		_bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed);
		_bt_relbuf(rel, buf);
	}

	MemoryContextDelete(vstate.pagedelcontext);

	/* update statistics */
	stats->num_pages = num_pages;
	stats->pages_free = vstate.totFreePages;
}
Example #28
0
Datum
spgstat(PG_FUNCTION_ARGS)
{
    text    	*name=PG_GETARG_TEXT_P(0);
    char 		*relname=text_to_cstring(name);
    RangeVar   	*relvar;
    Relation    index;
    List       	*relname_list;
    Oid			relOid;
    BlockNumber	blkno = SPGIST_HEAD_BLKNO;
    BlockNumber	totalPages = 0,
                innerPages = 0,
                emptyPages = 0;
    double		usedSpace = 0.0;
    char		res[1024];
    int			bufferSize = -1;
    int64		innerTuples = 0,
                leafTuples = 0;


    relname_list = stringToQualifiedNameList(relname);
    relvar = makeRangeVarFromNameList(relname_list);
    relOid = RangeVarGetRelid(relvar, false);
    index = index_open(relOid, AccessExclusiveLock);

    if ( index->rd_am == NULL )
        elog(ERROR, "Relation %s.%s is not an index",
             get_namespace_name(RelationGetNamespace(index)),
             RelationGetRelationName(index) );
    totalPages = RelationGetNumberOfBlocks(index);

    for(blkno=SPGIST_HEAD_BLKNO; blkno<totalPages; blkno++)
    {
        Buffer	buffer;
        Page	page;

        buffer = ReadBuffer(index, blkno);
        LockBuffer(buffer, BUFFER_LOCK_SHARE);

        page = BufferGetPage(buffer);

        if (SpGistPageIsLeaf(page))
        {
            leafTuples += SpGistPageGetMaxOffset(page);
        }
        else
        {
            innerPages++;
            innerTuples += SpGistPageGetMaxOffset(page);
        }

        if (bufferSize < 0)
            bufferSize = BufferGetPageSize(buffer) - MAXALIGN(sizeof(SpGistPageOpaqueData)) -
                         SizeOfPageHeaderData;

        usedSpace += bufferSize - (PageGetFreeSpace(page) + sizeof(ItemIdData));

        if (PageGetFreeSpace(page) + sizeof(ItemIdData) == bufferSize)
            emptyPages++;

        UnlockReleaseBuffer(buffer);
    }

    index_close(index, AccessExclusiveLock);

    totalPages--; /* metapage */

    snprintf(res, sizeof(res),
             "totalPages:  %u\n"
             "innerPages:  %u\n"
             "leafPages:   %u\n"
             "emptyPages:  %u\n"
             "usedSpace:   %.2f kbytes\n"
             "freeSpace:   %.2f kbytes\n"
             "fillRatio:   %.2f%c\n"
             "leafTuples:  %lld\n"
             "innerTuples: %lld",
             totalPages, innerPages, totalPages - innerPages, emptyPages,
             usedSpace / 1024.0,
             (( (double) bufferSize ) * ( (double) totalPages ) - usedSpace) / 1024,
             100.0 * ( usedSpace / (( (double) bufferSize ) * ( (double) totalPages )) ),
             '%',
             leafTuples, innerTuples
            );

    PG_RETURN_TEXT_P(CStringGetTextDatum(res));
}
Example #29
0
/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 *
 *		If there are no indexes then we just vacuum each dirty page as we
 *		process it, since there's no point in gathering many tuples.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes, bool scan_all)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
	BlockNumber empty_pages,
				vacuumed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
	IndexBulkDeleteResult **indstats;
	int			i;
	PGRUsage	ru0;
	Buffer		vmbuffer = InvalidBuffer;
	BlockNumber next_not_all_visible_block;
	bool		skipping_all_visible_blocks;

	pg_rusage_init(&ru0);

	relname = RelationGetRelationName(onerel);
	ereport(elevel,
			(errmsg("vacuuming \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					relname)));

	empty_pages = vacuumed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	indstats = (IndexBulkDeleteResult **)
		palloc0(nindexes * sizeof(IndexBulkDeleteResult *));

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->scanned_pages = 0;
	vacrelstats->nonempty_pages = 0;
	vacrelstats->latestRemovedXid = InvalidTransactionId;

	lazy_space_alloc(vacrelstats, nblocks);

	/*
	 * We want to skip pages that don't require vacuuming according to the
	 * visibility map, but only when we can skip at least SKIP_PAGES_THRESHOLD
	 * consecutive pages.  Since we're reading sequentially, the OS should be
	 * doing readahead for us, so there's no gain in skipping a page now and
	 * then; that's likely to disable readahead and so be counterproductive.
	 * Also, skipping even a single page means that we can't update
	 * relfrozenxid, so we only want to do it if we can skip a goodly number
	 * of pages.
	 *
	 * Before entering the main loop, establish the invariant that
	 * next_not_all_visible_block is the next block number >= blkno that's not
	 * all-visible according to the visibility map, or nblocks if there's no
	 * such block.	Also, we set up the skipping_all_visible_blocks flag,
	 * which is needed because we need hysteresis in the decision: once we've
	 * started skipping blocks, we may as well skip everything up to the next
	 * not-all-visible block.
	 *
	 * Note: if scan_all is true, we won't actually skip any pages; but we
	 * maintain next_not_all_visible_block anyway, so as to set up the
	 * all_visible_according_to_vm flag correctly for each page.
	 */
	for (next_not_all_visible_block = 0;
		 next_not_all_visible_block < nblocks;
		 next_not_all_visible_block++)
	{
		if (!visibilitymap_test(onerel, next_not_all_visible_block, &vmbuffer))
			break;
		vacuum_delay_point();
	}
	if (next_not_all_visible_block >= SKIP_PAGES_THRESHOLD)
		skipping_all_visible_blocks = true;
	else
		skipping_all_visible_blocks = false;

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		tupgone,
					hastup;
		int			prev_dead_count;
		OffsetNumber frozen[MaxOffsetNumber];
		int			nfrozen;
		Size		freespace;
		bool		all_visible_according_to_vm;
		bool		all_visible;
		bool		has_dead_tuples;

		if (blkno == next_not_all_visible_block)
		{
			/* Time to advance next_not_all_visible_block */
			for (next_not_all_visible_block++;
				 next_not_all_visible_block < nblocks;
				 next_not_all_visible_block++)
			{
				if (!visibilitymap_test(onerel, next_not_all_visible_block,
										&vmbuffer))
					break;
				vacuum_delay_point();
			}

			/*
			 * We know we can't skip the current block.  But set up
			 * skipping_all_visible_blocks to do the right thing at the
			 * following blocks.
			 */
			if (next_not_all_visible_block - blkno > SKIP_PAGES_THRESHOLD)
				skipping_all_visible_blocks = true;
			else
				skipping_all_visible_blocks = false;
			all_visible_according_to_vm = false;
		}
		else
		{
			/* Current block is all-visible */
			if (skipping_all_visible_blocks && !scan_all)
				continue;
			all_visible_according_to_vm = true;
		}

		vacuum_delay_point();

		vacrelstats->scanned_pages++;

		/*
		 * If we are close to overrunning the available space for dead-tuple
		 * TIDs, pause and do a cycle of vacuuming before we tackle this page.
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Log cleanup info before we touch indexes */
			vacuum_log_cleanup_info(onerel, vacrelstats);

			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i],
								  &indstats[i],
								  vacrelstats);
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);

			/*
			 * Forget the now-vacuumed tuples, and press on, but be careful
			 * not to reset latestRemovedXid since we want that value to be
			 * valid.
			 */
			vacrelstats->num_dead_tuples = 0;
			vacrelstats->num_index_scans++;
		}

		buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
								 RBM_NORMAL, vac_strategy);

		/* We need buffer cleanup lock so that we can prune HOT chains. */
		LockBufferForCleanup(buf);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/*
			 * An all-zeroes page could be left over if a backend extends the
			 * relation but crashes before initializing the page. Reclaim such
			 * pages for use.
			 *
			 * We have to be careful here because we could be looking at a
			 * page that someone has just added to the relation and not yet
			 * been able to initialize (see RelationGetBufferForTuple). To
			 * protect against that, release the buffer lock, grab the
			 * relation extension lock momentarily, and re-lock the buffer. If
			 * the page is still uninitialized by then, it must be left over
			 * from a crashed backend, and we can initialize it.
			 *
			 * We don't really need the relation lock when this is a new or
			 * temp relation, but it's probably not worth the code space to
			 * check that, since this surely isn't a critical path.
			 *
			 * Note: the comparable code in vacuum.c need not worry because
			 * it's got exclusive lock on the whole relation.
			 */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockRelationForExtension(onerel, ExclusiveLock);
			UnlockRelationForExtension(onerel, ExclusiveLock);
			LockBufferForCleanup(buf);
			if (PageIsNew(page))
			{
				ereport(WARNING,
				(errmsg("relation \"%s\" page %u is uninitialized --- fixing",
						relname, blkno)));
				PageInit(page, BufferGetPageSize(buf), 0);
				empty_pages++;
			}
			freespace = PageGetHeapFreeSpace(page);
			MarkBufferDirty(buf);
			UnlockReleaseBuffer(buf);

			RecordPageWithFreeSpace(onerel, blkno, freespace);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			freespace = PageGetHeapFreeSpace(page);

			if (!PageIsAllVisible(page))
			{
				PageSetAllVisible(page);
				SetBufferCommitInfoNeedsSave(buf);
			}

			LockBuffer(buf, BUFFER_LOCK_UNLOCK);

			/* Update the visibility map */
			if (!all_visible_according_to_vm)
			{
				visibilitymap_pin(onerel, blkno, &vmbuffer);
				LockBuffer(buf, BUFFER_LOCK_SHARE);
				if (PageIsAllVisible(page))
					visibilitymap_set(onerel, blkno, PageGetLSN(page), &vmbuffer);
				LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			}

			ReleaseBuffer(buf);
			RecordPageWithFreeSpace(onerel, blkno, freespace);
			continue;
		}

		/*
		 * Prune all HOT-update chains in this page.
		 *
		 * We count tuples removed by the pruning step as removed by VACUUM.
		 */
		tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false,
										 &vacrelstats->latestRemovedXid);

		/*
		 * Now scan the page to collect vacuumable items and check for tuples
		 * requiring freezing.
		 */
		all_visible = true;
		has_dead_tuples = false;
		nfrozen = 0;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;

			itemid = PageGetItemId(page, offnum);

			/* Unused items require no processing, but we count 'em */
			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			/* Redirect items mustn't be touched */
			if (ItemIdIsRedirected(itemid))
			{
				hastup = true;	/* this page won't be truncatable */
				continue;
			}

			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			/*
			 * DEAD item pointers are to be vacuumed normally; but we don't
			 * count them in tups_vacuumed, else we'd be double-counting (at
			 * least in the common case where heap_page_prune() just freed up
			 * a non-HOT tuple).
			 */
			if (ItemIdIsDead(itemid))
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				all_visible = false;
				continue;
			}

			Assert(ItemIdIsNormal(itemid));

			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);

			tupgone = false;

			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin, buf))
			{
				case HEAPTUPLE_DEAD:

					/*
					 * Ordinarily, DEAD tuples would have been removed by
					 * heap_page_prune(), but it's possible that the tuple
					 * state changed since heap_page_prune() looked.  In
					 * particular an INSERT_IN_PROGRESS tuple could have
					 * changed to DEAD if the inserter aborted.  So this
					 * cannot be considered an error condition.
					 *
					 * If the tuple is HOT-updated then it must only be
					 * removed by a prune operation; so we keep it just as if
					 * it were RECENTLY_DEAD.  Also, if it's a heap-only
					 * tuple, we choose to keep it, because it'll be a lot
					 * cheaper to get rid of it in the next pruning pass than
					 * to treat it like an indexed tuple.
					 */
					if (HeapTupleIsHotUpdated(&tuple) ||
						HeapTupleIsHeapOnly(&tuple))
						nkeep += 1;
					else
						tupgone = true; /* we can delete the tuple */
					all_visible = false;
					break;
				case HEAPTUPLE_LIVE:
					/* Tuple is good --- but let's do some validity checks */
					if (onerel->rd_rel->relhasoids &&
						!OidIsValid(HeapTupleGetOid(&tuple)))
						elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid",
							 relname, blkno, offnum);

					/*
					 * Is the tuple definitely visible to all transactions?
					 *
					 * NB: Like with per-tuple hint bits, we can't set the
					 * PD_ALL_VISIBLE flag if the inserter committed
					 * asynchronously. See SetHintBits for more info. Check
					 * that the HEAP_XMIN_COMMITTED hint bit is set because of
					 * that.
					 */
					if (all_visible)
					{
						TransactionId xmin;

						if (!(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED))
						{
							all_visible = false;
							break;
						}

						/*
						 * The inserter definitely committed. But is it old
						 * enough that everyone sees it as committed?
						 */
						xmin = HeapTupleHeaderGetXmin(tuple.t_data);
						if (!TransactionIdPrecedes(xmin, OldestXmin))
						{
							all_visible = false;
							break;
						}
					}
					break;
				case HEAPTUPLE_RECENTLY_DEAD:

					/*
					 * If tuple is recently deleted then we must not remove it
					 * from relation.
					 */
					nkeep += 1;
					all_visible = false;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					all_visible = false;
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					all_visible = false;
					break;
				default:
					elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				HeapTupleHeaderAdvanceLatestRemovedXid(tuple.t_data,
											 &vacrelstats->latestRemovedXid);
				tups_vacuumed += 1;
				has_dead_tuples = true;
			}
			else
			{
				num_tuples += 1;
				hastup = true;

				/*
				 * Each non-removable tuple must be checked to see if it needs
				 * freezing.  Note we already have exclusive buffer lock.
				 */
				if (heap_freeze_tuple(tuple.t_data, FreezeLimit,
									  InvalidBuffer))
					frozen[nfrozen++] = offnum;
			}
		}						/* scan along page */

		/*
		 * If we froze any tuples, mark the buffer dirty, and write a WAL
		 * record recording the changes.  We must log the changes to be
		 * crash-safe against future truncation of CLOG.
		 */
		if (nfrozen > 0)
		{
			MarkBufferDirty(buf);
			if (RelationNeedsWAL(onerel))
			{
				XLogRecPtr	recptr;

				recptr = log_heap_freeze(onerel, buf, FreezeLimit,
										 frozen, nfrozen);
				PageSetLSN(page, recptr);
				PageSetTLI(page, ThisTimeLineID);
			}
		}

		/*
		 * If there are no indexes then we can vacuum the page right now
		 * instead of doing a second scan.
		 */
		if (nindexes == 0 &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove tuples from heap */
			lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats);

			/*
			 * Forget the now-vacuumed tuples, and press on, but be careful
			 * not to reset latestRemovedXid since we want that value to be
			 * valid.
			 */
			vacrelstats->num_dead_tuples = 0;
			vacuumed_pages++;
		}

		freespace = PageGetHeapFreeSpace(page);

		/* Update the all-visible flag on the page */
		if (!PageIsAllVisible(page) && all_visible)
		{
			PageSetAllVisible(page);
			SetBufferCommitInfoNeedsSave(buf);
		}

		/*
		 * It's possible for the value returned by GetOldestXmin() to move
		 * backwards, so it's not wrong for us to see tuples that appear to
		 * not be visible to everyone yet, while PD_ALL_VISIBLE is already
		 * set. The real safe xmin value never moves backwards, but
		 * GetOldestXmin() is conservative and sometimes returns a value
		 * that's unnecessarily small, so if we see that contradiction it just
		 * means that the tuples that we think are not visible to everyone yet
		 * actually are, and the PD_ALL_VISIBLE flag is correct.
		 *
		 * There should never be dead tuples on a page with PD_ALL_VISIBLE
		 * set, however.
		 */
		else if (PageIsAllVisible(page) && has_dead_tuples)
		{
			elog(WARNING, "page containing dead tuples is marked as all-visible in relation \"%s\" page %u",
				 relname, blkno);
			PageClearAllVisible(page);
			SetBufferCommitInfoNeedsSave(buf);

			/*
			 * Normally, we would drop the lock on the heap page before
			 * updating the visibility map, but since this case shouldn't
			 * happen anyway, don't worry about that.
			 */
			visibilitymap_clear(onerel, blkno);
		}

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		/* Update the visibility map */
		if (!all_visible_according_to_vm && all_visible)
		{
			visibilitymap_pin(onerel, blkno, &vmbuffer);
			LockBuffer(buf, BUFFER_LOCK_SHARE);
			if (PageIsAllVisible(page))
				visibilitymap_set(onerel, blkno, PageGetLSN(page), &vmbuffer);
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		}

		ReleaseBuffer(buf);

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		/*
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and record
		 * its post-compaction free space.	If not, then we're done with this
		 * page, so remember its free space as-is.	(This path will always be
		 * taken if there are no indexes.)
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
			RecordPageWithFreeSpace(onerel, blkno, freespace);
	}

	/* save stats for use later */
	vacrelstats->scanned_tuples = num_tuples;
	vacrelstats->tuples_deleted = tups_vacuumed;

	/* now we can compute the new value for pg_class.reltuples */
	vacrelstats->new_rel_tuples = vac_estimate_reltuples(onerel, false,
														 nblocks,
												  vacrelstats->scanned_pages,
														 num_tuples);

	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min number of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Log cleanup info before we touch indexes */
		vacuum_log_cleanup_info(onerel, vacrelstats);

		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i],
							  &indstats[i],
							  vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
		vacrelstats->num_index_scans++;
	}

	/* Release the pin on the visibility map page */
	if (BufferIsValid(vmbuffer))
	{
		ReleaseBuffer(vmbuffer);
		vmbuffer = InvalidBuffer;
	}

	/* Do post-vacuum cleanup and statistics update for each index */
	for (i = 0; i < nindexes; i++)
		lazy_cleanup_index(Irel[i], indstats[i], vacrelstats);

	/* If no indexes, make log report that lazy_vacuum_heap would've made */
	if (vacuumed_pages)
		ereport(elevel,
				(errmsg("\"%s\": removed %.0f row versions in %u pages",
						RelationGetRelationName(onerel),
						tups_vacuumed, vacuumed_pages)));

	ereport(elevel,
			(errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u out of %u pages",
					RelationGetRelationName(onerel),
					tups_vacuumed, num_tuples,
					vacrelstats->scanned_pages, nblocks),
			 errdetail("%.0f dead row versions cannot be removed yet.\n"
					   "There were %.0f unused item pointers.\n"
					   "%u pages are entirely empty.\n"
					   "%s.",
					   nkeep,
					   nunused,
					   empty_pages,
					   pg_rusage_show(&ru0))));
}
Example #30
0
/*
 * get_relation_info -
 *	  Retrieves catalog information for a given relation.
 *
 * Given the Oid of the relation, return the following info into fields
 * of the RelOptInfo struct:
 *
 *	min_attr	lowest valid AttrNumber
 *	max_attr	highest valid AttrNumber
 *	indexlist	list of IndexOptInfos for relation's indexes
 *	pages		number of pages
 *	tuples		number of tuples
 *
 * Also, initialize the attr_needed[] and attr_widths[] arrays.  In most
 * cases these are left as zeroes, but sometimes we need to compute attr
 * widths here, and we may as well cache the results for costsize.c.
 *
 * If inhparent is true, all we need to do is set up the attr arrays:
 * the RelOptInfo actually represents the appendrel formed by an inheritance
 * tree, and so the parent rel's physical size and index information isn't
 * important for it.
 */
void
get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
				  RelOptInfo *rel)
{
	Index		varno = rel->relid;
	Relation	relation;
	bool		hasindex;
	List	   *indexinfos = NIL;

	/*
	 * We need not lock the relation since it was already locked, either by
	 * the rewriter or when expand_inherited_rtentry() added it to the query's
	 * rangetable.
	 */
	relation = heap_open(relationObjectId, NoLock);

	/* Temporary and unlogged relations are inaccessible during recovery. */
	if (!RelationNeedsWAL(relation) && RecoveryInProgress())
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("cannot access temporary or unlogged relations during recovery")));

	rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
	rel->max_attr = RelationGetNumberOfAttributes(relation);
	rel->reltablespace = RelationGetForm(relation)->reltablespace;

	Assert(rel->max_attr >= rel->min_attr);
	rel->attr_needed = (Relids *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
	rel->attr_widths = (int32 *)
		palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));

	/*
	 * Estimate relation size --- unless it's an inheritance parent, in which
	 * case the size will be computed later in set_append_rel_pathlist, and we
	 * must leave it zero for now to avoid bollixing the total_table_pages
	 * calculation.
	 */
	if (!inhparent)
		estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
						  &rel->pages, &rel->tuples, &rel->allvisfrac);

	/*
	 * Make list of indexes.  Ignore indexes on system catalogs if told to.
	 * Don't bother with indexes for an inheritance parent, either.
	 */
	if (inhparent ||
		(IgnoreSystemIndexes && IsSystemClass(relation->rd_rel)))
		hasindex = false;
	else
		hasindex = relation->rd_rel->relhasindex;

	if (hasindex)
	{
		List	   *indexoidlist;
		ListCell   *l;
		LOCKMODE	lmode;

		indexoidlist = RelationGetIndexList(relation);

		/*
		 * For each index, we get the same type of lock that the executor will
		 * need, and do not release it.  This saves a couple of trips to the
		 * shared lock manager while not creating any real loss of
		 * concurrency, because no schema changes could be happening on the
		 * index while we hold lock on the parent rel, and neither lock type
		 * blocks any other kind of index operation.
		 */
		if (rel->relid == root->parse->resultRelation)
			lmode = RowExclusiveLock;
		else
			lmode = AccessShareLock;

		foreach(l, indexoidlist)
		{
			Oid			indexoid = lfirst_oid(l);
			Relation	indexRelation;
			Form_pg_index index;
			IndexOptInfo *info;
			int			ncolumns;
			int			i;

			/*
			 * Extract info from the relation descriptor for the index.
			 */
			indexRelation = index_open(indexoid, lmode);
			index = indexRelation->rd_index;

			/*
			 * Ignore invalid indexes, since they can't safely be used for
			 * queries.  Note that this is OK because the data structure we
			 * are constructing is only used by the planner --- the executor
			 * still needs to insert into "invalid" indexes!
			 */
			if (!index->indisvalid)
			{
				index_close(indexRelation, NoLock);
				continue;
			}

			/*
			 * If the index is valid, but cannot yet be used, ignore it; but
			 * mark the plan we are generating as transient. See
			 * src/backend/access/heap/README.HOT for discussion.
			 */
			if (index->indcheckxmin &&
				!TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
									   TransactionXmin))
			{
				root->glob->transientPlan = true;
				index_close(indexRelation, NoLock);
				continue;
			}

			info = makeNode(IndexOptInfo);

			info->indexoid = index->indexrelid;
			info->reltablespace =
				RelationGetForm(indexRelation)->reltablespace;
			info->rel = rel;
			info->ncolumns = ncolumns = index->indnatts;
			info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
			info->indexcollations = (Oid *) palloc(sizeof(Oid) * ncolumns);
			info->opfamily = (Oid *) palloc(sizeof(Oid) * ncolumns);
			info->opcintype = (Oid *) palloc(sizeof(Oid) * ncolumns);

			for (i = 0; i < ncolumns; i++)
			{
				info->indexkeys[i] = index->indkey.values[i];
				info->indexcollations[i] = indexRelation->rd_indcollation[i];
				info->opfamily[i] = indexRelation->rd_opfamily[i];
				info->opcintype[i] = indexRelation->rd_opcintype[i];
			}

			info->relam = indexRelation->rd_rel->relam;
			info->amcostestimate = indexRelation->rd_am->amcostestimate;
			info->canreturn = index_can_return(indexRelation);
			info->amcanorderbyop = indexRelation->rd_am->amcanorderbyop;
			info->amoptionalkey = indexRelation->rd_am->amoptionalkey;
			info->amsearcharray = indexRelation->rd_am->amsearcharray;
			info->amsearchnulls = indexRelation->rd_am->amsearchnulls;
			info->amhasgettuple = OidIsValid(indexRelation->rd_am->amgettuple);
			info->amhasgetbitmap = OidIsValid(indexRelation->rd_am->amgetbitmap);

			/*
			 * Fetch the ordering information for the index, if any.
			 */
			if (info->relam == BTREE_AM_OID)
			{
				/*
				 * If it's a btree index, we can use its opfamily OIDs
				 * directly as the sort ordering opfamily OIDs.
				 */
				Assert(indexRelation->rd_am->amcanorder);

				info->sortopfamily = info->opfamily;
				info->reverse_sort = (bool *) palloc(sizeof(bool) * ncolumns);
				info->nulls_first = (bool *) palloc(sizeof(bool) * ncolumns);

				for (i = 0; i < ncolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];

					info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
				}
			}
			else if (indexRelation->rd_am->amcanorder)
			{
				/*
				 * Otherwise, identify the corresponding btree opfamilies by
				 * trying to map this index's "<" operators into btree.  Since
				 * "<" uniquely defines the behavior of a sort order, this is
				 * a sufficient test.
				 *
				 * XXX This method is rather slow and also requires the
				 * undesirable assumption that the other index AM numbers its
				 * strategies the same as btree.  It'd be better to have a way
				 * to explicitly declare the corresponding btree opfamily for
				 * each opfamily of the other index type.  But given the lack
				 * of current or foreseeable amcanorder index types, it's not
				 * worth expending more effort on now.
				 */
				info->sortopfamily = (Oid *) palloc(sizeof(Oid) * ncolumns);
				info->reverse_sort = (bool *) palloc(sizeof(bool) * ncolumns);
				info->nulls_first = (bool *) palloc(sizeof(bool) * ncolumns);

				for (i = 0; i < ncolumns; i++)
				{
					int16		opt = indexRelation->rd_indoption[i];
					Oid			ltopr;
					Oid			btopfamily;
					Oid			btopcintype;
					int16		btstrategy;

					info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
					info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;

					ltopr = get_opfamily_member(info->opfamily[i],
												info->opcintype[i],
												info->opcintype[i],
												BTLessStrategyNumber);
					if (OidIsValid(ltopr) &&
						get_ordering_op_properties(ltopr,
												   &btopfamily,
												   &btopcintype,
												   &btstrategy) &&
						btopcintype == info->opcintype[i] &&
						btstrategy == BTLessStrategyNumber)
					{
						/* Successful mapping */
						info->sortopfamily[i] = btopfamily;
					}
					else
					{
						/* Fail ... quietly treat index as unordered */
						info->sortopfamily = NULL;
						info->reverse_sort = NULL;
						info->nulls_first = NULL;
						break;
					}
				}
			}
			else
			{
				info->sortopfamily = NULL;
				info->reverse_sort = NULL;
				info->nulls_first = NULL;
			}

			/*
			 * Fetch the index expressions and predicate, if any.  We must
			 * modify the copies we obtain from the relcache to have the
			 * correct varno for the parent relation, so that they match up
			 * correctly against qual clauses.
			 */
			info->indexprs = RelationGetIndexExpressions(indexRelation);
			info->indpred = RelationGetIndexPredicate(indexRelation);
			if (info->indexprs && varno != 1)
				ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
			if (info->indpred && varno != 1)
				ChangeVarNodes((Node *) info->indpred, 1, varno, 0);

			/* Build targetlist using the completed indexprs data */
			info->indextlist = build_index_tlist(root, info, relation);

			info->predOK = false;		/* set later in indxpath.c */
			info->unique = index->indisunique;
			info->immediate = index->indimmediate;
			info->hypothetical = false;

			/*
			 * Estimate the index size.  If it's not a partial index, we lock
			 * the number-of-tuples estimate to equal the parent table; if it
			 * is partial then we have to use the same methods as we would for
			 * a table, except we can be sure that the index is not larger
			 * than the table.
			 */
			if (info->indpred == NIL)
			{
				info->pages = RelationGetNumberOfBlocks(indexRelation);
				info->tuples = rel->tuples;
			}
			else
			{
				double		allvisfrac;				/* dummy */

				estimate_rel_size(indexRelation, NULL,
								  &info->pages, &info->tuples, &allvisfrac);
				if (info->tuples > rel->tuples)
					info->tuples = rel->tuples;
			}

			index_close(indexRelation, NoLock);

			indexinfos = lcons(info, indexinfos);
		}

		list_free(indexoidlist);
	}