void CArrayInt2D::SetRows(int iNumRows)
{
	if (miWidth == 0)
	{
		miHeight = iNumRows;
	}
	else
	{
		if (iNumRows > miHeight)
		{
			if (miHeight > 0)
			{
				InsertRows(miHeight, iNumRows-miHeight);
			}
			else
			{
				InsertRows(0, iNumRows);
			}
		}
		else if (iNumRows < miHeight)
		{
			RemoveRows(iNumRows, miHeight-iNumRows);
		}	
	}
}
// ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
//		¥ RemoveElementFromTable							/*e*/
// ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
// Removes an element from the table. It must be in the hierarchy and in the table.
void CHierarchicalTable::RemoveElementFromTable(
	CHierarchicalElement							*inElement,
	CHierarchicalGroup::TVisibilityOperation		inOp)
{
	STableCell			cellPos;
	
	CalcInsertPosition(inElement,cellPos);
	
	ArrayIndexT				numRowsToRemove=0;
	
	switch (inOp)
	{
		case CHierarchicalGroup::kHideHeaderElementOnly:
		case CHierarchicalGroup::kHideHeaderAndSubGroup:
			if (inElement->IsInTable())
			{
				numRowsToRemove=1;
				RemoveFromTable(inElement);
			}
			if (inOp==CHierarchicalGroup::kHideHeaderElementOnly)
				break;
			else
				;// Fall through...

		case CHierarchicalGroup::kHideSubGroupOnly:
			CHierarchicalGroup		*group=dynamic_cast<CHierarchicalGroup*>(inElement);
			
			if (group && group->GetSubList())
			{
				CHierListIndexerT<CHierarchicalElement>		indexer(group->GetSubList());
				CHierarchicalElement						*element;

				while (element=indexer.GetNextData())
				{
					if (element->IsInTable())
					{
						numRowsToRemove++;
						RemoveFromTable(element);
					}
				}
			}
			break;			
	}
	
	if (numRowsToRemove)
	{
		// If only removing the sub group then start an element lower
		if (inOp==CHierarchicalGroup::kHideSubGroupOnly && inElement->IsInTable())
			cellPos.row++;
		
		RemoveRows(numRowsToRemove,cellPos.row,true);
	}
}
int CentralDifferencesSparse::DoTimestep()
{
  PerformanceCounter counterForceAssemblyTime;
    forceModel->GetInternalForce(q, internalForces);
    for (int i=0; i<r; i++)
      internalForces[i] *= internalForceScalingFactor;
  counterForceAssemblyTime.StopCounter();
  forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();

  if (tangentialDampingMode > 0)
    if (timestepIndex % tangentialDampingMode == 0)
      DecomposeSystemMatrix(); // this routines also updates the damping and system matrices
  
  // update equation is (see WRIGGERS P.: Computational Contact Mechanics. John Wiley & Sons, Ltd., 2002., page 275) :
  //
  // (M + dt / 2 * C) * q(t+1) = (dt)^2 * (fext(t) - fint(q(t))) + dt / 2 * C * q(t-1) + M * (2q(t) - q(t-1))
  //
  // (M + dt / 2 * C) * (q(t+1) - q(t)) = (dt)^2 * (fext(t) - fint(q(t))) + dt / 2 * C * (q(t-1) - q(t)) + M * (q(t) - q(t-1)) 

  // fext are the external forces
  // fint is the vector of internal forces

  // compute rhs = (dt)^2 * (fext - fint(q(t))) + dt / 2 * C * (q(t-1) - q(t)) + M * (q(t) - q(t-1))
  // first, compute rhs = M * (q - q_1)
  for (int i=0; i<r; i++)
    buffer[i] = q[i] - q_1[i];
  massMatrix->MultiplyVector(buffer, rhs);
  
  // rhs += dt / 2 * dampingMatrix * (q_{n-1} - q_n)
  for (int i=0; i<r; i++)
    qdelta[i] = q_1[i] - q[i];
  rayleighDampingMatrix->MultiplyVector(qdelta, buffer);
  for (int i=0; i<r; i++)
    rhs[i] += 0.5 * timestep * buffer[i];

  // rhs += dt * dt * (fext - fint(q(t))) 
  double timestep2 = timestep * timestep;
  for (int i=0; i<r; i++)
    rhs[i] += timestep2 * (externalForces[i] - internalForces[i]);

  // now rhs contains the correct value

  RemoveRows(r, rhsConstrained, rhs, numConstrainedDOFs, constrainedDOFs);

  PerformanceCounter counterSystemSolveTime;

  memset(buffer, 0, sizeof(double) * r);

  #ifdef SPOOLES
    int info = spoolesSolver->SolveLinearSystem(buffer, rhsConstrained);
    char solverString[16] = "SPOOLES";
  #endif

  #ifdef PARDISO
    int info = pardisoSolver->SolveLinearSystem(buffer, rhsConstrained);
    char solverString[16] = "PARDISO";
  #endif
  
  #ifdef PCG
    int info = jacobiPreconditionedCGSolver->SolveLinearSystemWithJacobiPreconditioner(buffer, rhsConstrained, 1e-6, 10000);
    if (info > 0)
      info = 0;
    char solverString[16] = "PCG";
  #endif

  InsertRows(r, buffer, qdelta, numConstrainedDOFs, constrainedDOFs);

  counterSystemSolveTime.StopCounter();
  systemSolveTime = counterSystemSolveTime.GetElapsedTime();

  if (info != 0)
  {
    printf("Error: %s sparse solver returned non-zero exit status %d.\n", solverString, (int)info);
    return 1;
  }

  // the new value of q is now in buffer
  // update velocity, and previous and current positions
  for (int i=0; i<r; i++)
  {
    q_1[i] = q[i];
    qvel[i] = qdelta[i] / timestep;
    qaccel[i] = (qvel[i] - qvel_1[i]) / timestep;
    qvel_1[i] = qvel[i];
    qaccel_1[i] = qaccel[i];
    q[i] += qdelta[i];
  }

  timestepIndex++;

  return 0;
}
int ImplicitNewmarkSparse::DoTimestep()
{
  int numIter = 0;

  double error0 = 0; // error after the first step
  double errorQuotient;

  // store current amplitudes and set initial guesses for qaccel, qvel
  for(int i=0; i<r; i++)
  {
    q_1[i] = q[i]; 
    qvel_1[i] = qvel[i];
    qaccel_1[i] = qaccel[i];

    qaccel[i] = alpha1 * (q[i] - q_1[i]) - alpha2 * qvel_1[i] - alpha3 * qaccel_1[i];
    qvel[i] = alpha4 * (q[i] - q_1[i]) + alpha5 * qvel_1[i] + alpha6 * qaccel_1[i];
  }

  do
  {
    int i;

/*
    printf("q:\n");
    for(int i=0; i<r; i++)
      printf("%G ", q[i]);
    printf("\n");

    printf("Internal forces:\n");
    for(int i=0; i<r; i++)
      printf("%G ", internalForces[i]);
    printf("\n");
*/

    PerformanceCounter counterForceAssemblyTime;
    forceModel->GetForceAndMatrix(q, internalForces, tangentStiffnessMatrix);
    counterForceAssemblyTime.StopCounter();
    forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();

    //tangentStiffnessMatrix->Print();
    //tangentStiffnessMatrix->Save("K");

    // scale internal forces
    for(i=0; i<r; i++)
      internalForces[i] *= internalForceScalingFactor;

    *tangentStiffnessMatrix *= internalForceScalingFactor;

    memset(qresidual, 0, sizeof(double) * r);

    if (useStaticSolver)
    {
      // no operation
    }
    else
    {
      // build effective stiffness: add mass matrix and damping matrix to tangentStiffnessMatrix
      tangentStiffnessMatrix->ScalarMultiply(dampingStiffnessCoef, rayleighDampingMatrix);
      rayleighDampingMatrix->AddSubMatrix(dampingMassCoef, *massMatrix);

      rayleighDampingMatrix->ScalarMultiplyAdd(alpha4, tangentStiffnessMatrix);
      //*tangentStiffnessMatrix += alpha4 * *rayleighDampingMatrix;
      tangentStiffnessMatrix->AddSubMatrix(alpha4, *dampingMatrix, 1);

      tangentStiffnessMatrix->AddSubMatrix(alpha1, *massMatrix);
      
      // compute force residual, store it into aux variable qresidual
      // qresidual = M * qaccel + C * qvel - externalForces + internalForces

      massMatrix->MultiplyVector(qaccel, qresidual);
      rayleighDampingMatrix->MultiplyVectorAdd(qvel, qresidual);
      dampingMatrix->MultiplyVectorAdd(qvel, qresidual);
    }

    // add externalForces, internalForces
    for(i=0; i<r; i++)
    {
      qresidual[i] += internalForces[i] - externalForces[i];
      qresidual[i] *= -1;
      qdelta[i] = qresidual[i];
    }

/*
    printf("internal forces:\n");
    for(int i=0; i<r; i++)
      printf("%G ", internalForces[i]);
    printf("\n");

    printf("external forces:\n");
    for(int i=0; i<r; i++)
      printf("%G ", externalForces[i]);
    printf("\n");

    printf("residual:\n");
    for(int i=0; i<r; i++)
      printf("%G ", -qresidual[i]);
    printf("\n");
*/

    double error = 0;
    for(i=0; i<r; i++)
      error += qresidual[i] * qresidual[i];

    // on the first iteration, compute initial error
    if (numIter == 0) 
    {
      error0 = error;
      errorQuotient = 1.0;
    }
    else
    {
      // error divided by the initial error, before performing this iteration
      errorQuotient = error / error0; 
    }

    if (errorQuotient < epsilon * epsilon)
    {
      break;
    }

    //tangentStiffnessMatrix->Save("Keff");
    RemoveRows(r, bufferConstrained, qdelta, numConstrainedDOFs, constrainedDOFs);
    systemMatrix->AssignSuperMatrix(tangentStiffnessMatrix);

    // solve: systemMatrix * buffer = bufferConstrained

    PerformanceCounter counterSystemSolveTime;
    memset(buffer, 0, sizeof(double) * r);

    #ifdef SPOOLES
      SPOOLESSolver solver(systemMatrix);
      int info = solver.SolveLinearSystem(buffer, bufferConstrained);
      char solverString[16] = "SPOOLES";
    #endif

    #ifdef PARDISO
      int info = pardisoSolver->ComputeCholeskyDecomposition(systemMatrix);
      if (info == 0)
        info = pardisoSolver->SolveLinearSystem(buffer, bufferConstrained);
      char solverString[16] = "PARDISO";
    #endif

    #ifdef PCG
      int info = jacobiPreconditionedCGSolver->SolveLinearSystemWithJacobiPreconditioner(buffer, bufferConstrained, 1e-6, 10000);
      if (info > 0)
        info = 0;
      char solverString[16] = "PCG";
    #endif

    if (info != 0)
    {
      printf("Error: %s sparse solver returned non-zero exit status %d.\n", solverString, (int)info);
      return 1;
    }

    counterSystemSolveTime.StopCounter();
    systemSolveTime = counterSystemSolveTime.GetElapsedTime();

    InsertRows(r, buffer, qdelta, numConstrainedDOFs, constrainedDOFs);

/*
    printf("qdelta:\n");
    for(int i=0; i<r; i++)
      printf("%G ", qdelta[i]);
    printf("\n");
    exit(1);
*/
    // update state
    for(i=0; i<r; i++)
    {
      q[i] += qdelta[i];
      qaccel[i] = alpha1 * (q[i] - q_1[i]) - alpha2 * qvel_1[i] - alpha3 * qaccel_1[i];
      qvel[i] = alpha4 * (q[i] - q_1[i]) + alpha5 * qvel_1[i] + alpha6 * qaccel_1[i];
    }

    for(int i=0; i<numConstrainedDOFs; i++)
      q[constrainedDOFs[i]] = qvel[constrainedDOFs[i]] = qaccel[constrainedDOFs[i]] = 0.0;

    numIter++;
  }
  while (numIter < maxIterations);

/*
  printf("qvel:\n");
  for(int i=0; i<r; i++)
    printf("%G ", qvel[i]);
  printf("\n");

  printf("qaccel:\n");
  for(int i=0; i<r; i++)
    printf("%G ", qaccel[i]);
  printf("\n");
*/

  //printf("Num iterations performed: %d\n",numIter);
  //if ((numIter >= maxIterations) && (maxIterations > 1))
  //{
    //printf("Warning: method did not converge in max number of iterations.\n");
  //}

  return 0;
}
// sets the state based on given q, qvel
// automatically computes acceleration assuming zero external force
int ImplicitNewmarkSparse::SetState(double * q_, double * qvel_)
{
  memcpy(q, q_, sizeof(double)*r);

  if (qvel_ != NULL)
    memcpy(qvel, qvel_, sizeof(double)*r);
  else
    memset(qvel, 0, sizeof(double)*r);

  for(int i=0; i<numConstrainedDOFs; i++)
    q[constrainedDOFs[i]] = qvel[constrainedDOFs[i]] = 0.0;

  // M * qaccel + C * qvel + R(q) = P_0 
  // R(q) = P_0 = 0
  // i.e. M * qaccel = - C * qvel - R(q)

  forceModel->GetForceAndMatrix(q, internalForces, tangentStiffnessMatrix);

  *rayleighDampingMatrix = dampingStiffnessCoef * (*tangentStiffnessMatrix);
  rayleighDampingMatrix->AddSubMatrix(dampingMassCoef, *massMatrix);

  // buffer = C * qvel
  rayleighDampingMatrix->MultiplyVector(qvel, buffer);
  dampingMatrix->MultiplyVectorAdd(qvel, buffer);

  for(int i=0; i<r; i++)
    buffer[i] = -buffer[i] - internalForces[i];

  // solve M * qaccel = buffer
  RemoveRows(r, bufferConstrained, buffer, numConstrainedDOFs, constrainedDOFs);

  // use tangentStiffnessMatrix as the buffer place
  tangentStiffnessMatrix->ResetToZero();
  tangentStiffnessMatrix->AddSubMatrix(1.0, *massMatrix);
  tangentStiffnessMatrix->AddSubMatrix(1.0, *dampingMatrix, 1);
  systemMatrix->AssignSuperMatrix(tangentStiffnessMatrix); // must go via a matrix with tangentStiffnessMatrix's topology, because the AssignSuperMatrix indices were computed with respect to such topology

  memset(buffer, 0, sizeof(double) * r);

  #ifdef SPOOLES
    SPOOLESSolver solver(systemMatrix);
    int info = solver.SolveLinearSystem(buffer, bufferConstrained);
    char solverString[16] = "SPOOLES";
  #endif

  //massMatrix->Save("M");
  //systemMatrix->Save("A");

  #ifdef PARDISO
    pardisoSolver->ComputeCholeskyDecomposition(systemMatrix);
    int info = pardisoSolver->SolveLinearSystem(buffer, bufferConstrained);
    char solverString[16] = "PARDISO";
  #endif

  #ifdef PCG
    int info = jacobiPreconditionedCGSolver->SolveLinearSystemWithJacobiPreconditioner(buffer, bufferConstrained, 1e-6, 10000);
    if (info > 0)
      info = 0;
    char solverString[16] = "PCG";
  #endif

  if (info != 0)
  {
    printf("Error: %s sparse solver returned non-zero exit status %d.\n", solverString, (int)info);
    return 1;
  }
  
  InsertRows(r, buffer, qaccel, numConstrainedDOFs, constrainedDOFs);

  return 0;
}
int VolumeConservingIntegrator::DoTimestep() {
	int numIter = 0;

	//Error after the first step
	double error0 = 0;
	double errorQuotient;

	// store current amplitudes and set initial guesses for qaccel, qvel
	for (int i = 0; i < r; i++) {
		qaccel_1[i] = qaccel[i] = 0;
		q_1[i] = q[i];
		qvel_1[i] = qvel[i];
	}

	do {
		int i;

		/*
		 printf("q:\n");
		 for(int i=0; i<r; i++)
		 printf("%G ", q[i]);
		 printf("\n");

		 printf("Internal forces:\n");
		 for(int i=0; i<r; i++)
		 printf("%G ", internalForces[i]);
		 printf("\n");
		 */

		PerformanceCounter counterForceAssemblyTime;
		forceModel->GetForceAndMatrix(q, internalForces, tangentStiffnessMatrix);
		counterForceAssemblyTime.StopCounter();
		forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();

		//tangentStiffnessMatrix->Print();
		//tangentStiffnessMatrix->Save("K");

		//Scale internal forces
		for (i = 0; i < r; i++)
			internalForces[i] *= internalForceScalingFactor;

		*tangentStiffnessMatrix *= internalForceScalingFactor;

		memset(qresidual, 0, sizeof(double) * r);

		if (useStaticSolver) {
			// fint + K * qdelta = fext

			// add externalForces, internalForces
			for (i = 0; i < r; i++) {
				qresidual[i] = externalForces[i] - internalForces[i];
				qdelta[i] = qresidual[i];
			}
		} else {
			tangentStiffnessMatrix->ScalarMultiply(dampingStiffnessCoef,
					rayleighDampingMatrix);
			rayleighDampingMatrix->AddSubMatrix(dampingMassCoef, *massMatrix);

			// build effective stiffness:
			// Keff = M + h D + h^2 * K
			// compute force residual, store it into aux variable qresidual
			// qresidual = h * (-D qdot - fint + fext - h * K * qdot))

			//add mass matrix and damping matrix to tangentStiffnessMatrix
			*tangentStiffnessMatrix *= timestep;

			*tangentStiffnessMatrix += *rayleighDampingMatrix;
			tangentStiffnessMatrix->AddSubMatrix(1.0, *dampingMatrix, 1); // at this point, tangentStiffnessMatrix = h * K + D
			tangentStiffnessMatrix->MultiplyVector(qvel, qresidual);
			*tangentStiffnessMatrix *= timestep;
			tangentStiffnessMatrix->AddSubMatrix(1.0, *massMatrix);

			// add externalForces, internalForces
			for (i = 0; i < r; i++) {
				qresidual[i] += internalForces[i] - externalForces[i];
				qresidual[i] *= -timestep;
				qdelta[i] = qresidual[i];
			}
		}

		/*
		 printf("internal forces:\n");
		 for(int i=0; i<r; i++)
		 printf("%G ", internalForces[i]);
		 printf("\n");

		 printf("external forces:\n");
		 for(int i=0; i<r; i++)
		 printf("%G ", externalForces[i]);
		 printf("\n");

		 printf("residual:\n");
		 for(int i=0; i<r; i++)
		 printf("%G ", -qresidual[i]);
		 printf("\n");
		 */

		double error = 0;
		for (i = 0; i < r; i++)
			error += qresidual[i] * qresidual[i];

		// on the first iteration, compute initial error
		if (numIter == 0) {
			error0 = error;
			errorQuotient = 1.0;
		} else {
			// rel error wrt to initial error before performing this iteration
			errorQuotient = error / error0;
		}

		if (errorQuotient < epsilon * epsilon)
			break;

		//tangentStiffnessMatrix->Save("Keff");
		RemoveRows(r, bufferConstrained, qdelta, numConstrainedDOFs,
				constrainedDOFs);
		systemMatrix->AssignSuperMatrix(tangentStiffnessMatrix);

		// solve: systemMatrix * qdelta = qresidual

		PerformanceCounter counterSystemSolveTime;
		memset(buffer, 0, sizeof(double) * r);

#ifdef SPOOLES
		int info;
		if (numSolverThreads > 1)
		{
			SPOOLESSolverMT * solver = new SPOOLESSolverMT(systemMatrix, numSolverThreads);
			info = solver->SolveLinearSystem(buffer, bufferConstrained);
			delete(solver);
		}
		else
		{
			SPOOLESSolver * solver = new SPOOLESSolver(systemMatrix);
			info = solver->SolveLinearSystem(buffer, bufferConstrained);
			delete(solver);
		}
		char solverString[16] = "SPOOLES";
#endif

#ifdef PARDISO
		int info = pardisoSolver->ComputeCholeskyDecomposition(systemMatrix);
		if (info == 0)
		info = pardisoSolver->SolveLinearSystem(buffer, bufferConstrained);
		char solverString[16] = "PARDISO";
#endif

		//Profile finds this function as a hotspot
#ifdef PCG
		int info =
				jacobiPreconditionedCGSolver->SolveLinearSystemWithJacobiPreconditioner(
						buffer, bufferConstrained, 1e-6, 10000);
		if (info > 0)
			info = 0;
		char solverString[16] = "PCG";
#endif

		if (info != 0) {
			printf(
					"Error: %s sparse solver returned non-zero exit status %d.\n",
					solverString, (int) info);
			exit(-1);
			return 1;
		}

		counterSystemSolveTime.StopCounter();
		systemSolveTime = counterSystemSolveTime.GetElapsedTime();

		InsertRows(r, buffer, qdelta, numConstrainedDOFs, constrainedDOFs);

		/*
		 printf("qdelta:\n");
		 for(int i=0; i<r; i++)
		 printf("%G ", qdelta[i]);
		 printf("\n");
		 exit(1);
		 */
		// update state
		if (useStaticSolver) {
			for (i = 0; i < r; i++) {
				q[i] += qdelta[i];
				qvel[i] = (q[i] - q_1[i]) / timestep;
			}
		} else {
			for (i = 0; i < r; i++) {
				qvel[i] += qdelta[i];
				q[i] += timestep * qvel[i];
			}
		}

		for (int i = 0; i < numConstrainedDOFs; i++)
			q[constrainedDOFs[i]] = qvel[constrainedDOFs[i]] = qaccel[constrainedDOFs[i]] = 0.0;

		numIter++;
	} while (numIter < maxIterations);

	/*
	 printf("q:\n");
	 for(int i=0; i<r; i++)
	 printf("%G ", q[i]);
	 printf("\n");

	 printf("qvel:\n");
	 for(int i=0; i<r; i++)
	 printf("%G ", qvel[i]);
	 printf("\n");
	 */

	//printf("Num iterations performed: %d\n",numIter);
	//if ((numIter >= maxIterations) && (maxIterations > 1))
	//{
	//printf("Warning: method did not converge in max number of iterations.\n");
	//}
	return 0;
}
void CArrayInt2D::RemoveRow(int iRow)
{
	RemoveRows(iRow, 1);
}
Example #8
0
void Matrix<real>::RemoveRowsColumns(int columnStart, int columnEnd)
{
  RemoveColumns(columnStart, columnEnd);
  RemoveRows(columnStart, columnEnd);
}