Example #1
0
void PhonetisaurusE2F::entry_to_fsa_w( vector<string>* tokens ){
  /*
    Convert an input grapheme sequence to an equivalent
    Finite-State Machine.
  */

  //Build a linear FSA representing the input
  _entry_to_skip_fsa( tokens );

  //Add any multi-grapheme arcs
  word = VectorFst<StdArc>(ComposeFst<StdArc>(word,ifilter));
  Project(&word, PROJECT_OUTPUT);

  //Now optimize the result
  RmEpsilon(&word);
  ArcSort(&word,OLabelCompare<StdArc>());

  return;
}
Example #2
0
void M2MFstAligner::_conditional_max( bool y_given_x ){
  /*
    Compute the conditional distribution, P(Y|X) using the WFST paradigm.
    This is bassed on the approach from Shu and Hetherington 2002.
    It is assumed that all WFSTs and operations use the Log semiring.

    Given: 
           FST1 = P(X,Y)
    Compute:
           FST2 = P(X) 
             := Map_inv(Det(RmEps(Proj_i(FST1))))
           FST3 = P(Y|X)
             := Compose(FST2,FST1)

    Proj_i:  project on input labels
    RmEps:   epsilon removal
    Det:     determinize
    Map_inv: invert weights

    Notes: An analogous process may be used to compute P(X|Y).  In this
      case one would project on OUTPUT labels - Proj_o, and reverse the
      composition order to Compose(FST1,FST2).

    Future work:
      What we are doing here in terms of *generating* the JOINT fst each
      time is really just a dumb hack.  We *should* encode the model in an
      FST and encode the individual lattices, rather than doing the hacky
      manual label encoding that we currently rely on.
  */

  //Joint distribution that we start with
  VectorFst<LogArc>* joint  = new VectorFst<LogArc>();
  SymbolTable* misyms = new SymbolTable("misyms");
  SymbolTable* mosyms = new SymbolTable("mosyms");
  joint->AddState();
  joint->AddState();
  joint->SetStart(0);
  joint->SetFinal(1,LogArc::Weight::One());
  map<LogArc::Label,LogWeight>::iterator it;
  for( it=prev_alignment_model.begin(); it != prev_alignment_model.end(); it++ ){
    string isym = isyms->Find((*it).first); 
    vector<string> io = tokenize_utf8_string( &isym, &s1s2_sep );
    LogArc arc( misyms->AddSymbol(io[0]), mosyms->AddSymbol(io[1]), (*it).second, 1 );
    joint->AddArc( 0, arc );
  }
  //VectorFst<LogArc>* joint  = new VectorFst<LogArc>();
  //Push<LogArc,REWEIGHT_TO_FINAL>(*_joint, joint, kPushWeights);
  //joint->SetFinal(1,LogWeight::One());
  joint->Write("m2mjoint.fst");
  //BEGIN COMPUTE MARGINAL P(X)  
  VectorFst<LogArc>* dmarg;
  if( y_given_x )
    dmarg = new VectorFst<LogArc>(ProjectFst<LogArc>(*joint, PROJECT_INPUT));
  else
    dmarg = new VectorFst<LogArc>(ProjectFst<LogArc>(*joint, PROJECT_OUTPUT));

  RmEpsilon(dmarg);
  VectorFst<LogArc>* marg = new VectorFst<LogArc>();
  Determinize(*dmarg, marg);
  ArcMap(marg, InvertWeightMapper<LogArc>());

  if( y_given_x )
    ArcSort(marg, OLabelCompare<LogArc>());
  else
    ArcSort(marg, ILabelCompare<LogArc>());
  //END COMPUTE MARGINAL P(X)
  marg->Write("marg.fst");

  //CONDITIONAL P(Y|X)
  VectorFst<LogArc>* cond = new VectorFst<LogArc>();
  if( y_given_x )
    Compose(*marg, *joint, cond);
  else
    Compose(*joint, *marg, cond);
  //cond now contains the conditional distribution P(Y|X)
  cond->Write("cond.fst");
  //Now update the model with the new values
  for( MutableArcIterator<VectorFst<LogArc> > aiter(cond, 0); !aiter.Done(); aiter.Next() ){
    LogArc arc = aiter.Value();
    string lab = misyms->Find(arc.ilabel)+"}"+mosyms->Find(arc.olabel);
    int   labi = isyms->Find(lab);
    alignment_model[labi]      = arc.weight;
    prev_alignment_model[labi] = LogWeight::Zero();
  }
  delete joint, marg, cond, dmarg;
  delete misyms, mosyms;
  return;
}
Example #3
0
vector<PathData> M2MFstAligner::write_alignment(const VectorFst<LogArc> &ifst,
        int nbest)
{
    //Generic alignment generator
    VectorFst<StdArc> fst;
    Map(ifst, &fst, LogToStdMapper());

    for (StateIterator<VectorFst<StdArc> > siter(fst); !siter.Done();
            siter.Next()) {
        StdArc::StateId q = siter.Value();
        for (MutableArcIterator<VectorFst<StdArc> > aiter(&fst, q);
                !aiter.Done(); aiter.Next()) {
            //Prior to decoding we make several 'heuristic' modifications to the weights:
            // 1. A multiplier is applied to any multi-token substrings
            // 2. Any LogWeight::Zero() arc weights are reset to '99'.
            //    We are basically resetting 'Infinity' values to a 'smallest non-Infinity'
            //     so that the ShortestPath algorithm actually produces something no matter what.
            // 3. Any arcs that consist of subseq1:subseq2 being the same length and subseq1>1
            //       are set to '99' this forces shortestpath to choose arcs where one of the
            //       following conditions holds true
            //      * len(subseq1)>1 && len(subseq2)!=len(subseq1)
            //      * len(subseq2)>1 && len(subseq1)!=len(subseq2)
            //      * len(subseq1)==len(subseq2)==1
            //I suspect these heuristics can be eliminated with a better choice of the initialization
            // function and maximization function, but this is the way that m2m-aligner works, so
            // it makes sense for our first cut implementation.
            //In any case, this guarantees that M2MFstAligner produces results identical to those
            // produced by m2m-aligner - but with a bit more reliability.
            //UPDATE: this now produces a better alignment than m2m-aligner.
            //  The maxl heuristic is still in place.  The aligner will produce *better* 1-best alignments
            //  *without* the maxl heuristic below, BUT this comes at the cost of producing a less
            //  flexible corpus.  That is, for a small training corpus like nettalk, if we use the
            //  best alignment we wind up with more 'chunks' and thus get a worse coverage for unseen
            //  data.  Using the aignment lattices to train the joint ngram model solves this problem.
            //  Oh baby.  Can't wait to for everyone to see the paper!
            //NOTE: this is going to fail if we encounter any alignments in a new test item that never
            // occurred in the original model.
            StdArc
            arc = aiter.Value();
            int
            maxl = get_max_length(isyms->Find(arc.ilabel));
            if (maxl == -1) {
                arc.weight = 999;
            }
            else {
                //Optionally penalize m-to-1 / 1-to-m links.  This produces
                // WORSE 1-best alignments, but results in better joint n-gram
                // models for small training corpora when using only the 1-best
                // alignment.  By further favoring 1-to-1 alignments the 1-best
                // alignment corpus results in a more flexible joint n-gram model
                // with regard to previously unseen data.
                //if( penalize==true ){
                arc.weight = alignment_model[arc.ilabel].Value() * maxl;
                //}else{
                //For larger corpora this is probably unnecessary.
                //arc.weight = alignment_model[arc.ilabel].Value();
                //}
            }
            if (arc.weight == LogWeight::Zero())
                arc.weight = 999;
            if (arc.weight != arc.weight)
                arc.weight = 999;
            aiter.SetValue(arc);
        }
    }

    VectorFst<StdArc> shortest;
    ShortestPath(fst, &shortest, nbest);
    RmEpsilon(&shortest);
    //Skip empty results.  This should only happen
    // in the following situations:
    //  1. seq1_del=false && len(seq1)<len(seq2)
    //  2. seq2_del=false && len(seq1)>len(seq2)
    //In both 1.and 2. the issue is that we need to
    // insert a 'skip' in order to guarantee at least
    // one valid alignment path through seq1*seq2, but
    // user params didn't allow us to.
    //Probably better to insert these where necessary
    // during initialization, regardless of user prefs.
    if (shortest.NumStates() == 0) {
        vector<PathData> dummy;
        return dummy;
    }
    FstPathFinder
    pathfinder(skipSeqs);
    pathfinder.isyms = isyms;
    pathfinder.findAllStrings(shortest);
    return pathfinder.paths;
}