/* * Attempt to do a non-blocking upgrade from a read lock to a write * lock. This will only succeed if this thread holds a single read * lock. Returns true if the upgrade succeeded and false otherwise. */ int _rw_try_upgrade(struct rwlock *rw, const char *file, int line) { uintptr_t v, x, tid; struct turnstile *ts; int success; if (SCHEDULER_STOPPED()) return (1); KASSERT(rw->rw_lock != RW_DESTROYED, ("rw_try_upgrade() of destroyed rwlock @ %s:%d", file, line)); _rw_assert(rw, RA_RLOCKED, file, line); /* * Attempt to switch from one reader to a writer. If there * are any write waiters, then we will have to lock the * turnstile first to prevent races with another writer * calling turnstile_wait() before we have claimed this * turnstile. So, do the simple case of no waiters first. */ tid = (uintptr_t)curthread; success = 0; for (;;) { v = rw->rw_lock; if (RW_READERS(v) > 1) break; if (!(v & RW_LOCK_WAITERS)) { success = atomic_cmpset_ptr(&rw->rw_lock, v, tid); if (!success) continue; break; } /* * Ok, we think we have waiters, so lock the turnstile. */ ts = turnstile_trywait(&rw->lock_object); v = rw->rw_lock; if (RW_READERS(v) > 1) { turnstile_cancel(ts); break; } /* * Try to switch from one reader to a writer again. This time * we honor the current state of the waiters flags. * If we obtain the lock with the flags set, then claim * ownership of the turnstile. */ x = rw->rw_lock & RW_LOCK_WAITERS; success = atomic_cmpset_ptr(&rw->rw_lock, v, tid | x); if (success) { if (x) turnstile_claim(ts); else turnstile_cancel(ts); break; } turnstile_cancel(ts); } LOCK_LOG_TRY("WUPGRADE", &rw->lock_object, 0, success, file, line); if (success) { curthread->td_rw_rlocks--; WITNESS_UPGRADE(&rw->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK, file, line); LOCKSTAT_RECORD0(LS_RW_TRYUPGRADE_UPGRADE, rw); } return (success); }
/* * Downgrade a write lock into a single read lock. */ void _rw_downgrade(struct rwlock *rw, const char *file, int line) { struct turnstile *ts; uintptr_t tid, v; int rwait, wwait; if (SCHEDULER_STOPPED()) return; KASSERT(rw->rw_lock != RW_DESTROYED, ("rw_downgrade() of destroyed rwlock @ %s:%d", file, line)); _rw_assert(rw, RA_WLOCKED | RA_NOTRECURSED, file, line); #ifndef INVARIANTS if (rw_recursed(rw)) panic("downgrade of a recursed lock"); #endif WITNESS_DOWNGRADE(&rw->lock_object, 0, file, line); /* * Convert from a writer to a single reader. First we handle * the easy case with no waiters. If there are any waiters, we * lock the turnstile and "disown" the lock. */ tid = (uintptr_t)curthread; if (atomic_cmpset_rel_ptr(&rw->rw_lock, tid, RW_READERS_LOCK(1))) goto out; /* * Ok, we think we have waiters, so lock the turnstile so we can * read the waiter flags without any races. */ turnstile_chain_lock(&rw->lock_object); v = rw->rw_lock & RW_LOCK_WAITERS; rwait = v & RW_LOCK_READ_WAITERS; wwait = v & RW_LOCK_WRITE_WAITERS; MPASS(rwait | wwait); /* * Downgrade from a write lock while preserving waiters flag * and give up ownership of the turnstile. */ ts = turnstile_lookup(&rw->lock_object); MPASS(ts != NULL); if (!wwait) v &= ~RW_LOCK_READ_WAITERS; atomic_store_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v); /* * Wake other readers if there are no writers pending. Otherwise they * won't be able to acquire the lock anyway. */ if (rwait && !wwait) { turnstile_broadcast(ts, TS_SHARED_QUEUE); turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); } else turnstile_disown(ts); turnstile_chain_unlock(&rw->lock_object); out: curthread->td_rw_rlocks++; LOCK_LOG_LOCK("WDOWNGRADE", &rw->lock_object, 0, 0, file, line); LOCKSTAT_RECORD0(LS_RW_DOWNGRADE_DOWNGRADE, rw); }
void _rw_runlock(struct rwlock *rw, const char *file, int line) { struct turnstile *ts; uintptr_t x, v, queue; if (SCHEDULER_STOPPED()) return; KASSERT(rw->rw_lock != RW_DESTROYED, ("rw_runlock() of destroyed rwlock @ %s:%d", file, line)); _rw_assert(rw, RA_RLOCKED, file, line); curthread->td_locks--; curthread->td_rw_rlocks--; WITNESS_UNLOCK(&rw->lock_object, 0, file, line); LOCK_LOG_LOCK("RUNLOCK", &rw->lock_object, 0, 0, file, line); /* TODO: drop "owner of record" here. */ for (;;) { /* * See if there is more than one read lock held. If so, * just drop one and return. */ x = rw->rw_lock; if (RW_READERS(x) > 1) { if (atomic_cmpset_rel_ptr(&rw->rw_lock, x, x - RW_ONE_READER)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeeded %p -> %p", __func__, rw, (void *)x, (void *)(x - RW_ONE_READER)); break; } continue; } /* * If there aren't any waiters for a write lock, then try * to drop it quickly. */ if (!(x & RW_LOCK_WAITERS)) { MPASS((x & ~RW_LOCK_WRITE_SPINNER) == RW_READERS_LOCK(1)); if (atomic_cmpset_rel_ptr(&rw->rw_lock, x, RW_UNLOCKED)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p last succeeded", __func__, rw); break; } continue; } /* * Ok, we know we have waiters and we think we are the * last reader, so grab the turnstile lock. */ turnstile_chain_lock(&rw->lock_object); v = rw->rw_lock & (RW_LOCK_WAITERS | RW_LOCK_WRITE_SPINNER); MPASS(v & RW_LOCK_WAITERS); /* * Try to drop our lock leaving the lock in a unlocked * state. * * If you wanted to do explicit lock handoff you'd have to * do it here. You'd also want to use turnstile_signal() * and you'd have to handle the race where a higher * priority thread blocks on the write lock before the * thread you wakeup actually runs and have the new thread * "steal" the lock. For now it's a lot simpler to just * wakeup all of the waiters. * * As above, if we fail, then another thread might have * acquired a read lock, so drop the turnstile lock and * restart. */ x = RW_UNLOCKED; if (v & RW_LOCK_WRITE_WAITERS) { queue = TS_EXCLUSIVE_QUEUE; x |= (v & RW_LOCK_READ_WAITERS); } else queue = TS_SHARED_QUEUE; if (!atomic_cmpset_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v, x)) { turnstile_chain_unlock(&rw->lock_object); continue; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p last succeeded with waiters", __func__, rw); /* * Ok. The lock is released and all that's left is to * wake up the waiters. Note that the lock might not be * free anymore, but in that case the writers will just * block again if they run before the new lock holder(s) * release the lock. */ ts = turnstile_lookup(&rw->lock_object); MPASS(ts != NULL); turnstile_broadcast(ts, queue); turnstile_unpend(ts, TS_SHARED_LOCK); turnstile_chain_unlock(&rw->lock_object); break; } LOCKSTAT_PROFILE_RELEASE_LOCK(LS_RW_RUNLOCK_RELEASE, rw); }
/* * This function is called when we are unable to obtain a write lock on the * first try. This means that at least one other thread holds either a * read or write lock. */ void _rw_wlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line) { struct turnstile *ts; #ifdef ADAPTIVE_RWLOCKS volatile struct thread *owner; int spintries = 0; int i; #endif uintptr_t v, x; #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif #ifdef KDTRACE_HOOKS uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; #endif if (SCHEDULER_STOPPED()) return; if (rw_wlocked(rw)) { KASSERT(rw->lock_object.lo_flags & LO_RECURSABLE, ("%s: recursing but non-recursive rw %s @ %s:%d\n", __func__, rw->lock_object.lo_name, file, line)); rw->rw_recurse++; if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p recursing", __func__, rw); return; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, rw->lock_object.lo_name, (void *)rw->rw_lock, file, line); while (!_rw_write_lock(rw, tid)) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&rw->lock_object, &contested, &waittime); #ifdef ADAPTIVE_RWLOCKS /* * If the lock is write locked and the owner is * running on another CPU, spin until the owner stops * running or the state of the lock changes. */ v = rw->rw_lock; owner = (struct thread *)RW_OWNER(v); if (!(v & RW_LOCK_READ) && TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, rw, owner); while ((struct thread*)RW_OWNER(rw->rw_lock) == owner && TD_IS_RUNNING(owner)) { cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } continue; } if ((v & RW_LOCK_READ) && RW_READERS(v) && spintries < ROWNER_RETRIES) { if (!(v & RW_LOCK_WRITE_SPINNER)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_WRITE_SPINNER)) { continue; } } spintries++; for (i = 0; i < ROWNER_LOOPS; i++) { if ((rw->rw_lock & RW_LOCK_WRITE_SPINNER) == 0) break; cpu_spinwait(); } #ifdef KDTRACE_HOOKS spin_cnt += ROWNER_LOOPS - i; #endif if (i != ROWNER_LOOPS) continue; } #endif ts = turnstile_trywait(&rw->lock_object); v = rw->rw_lock; #ifdef ADAPTIVE_RWLOCKS /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ if (!(v & RW_LOCK_READ)) { owner = (struct thread *)RW_OWNER(v); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } } #endif /* * Check for the waiters flags about this rwlock. * If the lock was released, without maintain any pending * waiters queue, simply try to acquire it. * If a pending waiters queue is present, claim the lock * ownership and maintain the pending queue. */ x = v & (RW_LOCK_WAITERS | RW_LOCK_WRITE_SPINNER); if ((v & ~x) == RW_UNLOCKED) { x &= ~RW_LOCK_WRITE_SPINNER; if (atomic_cmpset_acq_ptr(&rw->rw_lock, v, tid | x)) { if (x) turnstile_claim(ts); else turnstile_cancel(ts); break; } turnstile_cancel(ts); continue; } /* * If the RW_LOCK_WRITE_WAITERS flag isn't set, then try to * set it. If we fail to set it, then loop back and try * again. */ if (!(v & RW_LOCK_WRITE_WAITERS)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_WRITE_WAITERS)) { turnstile_cancel(ts); continue; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set write waiters flag", __func__, rw); } /* * We were unable to acquire the lock and the write waiters * flag is set, so we must block on the turnstile. */ if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__, rw); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(); #endif turnstile_wait(ts, rw_owner(rw), TS_EXCLUSIVE_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(); sleep_cnt++; #endif if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from turnstile", __func__, rw); #ifdef ADAPTIVE_RWLOCKS spintries = 0; #endif } LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_RW_WLOCK_ACQUIRE, rw, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (sleep_time) LOCKSTAT_RECORD1(LS_RW_WLOCK_BLOCK, rw, sleep_time); /* * Record only the loops spinning and not sleeping. */ if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(LS_RW_WLOCK_SPIN, rw, (spin_cnt - sleep_cnt)); #endif }
/* * This function is called if the first try at releasing a write lock failed. * This means that one of the 2 waiter bits must be set indicating that at * least one thread is waiting on this lock. */ void __rw_wunlock_hard(volatile uintptr_t *c, uintptr_t tid, const char *file, int line) { struct rwlock *rw; struct turnstile *ts; uintptr_t v; int queue; if (SCHEDULER_STOPPED()) return; rw = rwlock2rw(c); if (rw_wlocked(rw) && rw_recursed(rw)) { rw->rw_recurse--; if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, rw); return; } KASSERT(rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS), ("%s: neither of the waiter flags are set", __func__)); if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p contested", __func__, rw); turnstile_chain_lock(&rw->lock_object); ts = turnstile_lookup(&rw->lock_object); MPASS(ts != NULL); /* * Use the same algo as sx locks for now. Prefer waking up shared * waiters if we have any over writers. This is probably not ideal. * * 'v' is the value we are going to write back to rw_lock. If we * have waiters on both queues, we need to preserve the state of * the waiter flag for the queue we don't wake up. For now this is * hardcoded for the algorithm mentioned above. * * In the case of both readers and writers waiting we wakeup the * readers but leave the RW_LOCK_WRITE_WAITERS flag set. If a * new writer comes in before a reader it will claim the lock up * above. There is probably a potential priority inversion in * there that could be worked around either by waking both queues * of waiters or doing some complicated lock handoff gymnastics. */ v = RW_UNLOCKED; if (rw->rw_lock & RW_LOCK_WRITE_WAITERS) { queue = TS_EXCLUSIVE_QUEUE; v |= (rw->rw_lock & RW_LOCK_READ_WAITERS); } else queue = TS_SHARED_QUEUE; /* Wake up all waiters for the specific queue. */ if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR3(KTR_LOCK, "%s: %p waking up %s waiters", __func__, rw, queue == TS_SHARED_QUEUE ? "read" : "write"); turnstile_broadcast(ts, queue); atomic_store_rel_ptr(&rw->rw_lock, v); turnstile_unpend(ts, TS_EXCLUSIVE_LOCK); turnstile_chain_unlock(&rw->lock_object); }
void _rw_rlock(struct rwlock *rw, const char *file, int line) { struct turnstile *ts; #ifdef ADAPTIVE_RWLOCKS volatile struct thread *owner; int spintries = 0; int i; #endif #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif uintptr_t v; #ifdef KDTRACE_HOOKS uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; #endif if (SCHEDULER_STOPPED()) return; KASSERT(rw->rw_lock != RW_DESTROYED, ("rw_rlock() of destroyed rwlock @ %s:%d", file, line)); KASSERT(rw_wowner(rw) != curthread, ("%s (%s): wlock already held @ %s:%d", __func__, rw->lock_object.lo_name, file, line)); WITNESS_CHECKORDER(&rw->lock_object, LOP_NEWORDER, file, line, NULL); for (;;) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif /* * Handle the easy case. If no other thread has a write * lock, then try to bump up the count of read locks. Note * that we have to preserve the current state of the * RW_LOCK_WRITE_WAITERS flag. If we fail to acquire a * read lock, then rw_lock must have changed, so restart * the loop. Note that this handles the case of a * completely unlocked rwlock since such a lock is encoded * as a read lock with no waiters. */ v = rw->rw_lock; if (RW_CAN_READ(v)) { /* * The RW_LOCK_READ_WAITERS flag should only be set * if the lock has been unlocked and write waiters * were present. */ if (atomic_cmpset_acq_ptr(&rw->rw_lock, v, v + RW_ONE_READER)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeed %p -> %p", __func__, rw, (void *)v, (void *)(v + RW_ONE_READER)); break; } continue; } #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&rw->lock_object, &contested, &waittime); #ifdef ADAPTIVE_RWLOCKS /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if ((v & RW_LOCK_READ) == 0) { owner = (struct thread *)RW_OWNER(v); if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, rw, owner); while ((struct thread*)RW_OWNER(rw->rw_lock) == owner && TD_IS_RUNNING(owner)) { cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } continue; } } else if (spintries < ROWNER_RETRIES) { spintries++; for (i = 0; i < ROWNER_LOOPS; i++) { v = rw->rw_lock; if ((v & RW_LOCK_READ) == 0 || RW_CAN_READ(v)) break; cpu_spinwait(); } if (i != ROWNER_LOOPS) continue; } #endif /* * Okay, now it's the hard case. Some other thread already * has a write lock or there are write waiters present, * acquire the turnstile lock so we can begin the process * of blocking. */ ts = turnstile_trywait(&rw->lock_object); /* * The lock might have been released while we spun, so * recheck its state and restart the loop if needed. */ v = rw->rw_lock; if (RW_CAN_READ(v)) { turnstile_cancel(ts); continue; } #ifdef ADAPTIVE_RWLOCKS /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ if ((v & RW_LOCK_READ) == 0) { owner = (struct thread *)RW_OWNER(v); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } } #endif /* * The lock is held in write mode or it already has waiters. */ MPASS(!RW_CAN_READ(v)); /* * If the RW_LOCK_READ_WAITERS flag is already set, then * we can go ahead and block. If it is not set then try * to set it. If we fail to set it drop the turnstile * lock and restart the loop. */ if (!(v & RW_LOCK_READ_WAITERS)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_READ_WAITERS)) { turnstile_cancel(ts); continue; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set read waiters flag", __func__, rw); } /* * We were unable to acquire the lock and the read waiters * flag is set, so we must block on the turnstile. */ if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__, rw); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(); #endif turnstile_wait(ts, rw_owner(rw), TS_SHARED_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(); sleep_cnt++; #endif if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from turnstile", __func__, rw); } /* * TODO: acquire "owner of record" here. Here be turnstile dragons * however. turnstiles don't like owners changing between calls to * turnstile_wait() currently. */ LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_RW_RLOCK_ACQUIRE, rw, contested, waittime, file, line); LOCK_LOG_LOCK("RLOCK", &rw->lock_object, 0, 0, file, line); WITNESS_LOCK(&rw->lock_object, 0, file, line); curthread->td_locks++; curthread->td_rw_rlocks++; #ifdef KDTRACE_HOOKS if (sleep_time) LOCKSTAT_RECORD1(LS_RW_RLOCK_BLOCK, rw, sleep_time); /* * Record only the loops spinning and not sleeping. */ if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(LS_RW_RLOCK_SPIN, rw, (spin_cnt - sleep_cnt)); #endif }
void thread_lock_flags_(struct thread *td, int opts, const char *file, int line) { struct mtx *m; uintptr_t tid; struct lock_delay_arg lda; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #ifdef KDTRACE_HOOKS int64_t spin_time = 0; #endif tid = (uintptr_t)curthread; if (SCHEDULER_STOPPED()) { /* * Ensure that spinlock sections are balanced even when the * scheduler is stopped, since we may otherwise inadvertently * re-enable interrupts while dumping core. */ spinlock_enter(); return; } lock_delay_arg_init(&lda, &mtx_spin_delay); #ifdef KDTRACE_HOOKS spin_time -= lockstat_nsecs(&td->td_lock->lock_object); #endif for (;;) { retry: spinlock_enter(); m = td->td_lock; KASSERT(m->mtx_lock != MTX_DESTROYED, ("thread_lock() of destroyed mutex @ %s:%d", file, line)); KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin, ("thread_lock() of sleep mutex %s @ %s:%d", m->lock_object.lo_name, file, line)); if (mtx_owned(m)) KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0, ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL); for (;;) { if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid)) break; if (m->mtx_lock == tid) { m->mtx_recurse++; break; } #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); /* Give interrupts a chance while we spin. */ spinlock_exit(); while (m->mtx_lock != MTX_UNOWNED) { if (lda.spin_cnt < 10000000) { lock_delay(&lda); } else { lda.spin_cnt++; if (lda.spin_cnt < 60000000 || kdb_active || panicstr != NULL) DELAY(1); else _mtx_lock_spin_failed(m); cpu_spinwait(); } if (m != td->td_lock) goto retry; } spinlock_enter(); } if (m == td->td_lock) break; __mtx_unlock_spin(m); /* does spinlock_exit() */ } #ifdef KDTRACE_HOOKS spin_time += lockstat_nsecs(&m->lock_object); #endif if (m->mtx_recurse == 0) LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, contested, waittime, file, line); LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file, line); WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line); #ifdef KDTRACE_HOOKS if (spin_time != 0) LOCKSTAT_RECORD1(thread__spin, m, spin_time); #endif }
/* * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock. * * This is only called if we need to actually spin for the lock. Recursion * is handled inline. */ void _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts, const char *file, int line) { struct mtx *m; struct lock_delay_arg lda; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #ifdef KDTRACE_HOOKS int64_t spin_time = 0; #endif if (SCHEDULER_STOPPED()) return; lock_delay_arg_init(&lda, &mtx_spin_delay); m = mtxlock2mtx(c); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); #ifdef KDTRACE_HOOKS spin_time -= lockstat_nsecs(&m->lock_object); #endif for (;;) { if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid)) break; /* Give interrupts a chance while we spin. */ spinlock_exit(); while (m->mtx_lock != MTX_UNOWNED) { if (lda.spin_cnt < 10000000) { lock_delay(&lda); continue; } lda.spin_cnt++; if (lda.spin_cnt < 60000000 || kdb_active || panicstr != NULL) DELAY(1); else _mtx_lock_spin_failed(m); cpu_spinwait(); } spinlock_enter(); } #ifdef KDTRACE_HOOKS spin_time += lockstat_nsecs(&m->lock_object); #endif if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); #ifdef KDTRACE_HOOKS LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, contested, waittime, file, line); if (spin_time != 0) LOCKSTAT_RECORD1(spin__spin, m, spin_time); #endif }
/* * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. * * We call this if the lock is either contested (i.e. we need to go to * sleep waiting for it), or if we need to recurse on it. */ void __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts, const char *file, int line) { struct mtx *m; struct turnstile *ts; uintptr_t v; #ifdef ADAPTIVE_MUTEXES volatile struct thread *owner; #endif #ifdef KTR int cont_logged = 0; #endif #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS) struct lock_delay_arg lda; #endif #ifdef KDTRACE_HOOKS u_int sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif if (SCHEDULER_STOPPED()) return; #if defined(ADAPTIVE_MUTEXES) lock_delay_arg_init(&lda, &mtx_delay); #elif defined(KDTRACE_HOOKS) lock_delay_arg_init(&lda, NULL); #endif m = mtxlock2mtx(c); if (mtx_owned(m)) { KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || (opts & MTX_RECURSE) != 0, ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); opts &= ~MTX_RECURSE; m->mtx_recurse++; atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); return; } opts &= ~MTX_RECURSE; #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR4(KTR_LOCK, "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", m->lock_object.lo_name, (void *)m->mtx_lock, file, line); #ifdef KDTRACE_HOOKS all_time -= lockstat_nsecs(&m->lock_object); #endif for (;;) { if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid)) break; #ifdef KDTRACE_HOOKS lda.spin_cnt++; #endif #ifdef ADAPTIVE_MUTEXES /* * If the owner is running on another CPU, spin until the * owner stops running or the state of the lock changes. */ v = m->mtx_lock; if (v != MTX_UNOWNED) { owner = (struct thread *)(v & ~MTX_FLAGMASK); if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&m->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, m, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) lock_delay(&lda); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); continue; } } #endif ts = turnstile_trywait(&m->lock_object); v = m->mtx_lock; /* * Check if the lock has been released while spinning for * the turnstile chain lock. */ if (v == MTX_UNOWNED) { turnstile_cancel(ts); continue; } #ifdef ADAPTIVE_MUTEXES /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ owner = (struct thread *)(v & ~MTX_FLAGMASK); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } #endif /* * If the mutex isn't already contested and a failure occurs * setting the contested bit, the mutex was either released * or the state of the MTX_RECURSED bit changed. */ if ((v & MTX_CONTESTED) == 0 && !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) { turnstile_cancel(ts); continue; } /* * We definitely must sleep for this lock. */ mtx_assert(m, MA_NOTOWNED); #ifdef KTR if (!cont_logged) { CTR6(KTR_CONTENTION, "contention: %p at %s:%d wants %s, taken by %s:%d", (void *)tid, file, line, m->lock_object.lo_name, WITNESS_FILE(&m->lock_object), WITNESS_LINE(&m->lock_object)); cont_logged = 1; } #endif /* * Block on the turnstile. */ #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&m->lock_object); #endif turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&m->lock_object); sleep_cnt++; #endif } #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&m->lock_object); #endif #ifdef KTR if (cont_logged) { CTR4(KTR_CONTENTION, "contention end: %s acquired by %p at %s:%d", m->lock_object.lo_name, (void *)tid, file, line); } #endif LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (sleep_time) LOCKSTAT_RECORD1(adaptive__block, m, sleep_time); /* * Only record the loops spinning and not sleeping. */ if (lda.spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time); #endif }
/* * Shutdown the system cleanly to prepare for reboot, halt, or power off. */ void kern_reboot(int howto) { static int first_buf_printf = 1; #if defined(SMP) /* * Bind us to CPU 0 so that all shutdown code runs there. Some * systems don't shutdown properly (i.e., ACPI power off) if we * run on another processor. */ if (!SCHEDULER_STOPPED()) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); KASSERT(PCPU_GET(cpuid) == 0, ("boot: not running on cpu 0")); } #endif /* We're in the process of rebooting. */ rebooting = 1; /* collect extra flags that shutdown_nice might have set */ howto |= shutdown_howto; /* We are out of the debugger now. */ kdb_active = 0; /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) { register struct buf *bp; int iter, nbusy, pbusy; #ifndef PREEMPTION int subiter; #endif waittime = 0; wdog_kern_pat(WD_LASTVAL); sys_sync(curthread, NULL); /* * With soft updates, some buffers that are * written will be remarked as dirty until other * buffers are written. */ for (iter = pbusy = 0; iter < 20; iter++) { nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) if (isbufbusy(bp)) nbusy++; if (nbusy == 0) { if (first_buf_printf) printf("All buffers synced."); break; } if (first_buf_printf) { printf("Syncing disks, buffers remaining... "); first_buf_printf = 0; } printf("%d ", nbusy); if (nbusy < pbusy) iter = 0; pbusy = nbusy; wdog_kern_pat(WD_LASTVAL); sys_sync(curthread, NULL); #ifdef PREEMPTION /* * Drop Giant and spin for a while to allow * interrupt threads to run. */ DROP_GIANT(); DELAY(50000 * iter); PICKUP_GIANT(); #else /* * Drop Giant and context switch several times to * allow interrupt threads to run. */ DROP_GIANT(); for (subiter = 0; subiter < 50 * iter; subiter++) { thread_lock(curthread); mi_switch(SW_VOL, NULL); thread_unlock(curthread); DELAY(1000); } PICKUP_GIANT(); #endif } printf("\n"); /* * Count only busy local buffers to prevent forcing * a fsck if we're just a client of a wedged NFS server */ nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) { if (isbufbusy(bp)) { #if 0 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ if (bp->b_dev == NULL) { TAILQ_REMOVE(&mountlist, bp->b_vp->v_mount, mnt_list); continue; } #endif nbusy++; if (show_busybufs > 0) { printf( "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", nbusy, bp, bp->b_vp, bp->b_flags, (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); BUF_LOCKPRINTINFO(bp); if (show_busybufs > 1) vn_printf(bp->b_vp, "vnode content: "); } } } if (nbusy) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ printf("Giving up on %d buffers\n", nbusy); DELAY(5000000); /* 5 seconds */ } else { if (!first_buf_printf) printf("Final sync complete\n"); /* * Unmount filesystems */ if (panicstr == 0) vfs_unmountall(); } swapoff_all(); DELAY(100000); /* wait for console output to finish */ } print_uptime(); cngrab(); /* * Ok, now do things that assume all filesystem activity has * been completed. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) doadump(TRUE); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ }
/* * malloc: * * Allocate a block of memory. * * If M_NOWAIT is set, this routine will not block and return NULL if * the allocation fails. */ void * malloc(unsigned long size, struct malloc_type *mtp, int flags) { int indx; struct malloc_type_internal *mtip; caddr_t va; uma_zone_t zone; #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) unsigned long osize = size; #endif #ifdef INVARIANTS KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); /* * Check that exactly one of M_WAITOK or M_NOWAIT is specified. */ indx = flags & (M_WAITOK | M_NOWAIT); if (indx != M_NOWAIT && indx != M_WAITOK) { static struct timeval lasterr; static int curerr, once; if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { printf("Bad malloc flags: %x\n", indx); kdb_backtrace(); flags |= M_WAITOK; once++; } } #endif #ifdef MALLOC_MAKE_FAILURES if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { atomic_add_int(&malloc_nowait_count, 1); if ((malloc_nowait_count % malloc_failure_rate) == 0) { atomic_add_int(&malloc_failure_count, 1); t_malloc_fail = time_uptime; return (NULL); } } #endif if (flags & M_WAITOK) KASSERT(curthread->td_intr_nesting_level == 0, ("malloc(M_WAITOK) in interrupt context")); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("malloc: called with spinlock or critical section held")); #ifdef DEBUG_MEMGUARD if (memguard_cmp_mtp(mtp, size)) { va = memguard_alloc(size, flags); if (va != NULL) return (va); /* This is unfortunate but should not be fatal. */ } #endif #ifdef DEBUG_REDZONE size = redzone_size_ntor(size); #endif if (size <= kmem_zmax) { mtip = mtp->ks_handle; if (size & KMEM_ZMASK) size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; indx = kmemsize[size >> KMEM_ZSHIFT]; KASSERT(mtip->mti_zone < numzones, ("mti_zone %u out of range %d", mtip->mti_zone, numzones)); zone = kmemzones[indx].kz_zone[mtip->mti_zone]; #ifdef MALLOC_PROFILE krequests[size >> KMEM_ZSHIFT]++; #endif va = uma_zalloc(zone, flags); if (va != NULL) size = zone->uz_size; malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); } else {