/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Real oldobjval; SCIP_Real frac; SCIP_Real bestfrac; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; SCIP_Real actscore; SCIP_Real downscore; SCIP_Real upscore; SCIP_Real bestactscore; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip), SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound)); /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; cutoff = FALSE; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { divedepth++; SCIP_CALL( SCIPnewProbingNode(scip) ); /* choose variable fixing: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, round variable with least number of locks in corresponding direction * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - round variable with least number of locks in opposite of its feasible rounding direction */ bestcand = -1; bestactscore = -1.0; bestfrac = SCIP_INVALID; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the fractionality * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ if( mayrounddown && mayroundup ) roundup = (frac > 0.5); else roundup = mayrounddown; if( roundup ) frac = 1.0 - frac; actscore = getNActiveConsScore(scip, var, &downscore, &upscore); /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate */ assert(0.0 < frac && frac < 1.0); if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded */ actscore = getNActiveConsScore(scip, var, &downscore, &upscore); roundup = (downscore < upscore); if( roundup ) frac = 1.0 - frac; /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ assert(0.0 < frac && frac < 1.0); if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } assert(bestfrac < SCIP_INVALID); } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } assert(bestcand != -1); var = lpcands[bestcand]; backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); assert(backtracked); break; } /* apply rounding of best candidate */ if( bestcandroundup == !backtracked ) { /* round variable up */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var)); SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); } else { /* round variable down */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand])); SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) ); } /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) ); if( !cutoff ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status, objective value, and fractional variables, that should be integral */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); SCIP_CALL( SCIPnewProbingNode(scip) ); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new objective value */ oldobjval = objval; objval = SCIPgetLPObjval(scip); /* update pseudo cost values */ if( SCIPisGT(scip, objval, oldobjval) ) { if( bestcandroundup ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } else { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } } /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n", SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** try one-opt on given solution */ static SCIP_RETCODE tryOneOpt( SCIP* scip, /**< SCIP data structure */ SCIP_HEUR* heur, /**< indicator heuristic */ SCIP_HEURDATA* heurdata, /**< heuristic data */ int nindconss, /**< number of indicator constraints */ SCIP_CONS** indconss, /**< indicator constraints */ SCIP_Bool* solcand, /**< values for indicator variables in partial solution */ int* nfoundsols /**< number of solutions found */ ) { SCIP_Bool cutoff; SCIP_Bool lperror; SCIP_Bool stored; SCIP_SOL* sol; int cnt = 0; int i; int c; assert( scip != NULL ); assert( heur != NULL ); assert( heurdata != NULL ); assert( nindconss == 0 || indconss != NULL ); assert( solcand != NULL ); assert( nfoundsols != NULL ); SCIPdebugMessage("Performing one-opt ...\n"); *nfoundsols = 0; SCIP_CALL( SCIPstartProbing(scip) ); for (i = 0; i < nindconss; ++i) { SCIP_VAR* binvar; /* skip nonactive constraints */ if ( ! SCIPconsIsActive(indconss[i]) ) continue; binvar = SCIPgetBinaryVarIndicator(indconss[i]); assert( binvar != NULL ); /* skip constraints with fixed variables */ if ( SCIPvarGetUbLocal(binvar) < 0.5 || SCIPvarGetLbLocal(binvar) > 0.5 ) continue; /* return if the we would exceed the depth limit of the tree */ if( SCIPgetDepthLimit(scip) <= SCIPgetDepth(scip) ) break; /* get rid of all bound changes */ SCIP_CALL( SCIPnewProbingNode(scip) ); ++cnt; /* fix variables */ for (c = 0; c < nindconss; ++c) { SCIP_Bool s; /* skip nonactive constraints */ if ( ! SCIPconsIsActive(indconss[c]) ) continue; binvar = SCIPgetBinaryVarIndicator(indconss[c]); assert( binvar != NULL ); /* fix variables according to solution candidate, except constraint i */ if ( c == i ) s = ! solcand[c]; else s = solcand[c]; if ( ! s ) { if ( SCIPvarGetLbLocal(binvar) < 0.5 && SCIPvarGetUbLocal(binvar) > 0.5 ) { SCIP_CALL( SCIPchgVarLbProbing(scip, binvar, 1.0) ); } } else { if ( SCIPvarGetUbLocal(binvar) > 0.5 && SCIPvarGetLbLocal(binvar) < 0.5 ) { SCIP_CALL( SCIPchgVarUbProbing(scip, binvar, 0.0) ); } } } /* propagate variables */ SCIP_CALL( SCIPpropagateProbing(scip, -1, &cutoff, NULL) ); if ( cutoff ) { SCIP_CALL( SCIPbacktrackProbing(scip, 0) ); continue; } /* solve LP to move continuous variables */ SCIP_CALL( SCIPsolveProbingLP(scip, -1, &lperror, &cutoff) ); /* the LP often reaches the objective limit - we currently do not use such solutions */ if ( lperror || cutoff || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) { #ifdef SCIP_DEBUG if ( lperror ) SCIPdebugMessage("An LP error occured.\n"); #endif SCIP_CALL( SCIPbacktrackProbing(scip, 0) ); continue; } /* create solution */ SCIP_CALL( SCIPcreateSol(scip, &sol, heur) ); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* check solution for feasibility */ SCIPdebugMessage("One-opt found solution candidate with value %g.\n", SCIPgetSolTransObj(scip, sol)); /* only check integrality, because we solved an LP */ SCIP_CALL( SCIPtrySolFree(scip, &sol, FALSE, FALSE, TRUE, FALSE, &stored) ); if ( stored ) ++(*nfoundsols); SCIP_CALL( SCIPbacktrackProbing(scip, 0) ); } SCIP_CALL( SCIPendProbing(scip) ); SCIPdebugMessage("Finished one-opt (tried variables: %d, found sols: %d).\n", cnt, *nfoundsols); return SCIP_OKAY; }