Example #1
0
/** branching execution method for fractional LP solutions */
static
SCIP_DECL_BRANCHEXECLP(branchExeclpRandom)
{  /*lint --e{715}*/
   SCIP_BRANCHRULEDATA* branchruledata;
   SCIP_VAR** lpcands;
   int nlpcands;
   int bestcand;

   assert(branchrule != NULL);
   assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   SCIPdebugMessage("Execlp method of random branching in depth %d\n", SCIPgetDepth(scip));

   branchruledata = SCIPbranchruleGetData(branchrule);
   assert(branchruledata != NULL);

   /* get branching candidates */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, NULL, NULL, NULL, &nlpcands, NULL) );
   assert(nlpcands > 0);

   /* get random branching candidate */
   bestcand = SCIPgetRandomInt(0, nlpcands-1, &branchruledata->seed);
   assert(bestcand >= 0);

   SCIPdebugMessage(" -> %d candidates, selected candidate %d: variable <%s>\n",
      nlpcands, bestcand, SCIPvarGetName(lpcands[bestcand]));

   /* perform the branching */
   SCIP_CALL( SCIPbranchVar(scip, lpcands[bestcand], NULL, NULL, NULL) );
   *result = SCIP_BRANCHED;

   return SCIP_OKAY;
}
Example #2
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRandrounding) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_Bool propagate;

   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if an optimal LP solution is at hand or if relaxation solution is available */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL && ! SCIPisRelaxSolValid(scip) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* don't call heuristic, if we have already processed the current LP solution but no relaxation solution is available */
   if ( SCIPgetNLPs(scip) == heurdata->lastlp && ! SCIPisRelaxSolValid(scip) )
      return SCIP_OKAY;

   propagate = (!heurdata->propagateonlyroot || SCIPgetDepth(scip) == 0);

   /* try to round LP solution */
   SCIP_CALL( performLPRandRounding(scip, heurdata, heurtiming, propagate, result) );

   return SCIP_OKAY;
}
Example #3
0
/** output method of display column to output file stream 'file' */
static
SCIP_DECL_DISPOUTPUT(SCIPdispOutputDepth)
{  /*lint --e{715}*/
   assert(disp != NULL);
   assert(strcmp(SCIPdispGetName(disp), DISP_NAME_DEPTH) == 0);
   assert(scip != NULL);

   SCIPdispInt(SCIPgetMessagehdlr(scip), file, SCIPgetDepth(scip), DISP_WIDT_DEPTH);

   return SCIP_OKAY;
}
Example #4
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_LPSOLSTAT lpsolstat;
    SCIP_VAR* var;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_Real* lpcandsfrac;
    SCIP_Real searchubbound;
    SCIP_Real searchavgbound;
    SCIP_Real searchbound;
    SCIP_Real objval;
    SCIP_Real oldobjval;
    SCIP_Real frac;
    SCIP_Real bestfrac;
    SCIP_Bool bestcandmayrounddown;
    SCIP_Bool bestcandmayroundup;
    SCIP_Bool bestcandroundup;
    SCIP_Bool mayrounddown;
    SCIP_Bool mayroundup;
    SCIP_Bool roundup;
    SCIP_Bool lperror;
    SCIP_Bool cutoff;
    SCIP_Bool backtracked;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nlpiterations;
    SCIP_Longint maxnlpiterations;
    int nlpcands;
    int startnlpcands;
    int depth;
    int maxdepth;
    int maxdivedepth;
    int divedepth;
    SCIP_Real actscore;
    SCIP_Real downscore;
    SCIP_Real upscore;
    SCIP_Real bestactscore;
    int bestcand;
    int c;

    assert(heur != NULL);
    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DELAYED;

    /* do not call heuristic of node was already detected to be infeasible */
    if( nodeinfeasible )
        return SCIP_OKAY;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
    if( !SCIPisLPSolBasic(scip) )
        return SCIP_OKAY;

    /* don't dive two times at the same node */
    if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTRUN;

    /* get heuristic's data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
    depth = SCIPgetDepth(scip);
    maxdepth = SCIPgetMaxDepth(scip);
    maxdepth = MAX(maxdepth, 30);
    if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
        return SCIP_OKAY;

    /* calculate the maximal number of LP iterations until heuristic is aborted */
    nlpiterations = SCIPgetNNodeLPIterations(scip);
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
    maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
    maxnlpiterations += heurdata->maxlpiterofs;

    /* don't try to dive, if we took too many LP iterations during diving */
    if( heurdata->nlpiterations >= maxnlpiterations )
        return SCIP_OKAY;

    /* allow at least a certain number of LP iterations in this dive */
    maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

    /* get fractional variables that should be integral */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

    /* don't try to dive, if there are no fractional variables */
    if( nlpcands == 0 )
        return SCIP_OKAY;

    /* calculate the objective search bound */
    if( SCIPgetNSolsFound(scip) == 0 )
    {
        if( heurdata->maxdiveubquotnosol > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquotnosol > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    else
    {
        if( heurdata->maxdiveubquot > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquot > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    searchbound = MIN(searchubbound, searchavgbound);
    if( SCIPisObjIntegral(scip) )
        searchbound = SCIPceil(scip, searchbound);

    /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
    maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
    maxdivedepth = MIN(maxdivedepth, maxdepth);
    maxdivedepth *= 10;

    *result = SCIP_DIDNOTFIND;

    /* start diving */
    SCIP_CALL( SCIPstartProbing(scip) );

    /* enables collection of variable statistics during probing */
    SCIPenableVarHistory(scip);

    /* get LP objective value */
    lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
    objval = SCIPgetLPObjval(scip);

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n",
                     SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip),
                     SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound));

    /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but
     * - if possible, we dive at least with the depth 10
     * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
     */
    lperror = FALSE;
    cutoff = FALSE;
    divedepth = 0;
    bestcandmayrounddown = FALSE;
    bestcandmayroundup = FALSE;
    startnlpcands = nlpcands;
    while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
            && (divedepth < 10
                || nlpcands <= startnlpcands - divedepth/2
                || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
            && !SCIPisStopped(scip) )
    {
        divedepth++;
        SCIP_CALL( SCIPnewProbingNode(scip) );

        /* choose variable fixing:
         * - prefer variables that may not be rounded without destroying LP feasibility:
         *   - of these variables, round variable with least number of locks in corresponding direction
         * - if all remaining fractional variables may be rounded without destroying LP feasibility:
         *   - round variable with least number of locks in opposite of its feasible rounding direction
         */
        bestcand = -1;
        bestactscore = -1.0;
        bestfrac = SCIP_INVALID;
        bestcandmayrounddown = TRUE;
        bestcandmayroundup = TRUE;
        bestcandroundup = FALSE;
        for( c = 0; c < nlpcands; ++c )
        {
            var = lpcands[c];
            mayrounddown = SCIPvarMayRoundDown(var);
            mayroundup = SCIPvarMayRoundUp(var);
            frac = lpcandsfrac[c];
            if( mayrounddown || mayroundup )
            {
                /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
                if( bestcandmayrounddown || bestcandmayroundup )
                {
                    /* choose rounding direction:
                     * - if variable may be rounded in both directions, round corresponding to the fractionality
                     * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                     *   the current fractional solution
                     */
                    if( mayrounddown && mayroundup )
                        roundup = (frac > 0.5);
                    else
                        roundup = mayrounddown;

                    if( roundup )
                        frac = 1.0 - frac;
                    actscore = getNActiveConsScore(scip, var, &downscore, &upscore);

                    /* penalize too small fractions */
                    if( frac < 0.01 )
                        actscore *= 0.01;

                    /* prefer decisions on binary variables */
                    if( !SCIPvarIsBinary(var) )
                        actscore *= 0.01;

                    /* check, if candidate is new best candidate */
                    assert(0.0 < frac && frac < 1.0);
                    if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                    {
                        bestcand = c;
                        bestactscore = actscore;
                        bestfrac = frac;
                        bestcandmayrounddown = mayrounddown;
                        bestcandmayroundup = mayroundup;
                        bestcandroundup = roundup;
                    }
                }
            }
            else
            {
                /* the candidate may not be rounded */
                actscore = getNActiveConsScore(scip, var, &downscore, &upscore);
                roundup = (downscore < upscore);
                if( roundup )
                    frac = 1.0 - frac;

                /* penalize too small fractions */
                if( frac < 0.01 )
                    actscore *= 0.01;

                /* prefer decisions on binary variables */
                if( !SCIPvarIsBinary(var) )
                    actscore *= 0.01;

                /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
                assert(0.0 < frac && frac < 1.0);
                if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) ||
                        (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                {
                    bestcand = c;
                    bestactscore = actscore;
                    bestfrac = frac;
                    bestcandmayrounddown = FALSE;
                    bestcandmayroundup = FALSE;
                    bestcandroundup = roundup;
                }
                assert(bestfrac < SCIP_INVALID);
            }
        }
        assert(bestcand != -1);

        /* if all candidates are roundable, try to round the solution */
        if( bestcandmayrounddown || bestcandmayroundup )
        {
            SCIP_Bool success;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

            if( success )
            {
                SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

                /* try to add solution to SCIP */
                SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

                /* check, if solution was feasible and good enough */
                if( success )
                {
                    SCIPdebugMessage(" -> solution was feasible and good enough\n");
                    *result = SCIP_FOUNDSOL;
                }
            }
        }
        assert(bestcand != -1);
        var = lpcands[bestcand];

        backtracked = FALSE;
        do
        {
            /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
             * occured or variable was fixed by propagation while backtracking => Abort diving!
             */
            if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
            {
                SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                cutoff = TRUE;
                break;
            }
            if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) )
            {
                SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                assert(backtracked);
                break;
            }

            /* apply rounding of best candidate */
            if( bestcandroundup == !backtracked )
            {
                /* round variable up */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var));
                SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
            }
            else
            {
                /* round variable down */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand]));
                SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) );
            }

            /* apply domain propagation */
            SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) );
            if( !cutoff )
            {
                /* resolve the diving LP */
                /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                 */
#ifdef NDEBUG
                SCIP_RETCODE retstat;
                nlpiterations = SCIPgetNLPIterations(scip);
                retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
                if( retstat != SCIP_OKAY )
                {
                    SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat);
                }
#else
                nlpiterations = SCIPgetNLPIterations(scip);
                SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

                if( lperror )
                    break;

                /* update iteration count */
                heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

                /* get LP solution status, objective value, and fractional variables, that should be integral */
                lpsolstat = SCIPgetLPSolstat(scip);
                assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                                  (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }

            /* perform backtracking if a cutoff was detected */
            if( cutoff && !backtracked && heurdata->backtrack )
            {
                SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
                SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );
                SCIP_CALL( SCIPnewProbingNode(scip) );
                backtracked = TRUE;
            }
            else
                backtracked = FALSE;
        }
        while( backtracked );

        if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
        {
            /* get new objective value */
            oldobjval = objval;
            objval = SCIPgetLPObjval(scip);

            /* update pseudo cost values */
            if( SCIPisGT(scip, objval, oldobjval) )
            {
                if( bestcandroundup )
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
                else
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
            }

            /* get new fractional variables */
            SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
        }
        SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands);
    }

    /* check if a solution has been found */
    if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
    {
        SCIP_Bool success;

        /* create solution from diving LP */
        SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
        SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

        /* try to add solution to SCIP */
        SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

        /* check, if solution was feasible and good enough */
        if( success )
        {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
        }
    }

    /* end diving */
    SCIP_CALL( SCIPendProbing(scip) );

    if( *result == SCIP_FOUNDSOL )
        heurdata->nsuccess++;

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n",
                     SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                     SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff);

    return SCIP_OKAY;
}
Example #5
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR* var;
   SCIP_VAR** lpcands;
   SCIP_Real* lpcandssol;
   SCIP_Real* lpcandsfrac;
   SCIP_Real primsol;
   SCIP_Real frac;
   SCIP_Real pscostquot;
   SCIP_Real bestpscostquot;
   SCIP_Real oldobj;
   SCIP_Real newobj;
   SCIP_Real objscale;
   SCIP_Bool bestcandmayrounddown;
   SCIP_Bool bestcandmayroundup;
   SCIP_Bool bestcandroundup;
   SCIP_Bool mayrounddown;
   SCIP_Bool mayroundup;
   SCIP_Bool roundup;
   SCIP_Bool lperror;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int* roundings;
   int nvars;
   int varidx;
   int nlpcands;
   int startnlpcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int bestcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only apply heuristic, if only a few solutions have been found */
   if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols )
      return SCIP_OKAY;

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get fractional variables that should be integral */
   SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the maximal diving depth */
   nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   if( SCIPgetNSolsFound(scip) == 0 )
      maxdivedepth = (int)(heurdata->depthfacnosol * nvars);
   else
      maxdivedepth = (int)(heurdata->depthfac * nvars);
   maxdivedepth = MIN(maxdivedepth, 10*maxdepth);


   *result = SCIP_DIDNOTFIND;

   /* get temporary memory for remembering the current soft roundings */
   SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) );
   BMSclearMemoryArray(roundings, nvars);

   /* start diving */
   SCIP_CALL( SCIPstartDive(scip) );

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth);

   /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but
    * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case
    * - if possible, we dive at least with the depth 10
    * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
    */
   lperror = FALSE;
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   divedepth = 0;
   bestcandmayrounddown = FALSE;
   bestcandmayroundup = FALSE;
   startnlpcands = nlpcands;
   while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10
            && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) )
   {
      SCIP_RETCODE retcode;

      divedepth++;

      /* choose variable for objective change:
       * - prefer variables that may not be rounded without destroying LP feasibility:
       *   - of these variables, change objective value of variable with largest rel. difference of pseudo cost values
       * - if all remaining fractional variables may be rounded without destroying LP feasibility:
       *   - change objective value of variable with largest rel. difference of pseudo cost values
       */
      bestcand = -1;
      bestpscostquot = -1.0;
      bestcandmayrounddown = TRUE;
      bestcandmayroundup = TRUE;
      bestcandroundup = FALSE;
      for( c = 0; c < nlpcands; ++c )
      {
         var = lpcands[c];
         mayrounddown = SCIPvarMayRoundDown(var);
         mayroundup = SCIPvarMayRoundUp(var);
         primsol = lpcandssol[c];
         frac = lpcandsfrac[c];
         if( mayrounddown || mayroundup )
         {
            /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
            if( bestcandmayrounddown || bestcandmayroundup )
            {
               /* choose rounding direction:
                * - if variable may be rounded in both directions, round corresponding to the pseudo cost values
                * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                *   the current fractional solution
                */
               roundup = FALSE;
               if( mayrounddown && mayroundup )
                  calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup);
               else if( mayrounddown )
                  calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup);
               else
                  calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup);

               /* prefer variables, that have already been soft rounded but failed to get integral */
               varidx = SCIPvarGetProbindex(var);
               assert(0 <= varidx && varidx < nvars);
               if( roundings[varidx] != 0 )
                  pscostquot *= 1000.0;

               /* check, if candidate is new best candidate */
               if( pscostquot > bestpscostquot )
               {
                  bestcand = c;
                  bestpscostquot = pscostquot;
                  bestcandmayrounddown = mayrounddown;
                  bestcandmayroundup = mayroundup;
                  bestcandroundup = roundup;
               }
            }
         }
         else
         {
            /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */
            calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup);

            /* prefer variables, that have already been soft rounded but failed to get integral */
            varidx = SCIPvarGetProbindex(var);
            assert(0 <= varidx && varidx < nvars);
            if( roundings[varidx] != 0 )
               pscostquot *= 1000.0;

            /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
            if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot )
            {
               bestcand = c;
               bestpscostquot = pscostquot;
               bestcandmayrounddown = FALSE;
               bestcandmayroundup = FALSE;
               bestcandroundup = roundup;
            }
         }
      }
      assert(bestcand != -1);

      /* if all candidates are roundable, try to round the solution */
      if( bestcandmayrounddown || bestcandmayroundup )
      {
         SCIP_Bool success;

         /* create solution from diving LP and try to round it */
         SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
         SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

         if( success )
         {
            SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n",
               SCIPgetSolOrigObj(scip, heurdata->sol));

            /* try to add solution to SCIP */
            SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

            /* check, if solution was feasible and good enough */
            if( success )
            {
               SCIPdebugMessage(" -> solution was feasible and good enough\n");
               *result = SCIP_FOUNDSOL;
            }
         }
      }

      var = lpcands[bestcand];

      /* check, if the best candidate was already subject to soft rounding */
      varidx = SCIPvarGetProbindex(var);
      assert(0 <= varidx && varidx < nvars);
      if( roundings[varidx] == +1 )
      {
         /* variable was already soft rounded upwards: hard round it downwards */
         SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) );
         SCIPdebugMessage("  dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n",
            divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
            lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var));
      }
      else if( roundings[varidx] == -1 )
      {
         /* variable was already soft rounded downwards: hard round it upwards */
         SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
         SCIPdebugMessage("  dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n",
            divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
            lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var));
      }
      else
      {
         assert(roundings[varidx] == 0);

         /* apply soft rounding of best candidate via a change in the objective value */
         objscale = divedepth * 1000.0;
         oldobj = SCIPgetVarObjDive(scip, var);
         if( bestcandroundup )
         {
            /* soft round variable up: make objective value (more) negative */
            if( oldobj < 0.0 )
               newobj = objscale * oldobj;
            else
               newobj = -objscale * oldobj;
            newobj = MIN(newobj, -objscale);

            /* remember, that this variable was soft rounded upwards */
            roundings[varidx] = +1;
         }
         else
         {
            /* soft round variable down: make objective value (more) positive */
            if( oldobj > 0.0 )
               newobj = objscale * oldobj;
            else
               newobj = -objscale * oldobj;
            newobj = MAX(newobj, objscale);

            /* remember, that this variable was soft rounded downwards */
            roundings[varidx] = -1;
         }
         SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) );
         SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n",
            divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
            SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
            lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj);
      }

      /* resolve the diving LP */
      nlpiterations = SCIPgetNLPIterations(scip);
      retcode =  SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL);
      lpsolstat = SCIPgetLPSolstat(scip);

      /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
       * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY )
         {
            SCIP_CALL( retcode );
         }
#endif
         SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode);
         SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n");
      }

      if( lperror )
         break;

      /* update iteration count */
      heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

      /* get LP solution status  and fractional variables, that should be integral */
      if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         /* get new fractional variables */
         SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
      }
      SCIPdebugMessage("   -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands);
   }

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      SCIP_Bool success;

      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendDive(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   /* free temporary memory for remembering the current soft roundings */
   SCIPfreeBufferArray(scip, &roundings);

   SCIPdebugMessage("objpscostdiving heuristic finished\n");

   return SCIP_OKAY;
}
Example #6
0
/** try one-opt on given solution */
static
SCIP_RETCODE tryOneOpt(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEUR*            heur,               /**< indicator heuristic */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   int                   nindconss,          /**< number of indicator constraints */
   SCIP_CONS**           indconss,           /**< indicator constraints */
   SCIP_Bool*            solcand,            /**< values for indicator variables in partial solution */
   int*                  nfoundsols          /**< number of solutions found */
   )
{
   SCIP_Bool cutoff;
   SCIP_Bool lperror;
   SCIP_Bool stored;
   SCIP_SOL* sol;
   int cnt = 0;
   int i;
   int c;

   assert( scip != NULL );
   assert( heur != NULL );
   assert( heurdata != NULL );
   assert( nindconss == 0 || indconss != NULL );
   assert( solcand != NULL );
   assert( nfoundsols != NULL );

   SCIPdebugMessage("Performing one-opt ...\n");
   *nfoundsols = 0;

   SCIP_CALL( SCIPstartProbing(scip) );

   for (i = 0; i < nindconss; ++i)
   {
      SCIP_VAR* binvar;

      /* skip nonactive constraints */
      if ( ! SCIPconsIsActive(indconss[i]) )
         continue;

      binvar = SCIPgetBinaryVarIndicator(indconss[i]);
      assert( binvar != NULL );

      /* skip constraints with fixed variables */
      if ( SCIPvarGetUbLocal(binvar) < 0.5 || SCIPvarGetLbLocal(binvar) > 0.5 )
         continue;

      /* return if the we would exceed the depth limit of the tree */
      if( SCIPgetDepthLimit(scip) <= SCIPgetDepth(scip) )
         break;

      /* get rid of all bound changes */
      SCIP_CALL( SCIPnewProbingNode(scip) );
      ++cnt;

      /* fix variables */
      for (c = 0; c < nindconss; ++c)
      {
         SCIP_Bool s;

         /* skip nonactive constraints */
         if ( ! SCIPconsIsActive(indconss[c]) )
            continue;

         binvar = SCIPgetBinaryVarIndicator(indconss[c]);
         assert( binvar != NULL );

         /* fix variables according to solution candidate, except constraint i */
         if ( c == i )
            s = ! solcand[c];
         else
            s = solcand[c];

         if ( ! s )
         {
            if ( SCIPvarGetLbLocal(binvar) < 0.5 && SCIPvarGetUbLocal(binvar) > 0.5 )
            {
               SCIP_CALL( SCIPchgVarLbProbing(scip, binvar, 1.0) );
            }
         }
         else
         {
            if ( SCIPvarGetUbLocal(binvar) > 0.5 && SCIPvarGetLbLocal(binvar) < 0.5 )
            {
               SCIP_CALL( SCIPchgVarUbProbing(scip, binvar, 0.0) );
            }
         }
      }

      /* propagate variables */
      SCIP_CALL( SCIPpropagateProbing(scip, -1, &cutoff, NULL) );
      if ( cutoff )
      {
         SCIP_CALL( SCIPbacktrackProbing(scip, 0) );
         continue;
      }

      /* solve LP to move continuous variables */
      SCIP_CALL( SCIPsolveProbingLP(scip, -1, &lperror, &cutoff) );

      /* the LP often reaches the objective limit - we currently do not use such solutions */
      if ( lperror || cutoff || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      {
#ifdef SCIP_DEBUG
         if ( lperror )
            SCIPdebugMessage("An LP error occured.\n");
#endif
         SCIP_CALL( SCIPbacktrackProbing(scip, 0) );
         continue;
      }

      /* create solution */
      SCIP_CALL( SCIPcreateSol(scip, &sol, heur) );

      /* copy the current LP solution to the working solution */
      SCIP_CALL( SCIPlinkLPSol(scip, sol) );

      /* check solution for feasibility */
      SCIPdebugMessage("One-opt found solution candidate with value %g.\n", SCIPgetSolTransObj(scip, sol));

      /* only check integrality, because we solved an LP */
      SCIP_CALL( SCIPtrySolFree(scip, &sol, FALSE, FALSE, TRUE, FALSE, &stored) );
      if ( stored )
         ++(*nfoundsols);
      SCIP_CALL( SCIPbacktrackProbing(scip, 0) );
   }
   SCIP_CALL( SCIPendProbing(scip) );

   SCIPdebugMessage("Finished one-opt (tried variables: %d, found sols: %d).\n", cnt, *nfoundsols);

   return SCIP_OKAY;
}
Example #7
0
/**
 * Selects a variable from a set of candidates by strong branching
 *
 *  @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
 *          SCIP_Retcode "SCIP_RETCODE" for a complete list of error codes.
 *
 * @note The variables in the lpcands array must have a fractional value in the current LP solution
 */
SCIP_RETCODE SCIPselectVarPseudoStrongBranching(
   SCIP*                 scip,               /**< original SCIP data structure                        */
   SCIP_VAR**            pseudocands,        /**< branching candidates                                */
   SCIP_Bool*            skipdown,           /**< should down branchings be skipped? */
   SCIP_Bool*            skipup,             /**< should up branchings be skipped? */
   int                   npseudocands,       /**< number of branching candidates                      */
   int                   npriopseudocands,   /**< number of priority branching candidates             */
   SCIP_Bool             allowaddcons,       /**< is the branching rule allowed to add constraints?   */
   int*                  bestpseudocand,     /**< best candidate for branching                        */
   SCIP_Real*            bestdown,           /**< objective value of the down branch for bestcand     */
   SCIP_Real*            bestup,             /**< objective value of the up branch for bestcand       */
   SCIP_Real*            bestscore,          /**< score for bestcand                                  */
   SCIP_Bool*            bestdownvalid,      /**< is bestdown a valid dual bound for the down branch? */
   SCIP_Bool*            bestupvalid,        /**< is bestup a valid dual bound for the up branch?     */
   SCIP_Real*            provedbound,        /**< proved dual bound for current subtree               */
   SCIP_RESULT*          result              /**< result pointer                                      */
   )
{
   SCIP_Real lpobjval;
   SCIP_Bool allcolsinlp;
   SCIP_Bool exactsolve;
#ifndef NDEBUG
   SCIP_Real cutoffbound;
   cutoffbound = SCIPgetCutoffbound(scip);
#endif


   assert(scip != NULL);
   assert(pseudocands != NULL);
   assert(bestpseudocand != NULL);
   assert(skipdown != NULL);
   assert(skipup != NULL);
   assert(bestdown != NULL);
   assert(bestup != NULL);
   assert(bestscore != NULL);
   assert(bestdownvalid != NULL);
   assert(bestupvalid != NULL);
   assert(provedbound != NULL);
   assert(result != NULL);
   assert(SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL);

   /* get current LP objective bound of the local sub problem and global cutoff bound */
   lpobjval = SCIPgetLPObjval(scip);

   /* check, if we want to solve the problem exactly, meaning that strong branching information is not useful
    * for cutting off sub problems and improving lower bounds of children
    */
   exactsolve = SCIPisExactSolve(scip);

   /* check, if all existing columns are in LP, and thus the strong branching results give lower bounds */
   allcolsinlp = SCIPallColsInLP(scip);

   /* if only one candidate exists, choose this one without applying strong branching */
   *bestpseudocand = 0;
   *bestdown = lpobjval;
   *bestup = lpobjval;
   *bestdownvalid = TRUE;
   *bestupvalid = TRUE;
   *bestscore = -SCIPinfinity(scip);
   *provedbound = lpobjval;
   if( npseudocands > 1 )
   {
      SCIP_BRANCHRULE* branchrule;
      SCIP_BRANCHRULEDATA* branchruledata;

      SCIP_Real solval;
      SCIP_Real down;
      SCIP_Real up;
      SCIP_Real downgain;
      SCIP_Real upgain;
      SCIP_Real score;
      SCIP_Bool integral;
      SCIP_Bool lperror;
      SCIP_Bool downvalid;
      SCIP_Bool upvalid;
      SCIP_Bool downinf;
      SCIP_Bool upinf;
      SCIP_Bool downconflict;
      SCIP_Bool upconflict;
      int nsbcalls;
      int i;
      int c;

      branchrule = SCIPfindBranchrule(scip, BRANCHRULE_NAME);
      assert(branchrule != NULL);

      /* get branching rule data */
      branchruledata = SCIPbranchruleGetData(branchrule);
      assert(branchruledata != NULL);


      /* initialize strong branching */
      SCIP_CALL( SCIPstartStrongbranch(scip, FALSE) );

      /* search the full strong candidate:
       * cycle through the candidates, starting with the position evaluated in the last run
       */
      nsbcalls = 0;
      for( i = 0, c = branchruledata->lastcand; i < npseudocands; ++i, ++c )
      {
         c = c % npseudocands;
         assert(pseudocands[c] != NULL);

         /* we can only apply strong branching on COLUMN variables that are in the current LP */
         if( !SCIPvarIsInLP(pseudocands[c]) )
            continue;

         solval = SCIPvarGetLPSol(pseudocands[c]);
         integral = SCIPisFeasIntegral(scip, solval);

         SCIPdebugMessage("applying strong branching on %s variable <%s>[%g,%g] with solution %g\n",
            integral ? "integral" : "fractional", SCIPvarGetName(pseudocands[c]), SCIPvarGetLbLocal(pseudocands[c]),
            SCIPvarGetUbLocal(pseudocands[c]), solval);

         up = -SCIPinfinity(scip);
         down = -SCIPinfinity(scip);

         if( integral )
         {
            SCIP_CALL( SCIPgetVarStrongbranchInt(scip, pseudocands[c], INT_MAX,
                  skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) );
         }
         else
         {
            SCIP_CALL( SCIPgetVarStrongbranchFrac(scip, pseudocands[c], INT_MAX,
                  skipdown[c] ? NULL : &down, skipup[c] ? NULL : &up, &downvalid, &upvalid, &downinf, &upinf, &downconflict, &upconflict, &lperror) );
         }
         nsbcalls++;

         /* display node information line in root node */
         if( SCIPgetDepth(scip) == 0 && nsbcalls % 100 == 0 )
         {
            SCIP_CALL( SCIPprintDisplayLine(scip, NULL, SCIP_VERBLEVEL_HIGH, TRUE) );
         }

         /* check for an error in strong branching */
         if( lperror )
         {
            SCIPverbMessage(scip, SCIP_VERBLEVEL_HIGH, NULL,
               "(node %"SCIP_LONGINT_FORMAT") error in strong branching call for variable <%s> with solution %g\n",
               SCIPgetNNodes(scip), SCIPvarGetName(pseudocands[c]), solval);
            break;
         }

         /* evaluate strong branching */
         down = MAX(down, lpobjval);
         up = MAX(up, lpobjval);
         downgain = down - lpobjval;
         upgain = up - lpobjval;
         assert(!allcolsinlp || exactsolve || !downvalid || downinf == SCIPisGE(scip, down, cutoffbound));
         assert(!allcolsinlp || exactsolve || !upvalid || upinf == SCIPisGE(scip, up, cutoffbound));
         assert(downinf || !downconflict);
         assert(upinf || !upconflict);

         /* check if there are infeasible roundings */
         if( downinf || upinf )
         {
            assert(allcolsinlp);
            assert(!exactsolve);

            /* if for both infeasibilities, a conflict constraint was created, we don't need to fix the variable by hand,
             * but better wait for the next propagation round to fix them as an inference, and potentially produce a
             * cutoff that can be analyzed
             */
            if( allowaddcons && downinf == downconflict && upinf == upconflict )
            {
               *result = SCIP_CONSADDED;
               break; /* terminate initialization loop, because constraint was added */
            }
            else if( downinf && upinf )
            {
               if( integral )
               {
                  SCIP_Bool infeasible;
                  SCIP_Bool fixed;

                  /* both bound changes are infeasible: variable can be fixed to its current value */
                  SCIP_CALL( SCIPfixVar(scip, pseudocands[c], solval, &infeasible, &fixed) );
                  assert(!infeasible);
                  assert(fixed);
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> integral variable <%s> is infeasible in both directions\n",
                     SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
               else
               {
                  /* both roundings are infeasible: the node is infeasible */
                  *result = SCIP_CUTOFF;
                  SCIPdebugMessage(" -> fractional variable <%s> is infeasible in both directions\n",
                     SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because node is infeasible */
               }
            }
            else if( downinf )
            {
               SCIP_Real newlb;

               /* downwards rounding is infeasible -> change lower bound of variable to upward rounding */
               newlb = SCIPfeasCeil(scip, solval);
               if( SCIPvarGetLbLocal(pseudocands[c]) < newlb - 0.5 )
               {
                  SCIP_CALL( SCIPchgVarLb(scip, pseudocands[c], newlb) );
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> variable <%s> is infeasible in downward branch\n", SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
            }
            else
            {
               SCIP_Real newub;

               /* upwards rounding is infeasible -> change upper bound of variable to downward rounding */
               assert(upinf);
               newub = SCIPfeasFloor(scip, solval);
               if( SCIPvarGetUbLocal(pseudocands[c]) > newub + 0.5 )
               {
                  SCIP_CALL( SCIPchgVarUb(scip, pseudocands[c], newub) );
                  *result = SCIP_REDUCEDDOM;
                  SCIPdebugMessage(" -> variable <%s> is infeasible in upward branch\n", SCIPvarGetName(pseudocands[c]));
                  break; /* terminate initialization loop, because LP was changed */
               }
            }
         }
         else if( allcolsinlp && !exactsolve && downvalid && upvalid )
         {
            SCIP_Real minbound;

            /* the minimal lower bound of both children is a proved lower bound of the current subtree */
            minbound = MIN(down, up);
            *provedbound = MAX(*provedbound, minbound);
         }

         /* check for a better score, if we are within the maximum priority candidates */
         if( c < npriopseudocands )
         {
            if( integral )
            {

               if( skipdown[c] )
               {
                  downgain = 0.0;
                  score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);
               }
               else if( skipup[c] )
               {
                  upgain = 0.0;
                  score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);
               }
               else
               {
                  SCIP_Real gains[3];

                  gains[0] = downgain;
                  gains[1] = 0.0;
                  gains[2] = upgain;
                  score = SCIPgetBranchScoreMultiple(scip, pseudocands[c], 3, gains);
               }
            }
            else
               score = SCIPgetBranchScore(scip, pseudocands[c], downgain, upgain);

            if( score > *bestscore )
            {
               *bestpseudocand = c;
               *bestdown = down;
               *bestup = up;
               *bestdownvalid = downvalid;
               *bestupvalid = upvalid;
               *bestscore = score;
            }
         }
         else
            score = 0.0;

         /* update pseudo cost values */
         if( !downinf )
         {
            SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c],
                  solval-SCIPfeasCeil(scip, solval-1.0), downgain, 1.0) );
         }
         if( !upinf )
         {
            SCIP_CALL( SCIPupdateVarPseudocost(scip, pseudocands[c],
                  solval-SCIPfeasFloor(scip, solval+1.0), upgain, 1.0) );
         }

         SCIPdebugMessage(" -> var <%s> (solval=%g, downgain=%g, upgain=%g, score=%g) -- best: <%s> (%g)\n",
            SCIPvarGetName(pseudocands[c]), solval, downgain, upgain, score,
            SCIPvarGetName(pseudocands[*bestpseudocand]), *bestscore);
      }

      /* remember last evaluated candidate */
      branchruledata->lastcand = c;

      /* end strong branching */
      SCIP_CALL( SCIPendStrongbranch(scip) );
   }

   return SCIP_OKAY;
}
Example #8
0
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */
SCIP_RETCODE SCIPapplyZeroobj(
   SCIP*                 scip,               /**< original SCIP data structure                                        */
   SCIP_HEUR*            heur,               /**< heuristic data structure                                            */
   SCIP_RESULT*          result,             /**< result data structure                                               */
   SCIP_Real             minimprove,         /**< factor by which zeroobj should at least improve the incumbent      */
   SCIP_Longint          nnodes              /**< node limit for the subproblem                                       */
   )
{
   SCIP*                 subscip;            /* the subproblem created by zeroobj              */
   SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR**            vars;               /* original problem's variables                    */
   SCIP_VAR**            subvars;            /* subproblem's variables                          */
   SCIP_HEURDATA*        heurdata;           /* heuristic's private data structure              */
   SCIP_EVENTHDLR*       eventhdlr;          /* event handler for LP events                     */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem             */
   SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
   SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */
   SCIP_Real large;

   int nvars;                                /* number of original problem's variables          */
   int i;

   SCIP_Bool success;
   SCIP_Bool valid;
   SCIP_RETCODE retcode;
   SCIP_SOL** subsols;
   int nsubsols;

   assert(scip != NULL);
   assert(heur != NULL);
   assert(result != NULL);

   assert(nnodes >= 0);
   assert(0.0 <= minimprove && minimprove <= 1.0);

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic once at the root */
   if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only call the heuristic if we do not have an incumbent  */
   if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol )
      return SCIP_OKAY;

   /* check whether there is enough time and memory left */
   timelimit = 0.0;
   memorylimit = 0.0;
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initialize the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

   /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */
   valid = FALSE;

   /* copy complete SCIP instance */
   SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) );
   SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");

   /* create event handler for LP events */
   eventhdlr = NULL;
   SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) );
   if( eventhdlr == NULL )
   {
      SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n");
      return SCIP_PLUGINNOTFOUND;
   }

   /* determine large value to set variables to */
   large = SCIPinfinity(scip);
   if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) )
      large = 0.1 / SCIPfeastol(scip);

   /* get variable image and change to 0.0 in sub-SCIP */
   for( i = 0; i < nvars; i++ )
   {
      SCIP_Real adjustedbound;
      SCIP_Real lb;
      SCIP_Real ub;
      SCIP_Real inf;
      
      subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);
      SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) );

      lb = SCIPvarGetLbGlobal(subvars[i]);
      ub = SCIPvarGetUbGlobal(subvars[i]);
      inf = SCIPinfinity(subscip);

      /* adjust infinite bounds in order to avoid that variables with non-zero objective 
       * get fixed to infinite value in zeroobj subproblem
       */
      if( SCIPisInfinity(subscip, ub ) )
      {
         adjustedbound = MAX(large, lb+large);
         adjustedbound = MIN(adjustedbound, inf);
         SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) );
      }
      if( SCIPisInfinity(subscip, -lb ) )
      {
         adjustedbound = MIN(-large, ub-large);
         adjustedbound = MAX(adjustedbound, -inf);
         SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) );
      }
   }

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
   SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) );

   /* forbid recursive call of heuristics and separators solving sub-SCIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable expensive techniques that merely work on the dual bound */

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );
   if( !SCIPisParamFixed(subscip, "presolving/maxrounds") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) );
   }

   /* use best dfs node selection */
   if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) );
   }

   /* disable feaspump and fracdiving */
   if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) );
   }
   if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) );
   }

   /* restrict LP iterations */
   SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) );

#ifdef SCIP_DEBUG
   /* for debugging zeroobj, enable MIP output */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) );
   SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) );
#endif

   /* if there is already a solution, add an objective cutoff */
   if( SCIPgetNSols(scip) > 0 )
   {
      SCIP_Real upperbound;
      SCIP_CONS* origobjcons;
#ifndef NDEBUG
      int nobjvars;
      nobjvars = 0;
#endif

      cutoff = SCIPinfinity(scip);
      assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

      upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);

      if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
      {
         cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip);
      }
      else
      {
         if( SCIPgetUpperbound(scip) >= 0 )
            cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip );
         else
            cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip );
      }
      cutoff = MIN(upperbound, cutoff);

      SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) );
      for( i = 0; i < nvars; ++i)
      {
         if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) )
         {
            SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) );
#ifndef NDEBUG
            nobjvars++;
#endif
         }
      }
      SCIP_CALL( SCIPaddCons(subscip, origobjcons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) );
      assert(nobjvars == SCIPgetNObjVars(scip));
   }

   /* catch LP events of sub-SCIP */
   SCIP_CALL( SCIPtransformProb(subscip) );
   SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );

   SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes);
   retcode = SCIPsolve(subscip);

   /* drop LP events of sub-SCIP */
   SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );

   /* errors in solving the subproblem should not kill the overall solving process;
    * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   /* check, whether a solution was found;
    * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
    */
   nsubsols = SCIPgetNSols(subscip);
   subsols = SCIPgetSols(subscip);
   success = FALSE;
   for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i )
   {
      SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      if( success )
         *result = SCIP_FOUNDSOL;
   }

#ifdef SCIP_DEBUG
   SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif

   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpGomory)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real maxscale;
   SCIP_Real minfrac;
   SCIP_Real maxfrac;
   SCIP_Longint maxdnom;
   SCIP_Bool cutoff;
   int* basisind;
   int naddedcuts;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int c;
   int i;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   minfrac = sepadata->away;
   maxfrac = 1.0 - sepadata->away;

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the gomory cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;

   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   cutoff = FALSE;
   naddedcuts = 0;

   /* for all basic columns belonging to integer variables, try to generate a gomory cut */
   for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
      else if( sepadata->separaterows )
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= minfrac )
            {
               SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }

      if( tryrow )
      {
         SCIP_Real cutrhs;
         SCIP_Real cutact;
         SCIP_Bool success;
         SCIP_Bool cutislocal;

         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) );

         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);

         /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL,
               (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac,
               binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) );
         assert(ALLOWLOCAL || !cutislocal);

         /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory
          *       cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which
          *       leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better.
          */

         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_ROW* cut;
            char cutname[SCIP_MAXSTRLEN];
            int v;

            /* construct cut name */
            if( c >= 0 )
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c);
            else
               (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1);

            /* create empty cut */
            SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs,
                  cutislocal, FALSE, sepadata->dynamiccuts) );

            /* cache the row extension and only flush them if the cut gets added */
            SCIP_CALL( SCIPcacheRowExtensions(scip, cut) );

            /* collect all non-zero coefficients */
            for( v = 0; v < nvars; ++v )
            {
               if( !SCIPisZero(scip, cutcoefs[v]) )
               {
                  SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) );
               }
            }

            if( SCIProwGetNNonz(cut) == 0 )
            {
               assert(SCIPisFeasNegative(scip, cutrhs));
               SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs);
               cutoff = TRUE;
            }
            else if( SCIProwGetNNonz(cut) == 1 )
            {
               /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed
                * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically
                */
               SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) );
               naddedcuts++;
            }
            else
            {
               /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound
                * changes); the latter cuts will be handeled internally in sepastore.
                */
               if( SCIPisCutEfficacious(scip, NULL, cut) )
               {
                  assert(success == TRUE);

                  SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n",
                     c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
                     cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut));

                  if( sepadata->makeintegral )
                  {
                     /* try to scale the cut to integral values */
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );

                     if( sepadata->forcecuts )
                        success = TRUE;

                     /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is
                      * useless so we are not taking it at all
                      */
                     if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) )
                        success = FALSE;

                     /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we
                      *       currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to
                      *       5), we might want to add that cut (even it does not have integral coefficients). To be able to
                      *       do that we need to add a rank to the data structure of a row. The rank of original rows are
                      *       zero and for aggregated rows it is the maximum over all used rows plus one.
                      */
                  }

                  if( success )
                  {
                     SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));

                     /* flush all changes before adding the cut */
                     SCIP_CALL( SCIPflushRowExtensions(scip, cut) );

                     /* add global cuts which are not implicit bound changes to the cut pool */
                     if( !cutislocal )
                     {
                        if( sepadata->delayedcuts )
                        {
                           SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) );
                        }
                        else
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                     }
                     else
                     {
                        /* local cuts we add to the sepastore */
                        SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) );
                     }

                     naddedcuts++;
                  }
               }
            }

            /* release the row */
            SCIP_CALL( SCIPreleaseRow(scip, &cut) );
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evalute the result of the separation */
   if( cutoff )
      *result = SCIP_CUTOFF;
   else if ( naddedcuts > 0 )
      *result = SCIP_SEPARATED;
   else
      *result = SCIP_DIDNOTFIND;

   return SCIP_OKAY;
}
/** node selection method of node selector */
static
SCIP_DECL_NODESELSELECT(nodeselSelectEstimate)
{  /*lint --e{715}*/
   SCIP_NODESELDATA* nodeseldata;
   int minplungedepth;
   int maxplungedepth;
   int plungedepth;
   int bestnodefreq;
   SCIP_Real maxplungequot;

   assert(nodesel != NULL);
   assert(strcmp(SCIPnodeselGetName(nodesel), NODESEL_NAME) == 0);
   assert(scip != NULL);
   assert(selnode != NULL);

   *selnode = NULL;

   /* get node selector user data */
   nodeseldata = SCIPnodeselGetData(nodesel);
   assert(nodeseldata != NULL);

   /* check if the breadth-first search should be applied */
   if( SCIPgetDepth(scip) <= nodeseldata->breadthfirstdepth )
   {
      SCIP_NODE* node;

      SCIPdebugMessage("perform breadth-first search at depth <%d>\n", SCIPgetDepth(scip));

      node = SCIPgetPrioSibling(scip);
      if( node != NULL )
      {
         *selnode = node;
         SCIPdebugMessage("  -> selected prio sibling: estimate=%g\n", SCIPnodeGetEstimate(*selnode));
         return SCIP_OKAY;
      }

      node = SCIPgetPrioChild(scip);
      if( node != NULL )
      {
         *selnode = node;
         SCIPdebugMessage("  -> selected prio child: estimate=%g\n", SCIPnodeGetEstimate(*selnode));
         return SCIP_OKAY;
      }
   }

   /* calculate minimal and maximal plunging depth */
   minplungedepth = nodeseldata->minplungedepth;
   maxplungedepth = nodeseldata->maxplungedepth;
   maxplungequot = nodeseldata->maxplungequot;
   if( minplungedepth == -1 )
   {
      minplungedepth = SCIPgetMaxDepth(scip)/10;
      if( SCIPgetNStrongbranchLPIterations(scip) > 2*SCIPgetNNodeLPIterations(scip) )
        minplungedepth += 10;
      if( maxplungedepth >= 0 )
         minplungedepth = MIN(minplungedepth, maxplungedepth);
   }
   if( maxplungedepth == -1 )
      maxplungedepth = SCIPgetMaxDepth(scip)/2;
   maxplungedepth = MAX(maxplungedepth, minplungedepth);
   bestnodefreq = (nodeseldata->bestnodefreq == 0 ? INT_MAX : nodeseldata->bestnodefreq);

   /* check, if we exceeded the maximal plunging depth */
   plungedepth = SCIPgetPlungeDepth(scip);
   if( plungedepth > maxplungedepth )
   {
      /* we don't want to plunge again: select best node from the tree */
      SCIPdebugMessage("plungedepth: [%d,%d], cur: %d -> abort plunging\n", minplungedepth, maxplungedepth, plungedepth);
      if( SCIPgetNNodes(scip) % bestnodefreq == 0 )
         *selnode = SCIPgetBestboundNode(scip);
      else
         *selnode = SCIPgetBestNode(scip);
      SCIPdebugMessage("  -> best node   : lower=%g\n",
         *selnode != NULL ? SCIPnodeGetLowerbound(*selnode) : SCIPinfinity(scip));
   }
   else
   {
      SCIP_NODE* node;
      SCIP_Real lowerbound;
      SCIP_Real cutoffbound;
      SCIP_Real maxbound;

      /* get global lower and cutoff bound */
      lowerbound = SCIPgetLowerbound(scip);
      cutoffbound = SCIPgetCutoffbound(scip);

      /* if we didn't find a solution yet, the cutoff bound is usually very bad:
       * use only 20% of the gap as cutoff bound
       */
      if( SCIPgetNSolsFound(scip) == 0 )
         cutoffbound = lowerbound + 0.2 * (cutoffbound - lowerbound);

      /* check, if plunging is forced at the current depth */
      if( plungedepth < minplungedepth )
         maxbound = SCIPinfinity(scip);
      else
      {
         /* calculate maximal plunging bound */
         maxbound = lowerbound + maxplungequot * (cutoffbound - lowerbound);
      }

      SCIPdebugMessage("plungedepth: [%d,%d], cur: %d, bounds: [%g,%g], maxbound: %g\n",
         minplungedepth, maxplungedepth, plungedepth, lowerbound, cutoffbound, maxbound);

      /* we want to plunge again: prefer children over siblings, and siblings over leaves,
       * but only select a child or sibling, if its estimate is small enough;
       * prefer using nodes with higher node selection priority assigned by the branching rule
       */
      node = SCIPgetPrioChild(scip);
      if( node != NULL && SCIPnodeGetEstimate(node) < maxbound )
      {
         *selnode = node;
         SCIPdebugMessage("  -> selected prio child: estimate=%g\n", SCIPnodeGetEstimate(*selnode));
      }
      else
      {
         node = SCIPgetBestChild(scip);
         if( node != NULL && SCIPnodeGetEstimate(node) < maxbound )
         {
            *selnode = node;
            SCIPdebugMessage("  -> selected best child: estimate=%g\n", SCIPnodeGetEstimate(*selnode));
         }
         else
         {
            node = SCIPgetPrioSibling(scip);
            if( node != NULL && SCIPnodeGetEstimate(node) < maxbound )
            {
               *selnode = node;
               SCIPdebugMessage("  -> selected prio sibling: estimate=%g\n", SCIPnodeGetEstimate(*selnode));
            }
            else
            {
               node = SCIPgetBestSibling(scip);
               if( node != NULL && SCIPnodeGetEstimate(node) < maxbound )
               {
                  *selnode = node;
                  SCIPdebugMessage("  -> selected best sibling: estimate=%g\n", SCIPnodeGetEstimate(*selnode));
               }
               else
               {
                  if( SCIPgetNNodes(scip) % bestnodefreq == 0 )
                     *selnode = SCIPgetBestboundNode(scip);
                  else
                     *selnode = SCIPgetBestNode(scip);
                  SCIPdebugMessage("  -> selected best leaf: estimate=%g\n",
                     *selnode != NULL ? SCIPnodeGetEstimate(*selnode) : SCIPinfinity(scip));
               }
            }
         }
      }
   }

   return SCIP_OKAY;
}
Example #11
0
/** LP solution separation method for disjunctive cuts */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpDisjunctive)
{
   SCIP_SEPADATA* sepadata;
   SCIP_CONSHDLR* conshdlr;
   SCIP_DIGRAPH* conflictgraph;
   SCIP_ROW** rows;
   SCIP_COL** cols;
   SCIP_Real* cutcoefs = NULL;
   SCIP_Real* simplexcoefs1 = NULL;
   SCIP_Real* simplexcoefs2 = NULL;
   SCIP_Real* coef = NULL;
   SCIP_Real* binvrow = NULL;
   SCIP_Real* rowsmaxval = NULL;
   SCIP_Real* violationarray = NULL;
   int* fixings1 = NULL;
   int* fixings2 = NULL;
   int* basisind = NULL;
   int* basisrow = NULL;
   int* varrank = NULL;
   int* edgearray = NULL;
   int nedges;
   int ndisjcuts;
   int nrelevantedges;
   int nsos1vars;
   int nconss;
   int maxcuts;
   int ncalls;
   int depth;
   int ncols;
   int nrows;
   int ind;
   int j;
   int i;

   assert( sepa != NULL );
   assert( strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0 );
   assert( scip != NULL );
   assert( result != NULL );

   *result = SCIP_DIDNOTRUN;

   /* only generate disjunctive cuts if we are not close to terminating */
   if ( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only generate disjunctive cuts if an optimal LP solution is at hand */
   if ( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only generate disjunctive cuts if the LP solution is basic */
   if ( ! SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );

   /* return if LP has no columns or no rows */
   if ( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

   assert( cols != NULL );
   assert( rows != NULL );

   /* get sepa data */
   sepadata = SCIPsepaGetData(sepa);
   assert( sepadata != NULL );

   /* get constraint handler */
   conshdlr = sepadata->conshdlr;
   if ( conshdlr == NULL )
      return SCIP_OKAY;

   /* get number of constraints */
   nconss = SCIPconshdlrGetNConss(conshdlr);
   if ( nconss == 0 )
      return SCIP_OKAY;

   /* check for maxdepth < depth, maxinvcutsroot = 0 and maxinvcuts = 0 */
   depth = SCIPgetDepth(scip);
   if ( ( sepadata->maxdepth >= 0 && sepadata->maxdepth < depth )
      || ( depth == 0 && sepadata->maxinvcutsroot == 0 )
      || ( depth > 0 && sepadata->maxinvcuts == 0 ) )
      return SCIP_OKAY;

   /* only call the cut separator a given number of times at each node */
   ncalls = SCIPsepaGetNCallsAtNode(sepa);
   if ( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* get conflict graph and number of conflict graph edges (note that the digraph arcs were added in both directions) */
   conflictgraph = SCIPgetConflictgraphSOS1(conshdlr);
   nedges = (int)SCIPceil(scip, (SCIP_Real)SCIPdigraphGetNArcs(conflictgraph)/2);

   /* if too many conflict graph edges, the separator can be slow: delay it until no other cuts have been found */
   if ( sepadata->maxconfsdelay >= 0 && nedges >= sepadata->maxconfsdelay )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if ( ncutsfound > sepadata->lastncutsfound || ! SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }

   /* check basis status */
   for (j = 0; j < ncols; ++j)
   {
      if ( SCIPcolGetBasisStatus(cols[j]) == SCIP_BASESTAT_ZERO )
         return SCIP_OKAY;
   }

   /* get number of SOS1 variables */
   nsos1vars = SCIPgetNSOS1Vars(conshdlr);

   /* allocate buffer arrays */
   SCIP_CALL( SCIPallocBufferArray(scip, &edgearray, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fixings1, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &fixings2, nedges) );
   SCIP_CALL( SCIPallocBufferArray(scip, &violationarray, nedges) );

   /* get all violated conflicts {i, j} in the conflict graph and sort them based on the degree of a violation value */
   nrelevantedges = 0;
   for (j = 0; j < nsos1vars; ++j)
   {
      SCIP_VAR* var;

      var = SCIPnodeGetVarSOS1(conflictgraph, j);

      if ( SCIPvarIsActive(var) && ! SCIPisFeasZero(scip, SCIPcolGetPrimsol(SCIPvarGetCol(var))) && SCIPcolGetBasisStatus(SCIPvarGetCol(var)) == SCIP_BASESTAT_BASIC )
      {
         int* succ;
         int nsucc;

         /* get successors and number of successors */
         nsucc = SCIPdigraphGetNSuccessors(conflictgraph, j);
         succ = SCIPdigraphGetSuccessors(conflictgraph, j);

         for (i = 0; i < nsucc; ++i)
         {
            SCIP_VAR* varsucc;
            int succind;

            succind = succ[i];
            varsucc = SCIPnodeGetVarSOS1(conflictgraph, succind);
            if ( SCIPvarIsActive(varsucc) && succind < j && ! SCIPisFeasZero(scip, SCIPgetSolVal(scip, NULL, varsucc) ) &&
                 SCIPcolGetBasisStatus(SCIPvarGetCol(varsucc)) == SCIP_BASESTAT_BASIC )
            {
               fixings1[nrelevantedges] = j;
               fixings2[nrelevantedges] = succind;
               edgearray[nrelevantedges] = nrelevantedges;
               violationarray[nrelevantedges++] = SCIPgetSolVal(scip, NULL, var) * SCIPgetSolVal(scip, NULL, varsucc);
            }
         }
      }
   }

   /* sort violation score values */
   if ( nrelevantedges > 0)
      SCIPsortDownRealInt(violationarray, edgearray, nrelevantedges);
   else
   {
      SCIPfreeBufferArrayNull(scip, &violationarray);
      SCIPfreeBufferArrayNull(scip, &fixings2);
      SCIPfreeBufferArrayNull(scip, &fixings1);
      SCIPfreeBufferArrayNull(scip, &edgearray);

      return SCIP_OKAY;
   }
   SCIPfreeBufferArrayNull(scip, &violationarray);

   /* compute maximal number of cuts */
   if ( SCIPgetDepth(scip) == 0 )
      maxcuts = MIN(sepadata->maxinvcutsroot, nrelevantedges);
   else
      maxcuts = MIN(sepadata->maxinvcuts, nrelevantedges);
   assert( maxcuts > 0 );

   /* allocate buffer arrays */
   SCIP_CALL( SCIPallocBufferArray(scip, &varrank, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &rowsmaxval, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisrow, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &coef, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs1, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &simplexcoefs2, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, ncols) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* create vector "basisrow" with basisrow[column of non-slack basis variable] = corresponding row of B^-1;
    * compute maximum absolute value of nonbasic row coefficients */
   for (j = 0; j < nrows; ++j)
   {
      SCIP_COL** rowcols;
      SCIP_Real* rowvals;
      SCIP_ROW* row;
      SCIP_Real val;
      SCIP_Real max = 0.0;
      int nnonz;

      /* fill basisrow vector */
      ind = basisind[j];
      if ( ind >= 0 )
         basisrow[ind] = j;

      /* compute maximum absolute value of nonbasic row coefficients */
      row = rows[j];
      assert( row != NULL );
      rowvals = SCIProwGetVals(row);
      nnonz = SCIProwGetNNonz(row);
      rowcols = SCIProwGetCols(row);

      for (i = 0; i < nnonz; ++i)
      {
         if ( SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_LOWER  || SCIPcolGetBasisStatus(rowcols[i]) == SCIP_BASESTAT_UPPER )
         {
            val = REALABS(rowvals[i]);
            if ( SCIPisFeasGT(scip, val, max) )
               max = REALABS(val);
         }
      }

      /* handle slack variable coefficient and save maximum value */
      rowsmaxval[j] = MAX(max, 1.0);
   }

   /* initialize variable ranks with -1 */
   for (j = 0; j < ncols; ++j)
      varrank[j] = -1;

   /* free buffer array */
   SCIPfreeBufferArrayNull(scip, &basisind);

   /* for the most promising disjunctions: try to generate disjunctive cuts */
   ndisjcuts = 0;
   for (i = 0; i < maxcuts; ++i)
   {
      SCIP_Bool madeintegral;
      SCIP_Real cutlhs1;
      SCIP_Real cutlhs2;
      SCIP_Real bound1;
      SCIP_Real bound2;
      SCIP_ROW* row = NULL;
      SCIP_VAR* var;
      SCIP_COL* col;

      int nonbasicnumber;
      int cutrank = 0;
      int edgenumber;
      int rownnonz;

      edgenumber = edgearray[i];

      /* determine first simplex row */
      var = SCIPnodeGetVarSOS1(conflictgraph, fixings1[edgenumber]);
      col = SCIPvarGetCol(var);
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );
      assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC );

      /* get the 'ind'th row of B^-1 and B^-1 \cdot A */
      SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) );
      SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) );

      /* get the simplex-coefficients of the non-basic variables */
      SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs1, &nonbasicnumber) );

      /* get rank of variable if not known already */
      if ( varrank[ind] < 0 )
         varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows);
      cutrank = MAX(cutrank, varrank[ind]);

      /* get right hand side and bound of simplex talbeau row */
      cutlhs1 = SCIPcolGetPrimsol(col);
      if ( SCIPisFeasPositive(scip, cutlhs1) )
         bound1 = SCIPcolGetUb(col);
      else
         bound1 = SCIPcolGetLb(col);


      /* determine second simplex row */
      var = SCIPnodeGetVarSOS1(conflictgraph, fixings2[edgenumber]);
      col = SCIPvarGetCol(var);
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );
      assert( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_BASIC );

      /* get the 'ind'th row of B^-1 and B^-1 \cdot A */
      SCIP_CALL( SCIPgetLPBInvRow(scip, basisrow[ind], binvrow, NULL, NULL) );
      SCIP_CALL( SCIPgetLPBInvARow(scip, basisrow[ind], binvrow, coef, NULL, NULL) );

      /* get the simplex-coefficients of the non-basic variables */
      SCIP_CALL( getSimplexCoefficients(scip, rows, nrows, cols, ncols, coef, binvrow, simplexcoefs2, &nonbasicnumber) );

      /* get rank of variable if not known already */
      if ( varrank[ind] < 0 )
         varrank[ind] = getVarRank(scip, binvrow, rowsmaxval, sepadata->maxweightrange, rows, nrows);
      cutrank = MAX(cutrank, varrank[ind]);

      /* get right hand side and bound of simplex talbeau row */
      cutlhs2 = SCIPcolGetPrimsol(col);
      if ( SCIPisFeasPositive(scip, cutlhs2) )
         bound2 = SCIPcolGetUb(col);
      else
         bound2 = SCIPcolGetLb(col);

      /* add coefficients to cut */
      SCIP_CALL( generateDisjCutSOS1(scip, sepa, rows, nrows, cols, ncols, ndisjcuts, TRUE, sepadata->strengthen, cutlhs1, cutlhs2, bound1, bound2, simplexcoefs1, simplexcoefs2, cutcoefs, &row, &madeintegral) );
      if ( row == NULL )
         continue;

      /* raise cutrank for present cut */
      ++cutrank;

      /* check if there are numerical evidences */
      if ( ( madeintegral && ( sepadata->maxrankintegral == -1 || cutrank <= sepadata->maxrankintegral ) )
         || ( ! madeintegral && ( sepadata->maxrank == -1 || cutrank <= sepadata->maxrank ) ) )
      {
         /* possibly add cut to LP if it is useful; in case the lhs of the cut is minus infinity (due to scaling) the cut is useless */
         rownnonz = SCIProwGetNNonz(row);
         if ( rownnonz > 0 && ! SCIPisInfinity(scip, -SCIProwGetLhs(row)) && ! SCIProwIsInLP(row) && SCIPisCutEfficacious(scip, NULL, row) )
         {
            SCIP_Bool infeasible;

            /* set cut rank */
            SCIProwChgRank(row, cutrank);

            /* add cut */
            SCIP_CALL( SCIPaddCut(scip, NULL, row, FALSE, &infeasible) );
            SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) );
            if ( infeasible )
            {
               *result = SCIP_CUTOFF;
               break;
            }
            ++ndisjcuts;
         }
      }

      /* release row */
      SCIP_CALL( SCIPreleaseRow(scip, &row) );
   }

   /* save total number of cuts found so far */
   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   /* evaluate the result of the separation */
   if ( *result != SCIP_CUTOFF )
   {
      if ( ndisjcuts > 0 )
         *result = SCIP_SEPARATED;
      else
         *result = SCIP_DIDNOTFIND;
   }

   SCIPdebugMessage("Number of found disjunctive cuts: %d.\n", ndisjcuts);

   /* free buffer arrays */
   SCIPfreeBufferArrayNull(scip, &cutcoefs);
   SCIPfreeBufferArrayNull(scip, &simplexcoefs2);
   SCIPfreeBufferArrayNull(scip, &simplexcoefs1);
   SCIPfreeBufferArrayNull(scip, &coef);
   SCIPfreeBufferArrayNull(scip, &binvrow);
   SCIPfreeBufferArrayNull(scip, &basisrow);
   SCIPfreeBufferArrayNull(scip, &fixings2);
   SCIPfreeBufferArrayNull(scip, &fixings1);
   SCIPfreeBufferArrayNull(scip, &edgearray);
   SCIPfreeBufferArrayNull(scip, &rowsmaxval);
   SCIPfreeBufferArrayNull(scip, &varrank);

   return SCIP_OKAY;
}
Example #12
0
/** computes a disjunctive cut inequality based on two simplex taubleau rows */
static
SCIP_RETCODE generateDisjCutSOS1(
   SCIP*                 scip,               /**< SCIP pointer */
   SCIP_SEPA*            sepa,               /**< separator */
   SCIP_ROW**            rows,               /**< LP rows */
   int                   nrows,              /**< number of LP rows */
   SCIP_COL**            cols,               /**< LP columns */
   int                   ncols,              /**< number of LP columns */
   int                   ndisjcuts,          /**< number of disjunctive cuts found so far */
   SCIP_Bool             scale,              /**< should cut be scaled */
   SCIP_Bool             strengthen,         /**< should cut be strengthened if integer variables are present */
   SCIP_Real             cutlhs1,            /**< left hand side of the first simplex row */
   SCIP_Real             cutlhs2,            /**< left hand side of the second simplex row */
   SCIP_Real             bound1,             /**< bound of first simplex row */
   SCIP_Real             bound2,             /**< bound of second simplex row */
   SCIP_Real*            simplexcoefs1,      /**< simplex coefficients of first row */
   SCIP_Real*            simplexcoefs2,      /**< simplex coefficients of second row */
   SCIP_Real*            cutcoefs,           /**< pointer to store cut coefficients (length: nscipvars) */
   SCIP_ROW**            row,                /**< pointer to store disjunctive cut inequality */
   SCIP_Bool*            madeintegral        /**< pointer to store whether cut has been scaled to integral values */
   )
{
   char cutname[SCIP_MAXSTRLEN];
   SCIP_COL** rowcols;
   SCIP_COL* col;
   SCIP_Real* rowvals;
   SCIP_Real lhsrow;
   SCIP_Real rhsrow;
   SCIP_Real cutlhs;
   SCIP_Real sgn;
   SCIP_Real lb;
   SCIP_Real ub;
   int nonbasicnumber = 0;
   int rownnonz;
   int ind;
   int r;
   int c;

   assert( scip != NULL );
   assert( row != NULL );
   assert( rows != NULL );
   assert( cols != NULL );
   assert( simplexcoefs1 != NULL );
   assert( simplexcoefs2 != NULL );
   assert( cutcoefs != NULL );
   assert( sepa != NULL );
   assert( madeintegral != NULL );

   *madeintegral = FALSE;

   /* check signs */
   if ( SCIPisFeasPositive(scip, cutlhs1) == SCIPisFeasPositive(scip, cutlhs2) )
      sgn = 1.0;
   else
      sgn = -1.0;

   /* check bounds */
   if ( SCIPisInfinity(scip, REALABS(bound1)) || SCIPisInfinity(scip, REALABS(bound2)) )
      strengthen = FALSE;

   /* compute left hand side of row (a later update is possible, see below) */
   cutlhs = sgn * cutlhs1 * cutlhs2;

   /* add cut-coefficients of the non-basic non-slack variables */
   for (c = 0; c < ncols; ++c)
   {
      col = cols[c];
      assert( col != NULL );
      ind = SCIPcolGetLPPos(col);
      assert( ind >= 0 );

      if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_LOWER )
      {
         lb = SCIPcolGetLb(col);

         /* for integer variables we may obtain stronger coefficients */
         if ( strengthen && SCIPcolIsIntegral(col) )
         {
            SCIP_Real mval;
            SCIP_Real mvalfloor;
            SCIP_Real mvalceil;

            mval = (cutlhs2 * simplexcoefs1[nonbasicnumber] - cutlhs1 * simplexcoefs2[nonbasicnumber]) / (cutlhs2 * bound1 + cutlhs1 * bound2);
            mvalfloor = SCIPfloor(scip, mval);
            mvalceil = SCIPceil(scip, mval);

            cutcoefs[ind] = MIN(sgn * cutlhs2 * (simplexcoefs1[nonbasicnumber] - mvalfloor * bound1), sgn * cutlhs1 * (simplexcoefs2[nonbasicnumber] + mvalceil * bound2));
            assert( SCIPisFeasLE(scip, cutcoefs[ind], MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber])) );
         }
         else
            cutcoefs[ind] = MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);

         cutlhs += cutcoefs[ind] * lb;
         ++nonbasicnumber;
      }
      else if ( SCIPcolGetBasisStatus(col) == SCIP_BASESTAT_UPPER )
      {
         ub = SCIPcolGetUb(col);

         /* for integer variables we may obtain stronger coefficients */
         if ( strengthen && SCIPcolIsIntegral(col) )
         {
            SCIP_Real mval;
            SCIP_Real mvalfloor;
            SCIP_Real mvalceil;

            mval = (cutlhs2 * simplexcoefs1[nonbasicnumber] - cutlhs1 * simplexcoefs2[nonbasicnumber]) / (cutlhs2 * bound1 + cutlhs1 * bound2);
            mvalfloor = SCIPfloor(scip, -mval);
            mvalceil = SCIPceil(scip, -mval);

            cutcoefs[ind] = MAX(sgn * cutlhs2 * (simplexcoefs1[nonbasicnumber] + mvalfloor * bound1), sgn * cutlhs1 * (simplexcoefs2[nonbasicnumber] - mvalceil * bound2));
            assert( SCIPisFeasLE(scip, -cutcoefs[ind], -MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber])) );
         }
         else
            cutcoefs[ind] = MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);

         cutlhs += cutcoefs[ind] * ub;
         ++nonbasicnumber;
      }
      else
      {
         assert( SCIPcolGetBasisStatus(col) != SCIP_BASESTAT_ZERO );
         cutcoefs[ind] = 0.0;
      }
   }

   /* add cut-coefficients of the non-basic slack variables */
   for (r = 0; r < nrows; ++r)
   {
      rhsrow = SCIProwGetRhs(rows[r]) - SCIProwGetConstant(rows[r]);
      lhsrow = SCIProwGetLhs(rows[r]) - SCIProwGetConstant(rows[r]);

      assert( SCIProwGetBasisStatus(rows[r]) != SCIP_BASESTAT_ZERO );
      assert( SCIPisFeasZero(scip, lhsrow - rhsrow) || SCIPisNegative(scip, lhsrow - rhsrow) );
      assert( SCIProwIsInLP(rows[r]) );

      if ( SCIProwGetBasisStatus(rows[r]) != SCIP_BASESTAT_BASIC )
      {
         SCIP_Real cutcoef;

         if ( SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_UPPER )
         {
            assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, rows[r]) - SCIProwGetRhs(rows[r])) );

            cutcoef = MAX(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);
            cutlhs -= cutcoef * rhsrow;
            ++nonbasicnumber;
         }
         else /* SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_LOWER */
         {
            assert( SCIProwGetBasisStatus(rows[r]) == SCIP_BASESTAT_LOWER );
            assert( SCIPisFeasZero(scip, SCIPgetRowLPActivity(scip, rows[r]) - SCIProwGetLhs(rows[r])) );

            cutcoef = MIN(sgn * cutlhs2 * simplexcoefs1[nonbasicnumber], sgn * cutlhs1 * simplexcoefs2[nonbasicnumber]);
            cutlhs -= cutcoef * lhsrow;
            ++nonbasicnumber;
         }

         rownnonz = SCIProwGetNNonz(rows[r]);
         rowvals = SCIProwGetVals(rows[r]);
         rowcols = SCIProwGetCols(rows[r]);

         for (c = 0; c < rownnonz; ++c)
         {
            ind = SCIPcolGetLPPos(rowcols[c]);

            /* if column is not in LP, then return without generating cut */
            if ( ind < 0 )
            {
               *row = NULL;
               return SCIP_OKAY;
            }

            cutcoefs[ind] -= cutcoef * rowvals[c];
         }
      }
   }

   /* create cut */
   (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "%s_%d_%d", SCIPsepaGetName(sepa), SCIPgetNLPs(scip), ndisjcuts);
   if ( SCIPgetDepth(scip) == 0 )
      SCIP_CALL( SCIPcreateEmptyRowSepa(scip, row, sepa, cutname, cutlhs, SCIPinfinity(scip), FALSE, FALSE, TRUE) );
   else
      SCIP_CALL( SCIPcreateEmptyRowSepa(scip, row, sepa, cutname, cutlhs, SCIPinfinity(scip), TRUE, FALSE, TRUE) );

   SCIP_CALL( SCIPcacheRowExtensions(scip, *row) );
   for (c = 0; c < ncols; ++c)
   {
      ind = SCIPcolGetLPPos(cols[c]);
      assert( ind >= 0 );
      if ( ! SCIPisFeasZero(scip, cutcoefs[ind]) )
      {
         SCIP_CALL( SCIPaddVarToRow(scip, *row, SCIPcolGetVar(cols[c]), cutcoefs[ind] ) );
      }
   }
   SCIP_CALL( SCIPflushRowExtensions(scip, *row) );

   /* try to scale the cut to integral values
    * @todo find better but still stable disjunctive cut settings
    */
   if ( scale )
   {
      int maxdepth;
      int depth;
      SCIP_Longint maxdnom;
      SCIP_Real maxscale;

      depth = SCIPgetDepth(scip);
      assert( depth >= 0 );
      maxdepth = SCIPgetMaxDepth(scip);
      if ( depth == 0 )
      {
         maxdnom = 1000;
         maxscale = 1000.0;
      }
      else if ( depth <= maxdepth/4 )
      {
         maxdnom = 1000;
         maxscale = 1000.0;
      }
      else if ( depth <= maxdepth/2 )
      {
         maxdnom = 100;
         maxscale = 100.0;
      }
      else
      {
         maxdnom = 10;
         maxscale = 10.0;
      }

      SCIP_CALL( SCIPmakeRowIntegral(scip, *row, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, TRUE, madeintegral) );
   }

   return SCIP_OKAY;
}
Example #13
0
/** LP solution separation method of separator */
static
SCIP_DECL_SEPAEXECLP(sepaExeclpStrongcg)
{  /*lint --e{715}*/
   SCIP_SEPADATA* sepadata;
   SCIP_VAR** vars;
   SCIP_COL** cols;
   SCIP_ROW** rows;
   SCIP_Real* varsolvals;
   SCIP_Real* binvrow;
   SCIP_Real* cutcoefs;
   SCIP_Real cutrhs;
   SCIP_Real cutact;
   SCIP_Real maxscale;
   SCIP_Longint maxdnom;
   int* basisind;
   int* inds;
   int ninds;
   int nvars;
   int ncols;
   int nrows;
   int ncalls;
   int depth;
   int maxdepth;
   int maxsepacuts;
   int ncuts;
   int c;
   int i;
   int cutrank;
   SCIP_Bool success;
   SCIP_Bool cutislocal;
   char normtype;

   assert(sepa != NULL);
   assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   sepadata = SCIPsepaGetData(sepa);
   assert(sepadata != NULL);

   depth = SCIPgetDepth(scip);
   ncalls = SCIPsepaGetNCallsAtNode(sepa);

   /* only call separator, if we are not close to terminating */
   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   /* only call the strong CG cut separator a given number of times at each node */
   if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot)
      || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) )
      return SCIP_OKAY;

   /* only call separator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call separator, if the LP solution is basic */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* only call separator, if there are fractional variables */
   if( SCIPgetNLPBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get variables data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* get LP data */
   SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) );
   SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) );
   if( ncols == 0 || nrows == 0 )
      return SCIP_OKAY;

#if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */
   if( ncols >= 50*nrows )
      return SCIP_OKAY;
   if( ncols >= 5*nrows )
   {
      int ncutsfound;

      ncutsfound = SCIPgetNCutsFound(scip);
      if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) )
      {
         sepadata->lastncutsfound = ncutsfound;
         *result = SCIP_DELAYED;
         return SCIP_OKAY;
      }
   }
#endif

   /* get the type of norm to use for efficacy calculations */
   SCIP_CALL( SCIPgetCharParam(scip, "separating/efficacynorm", &normtype) );

   /* set the maximal denominator in rational representation of strong CG cut and the maximal scale factor to
    * scale resulting cut to integral values to avoid numerical instabilities
    */
   /**@todo find better but still stable strong CG cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */
   maxdepth = SCIPgetMaxDepth(scip);
   if( depth == 0 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/4 )
   {
      maxdnom = 1000;
      maxscale = 1000.0;
   }
   else if( depth <= maxdepth/2 )
   {
      maxdnom = 100;
      maxscale = 100.0;
   }
   else
   {
      maxdnom = 10;
      maxscale = 10.0;
   }

   *result = SCIP_DIDNOTFIND;

   /* allocate temporary memory */
   SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) );
   SCIP_CALL( SCIPallocBufferArray(scip, &inds, nrows) );
   varsolvals = NULL; /* allocate this later, if needed */

   /* get basis indices */
   SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) );

   /* get the maximal number of cuts allowed in a separation round */
   if( depth == 0 )
      maxsepacuts = sepadata->maxsepacutsroot;
   else
      maxsepacuts = sepadata->maxsepacuts;

   SCIPdebugMessage("searching strong CG cuts: %d cols, %d rows, maxdnom=%" SCIP_LONGINT_FORMAT ", maxscale=%g, maxcuts=%d\n",
      ncols, nrows, maxdnom, maxscale, maxsepacuts);

   /* for all basic columns belonging to integer variables, try to generate a strong CG cut */
   ncuts = 0;
   for( i = 0; i < nrows && ncuts < maxsepacuts && !SCIPisStopped(scip) && *result != SCIP_CUTOFF; ++i )
   {
      SCIP_Bool tryrow;

      tryrow = FALSE;
      c = basisind[i];
      if( c >= 0 )
      {
         SCIP_VAR* var;

         assert(c < ncols);
         var = SCIPcolGetVar(cols[c]);
         if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS )
         {
            SCIP_Real primsol;

            primsol = SCIPcolGetPrimsol(cols[c]);
            assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/

            if( SCIPfeasFrac(scip, primsol) >= MINFRAC )
            {
               SCIPdebugMessage("trying strong CG cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol);
               tryrow = TRUE;
            }
         }
      }
#ifdef SEPARATEROWS
      else
      {
         SCIP_ROW* row;

         assert(0 <= -c-1 && -c-1 < nrows);
         row = rows[-c-1];
         if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) )
         {
            SCIP_Real primsol;

            primsol = SCIPgetRowActivity(scip, row);
            if( SCIPfeasFrac(scip, primsol) >= MINFRAC )
            {
               SCIPdebugMessage("trying strong CG cut for row <%s> [%g]\n", SCIProwGetName(row), primsol);
               tryrow = TRUE;
            }
         }
      }
#endif

      if( tryrow )
      {
         /* get the row of B^-1 for this basic integer variable with fractional solution value */
         SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow, inds, &ninds) );

#ifdef SCIP_DEBUG
         /* initialize variables, that might not have been initialized in SCIPcalcMIR if success == FALSE */
         cutact = 0.0;
         cutrhs = SCIPinfinity(scip);
#endif
         /* create a strong CG cut out of the weighted LP rows using the B^-1 row as weights */
         SCIP_CALL( SCIPcalcStrongCG(scip, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, MINFRAC, MAXFRAC,
               binvrow, inds, ninds, 1.0, cutcoefs, &cutrhs, &cutact, &success, &cutislocal, &cutrank) );
         assert(ALLOWLOCAL || !cutislocal);
         SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs);

         /* if successful, convert dense cut into sparse row, and add the row as a cut */
         if( success && SCIPisFeasGT(scip, cutact, cutrhs) )
         {
            SCIP_VAR** cutvars;
            SCIP_Real* cutvals;
            SCIP_Real cutnorm;
            int cutlen;

            /* if this is the first successful cut, get the LP solution for all COLUMN variables */
            if( varsolvals == NULL )
            {
               int v;

               SCIP_CALL( SCIPallocBufferArray(scip, &varsolvals, nvars) );
               for( v = 0; v < nvars; ++v )
               {
                  if( SCIPvarGetStatus(vars[v]) == SCIP_VARSTATUS_COLUMN )
                     varsolvals[v] = SCIPvarGetLPSol(vars[v]);
               }
            }
            assert(varsolvals != NULL);

            /* get temporary memory for storing the cut as sparse row */
            SCIP_CALL( SCIPallocBufferArray(scip, &cutvars, nvars) );
            SCIP_CALL( SCIPallocBufferArray(scip, &cutvals, nvars) );

            /* store the cut as sparse row, calculate activity and norm of cut */
            SCIP_CALL( storeCutInArrays(scip, nvars, vars, cutcoefs, varsolvals, normtype,
                  cutvars, cutvals, &cutlen, &cutact, &cutnorm) );

            SCIPdebugMessage(" -> strong CG cut for <%s>: act=%f, rhs=%f, norm=%f, eff=%f, rank=%d\n",
               c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]),
               cutact, cutrhs, cutnorm, (cutact - cutrhs)/cutnorm, cutrank);

            if( SCIPisPositive(scip, cutnorm) && SCIPisEfficacious(scip, (cutact - cutrhs)/cutnorm) )
            {
               SCIP_ROW* cut;
               char cutname[SCIP_MAXSTRLEN];

               /* create the cut */
               if( c >= 0 )
                  (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_x%d", SCIPgetNLPs(scip), c);
               else
                  (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_s%d", SCIPgetNLPs(scip), -c-1);
               SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, sepadata->dynamiccuts) );
               SCIP_CALL( SCIPaddVarsToRow(scip, cut, cutlen, cutvars, cutvals) );
               /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/
               SCIProwChgRank(cut, cutrank);

               assert(success);
#ifdef MAKECUTINTEGRAL
               /* try to scale the cut to integral values */
               SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                     maxdnom, maxscale, MAKECONTINTEGRAL, &success) );
#else
#ifdef MAKEINTCUTINTEGRAL
               /* try to scale the cut to integral values if there are no continuous variables
                *  -> leads to an integral slack variable that can later be used for other cuts
                */
               {
                  int k = 0;
                  while ( k < cutlen && SCIPvarIsIntegral(cutvars[k]) )
                     ++k;
                  if( k == cutlen )
                  {
                     SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip),
                           maxdnom, maxscale, MAKECONTINTEGRAL, &success) );
                  }
               }
#endif
#endif

#ifndef FORCECUTINTEGRAL
               success = TRUE;
#endif

               if( success )
               {
                  if( !SCIPisCutEfficacious(scip, NULL, cut) )
                  {
                     SCIPdebugMessage(" -> strong CG cut <%s> no longer efficacious: act=%f, rhs=%f, norm=%f, eff=%f\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut));
                     /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/
                     success = FALSE;
                  }
                  else
                  {
                     SCIP_Bool infeasible;

                     SCIPdebugMessage(" -> found strong CG cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n",
                        cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut),
                        SCIPgetCutEfficacy(scip, NULL, cut),
                        SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut),
                        SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut));
                     /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/
                     SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE, &infeasible) );
                     if ( infeasible )
                        *result = SCIP_CUTOFF;
                     else
                     {
                        if( !cutislocal )
                        {
                           SCIP_CALL( SCIPaddPoolCut(scip, cut) );
                        }
                        *result = SCIP_SEPARATED;
                     }
                     ncuts++;
                  }
               }
               else
               {
                  SCIPdebugMessage(" -> strong CG cut <%s> couldn't be scaled to integral coefficients: act=%f, rhs=%f, norm=%f, eff=%f\n",
                     cutname, cutact, cutrhs, cutnorm, SCIPgetCutEfficacy(scip, NULL, cut));
               }

               /* release the row */
               SCIP_CALL( SCIPreleaseRow(scip, &cut) );
            }

            /* free temporary memory */
            SCIPfreeBufferArray(scip, &cutvals);
            SCIPfreeBufferArray(scip, &cutvars);
         }
      }
   }

   /* free temporary memory */
   SCIPfreeBufferArrayNull(scip, &varsolvals);
   SCIPfreeBufferArray(scip, &inds);
   SCIPfreeBufferArray(scip, &binvrow);
   SCIPfreeBufferArray(scip, &basisind);
   SCIPfreeBufferArray(scip, &cutcoefs);

   SCIPdebugMessage("end searching strong CG cuts: found %d cuts\n", ncuts);

   sepadata->lastncutsfound = SCIPgetNCutsFound(scip);

   return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecCrossover)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;                  /* primal heuristic data                               */
   SCIP* subscip;                            /* the subproblem created by crossover                 */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */

   SCIP_VAR** vars;                          /* original problem's variables                        */
   SCIP_VAR** subvars;                       /* subproblem's variables                              */
   SCIP_SOL** sols;

   SCIP_Real memorylimit;                    /* memory limit for the subproblem                     */
   SCIP_Real timelimit;                      /* time limit for the subproblem                       */
   SCIP_Real cutoff;                         /* objective cutoff for the subproblem                 */
   SCIP_Real upperbound;
   SCIP_Bool success;

   SCIP_Longint nstallnodes;                 /* node limit for the subproblem                       */

   int* selection;                           /* pool of solutions crossover uses                    */
   int nvars;                                /* number of original problem's variables              */
   int nbinvars;
   int nintvars;
   int nusedsols;
   int i;

   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);
   nusedsols = heurdata->nusedsols;

   *result = SCIP_DELAYED;

   /* only call heuristic, if enough solutions are at hand */
   if( SCIPgetNSols(scip) < nusedsols  )
      return SCIP_OKAY;

   sols = SCIPgetSols(scip);
   assert(sols != NULL);

   /* if one good solution was found, heuristic should not be delayed any longer */
   if( sols[nusedsols-1] != heurdata->prevlastsol )
   {
      heurdata->nextnodenumber = SCIPgetNNodes(scip);
      if( sols[0] != heurdata->prevbestsol )
         heurdata->nfailures = 0;
   }
   /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */
   else if( !heurdata->randomization )
      return SCIP_OKAY;

   /* if heuristic should be delayed, wait until certain number of nodes is reached */
   if( SCIPgetNNodes(scip) < heurdata->nextnodenumber )
      return SCIP_OKAY;

   /* only call heuristic, if enough nodes were processed since last incumbent */
   if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip))  < heurdata->nwaitingnodes
      && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* calculate the maximal number of branching nodes until heuristic is aborted */
   nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip));

   /* reward Crossover if it succeeded often */
   nstallnodes = (SCIP_Longint)
      (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0)));

   /* count the setup costs for the sub-MIP as 100 nodes */
   nstallnodes -= 100 * SCIPheurGetNCalls(heur);
   nstallnodes += heurdata->nodesofs;

   /* determine the node limit for the current process */
   nstallnodes -= heurdata->usednodes;
   nstallnodes = MIN(nstallnodes, heurdata->maxnodes);

   /* check whether we have enough nodes left to call subproblem solving */
   if( nstallnodes < heurdata->minnodes )
      return SCIP_OKAY;

   if( SCIPisStopped(scip) )
     return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   assert(nvars > 0);

   /* check whether discrete variables are available */
   if( nbinvars == 0 && nintvars == 0 )
      return SCIP_OKAY;

   /* initializing the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   success = FALSE;

   if( heurdata->uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_crossoversub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) );

      if( heurdata->copycuts )
      {
         /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }
   }

   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) );

   for( i = 0; i < nvars; i++ )
     subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   success = FALSE;

   /* create a new problem, which fixes variables with same value in a certain set of solutions */
   SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) );

   heurdata->prevbestsol = SCIPgetBestSol(scip);
   heurdata->prevlastsol = sols[heurdata->nusedsols-1];

   /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */
   if( !success )
   {
      *result = SCIP_DIDNOTRUN;

      /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the
       * solution was not fruitful in the sense that it was too big
       */
      updateFailureStatistic(scip, heurdata);

      goto TERMINATE;
   }

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   if( !SCIPisParamFixed(subscip, "conflict/useprop") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useinflp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usesb") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usepseudo") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );
   }

   /* add an objective cutoff */
   cutoff = SCIPinfinity(scip);
   assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip)));

   upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
   if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
   {
      cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip);
   }
   else
   {
      if( SCIPgetUpperbound ( scip ) >= 0 )
         cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip );
      else
         cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip );
   }
   cutoff = MIN(upperbound, cutoff );
   SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );

   /* permute the subproblem to increase diversification */
   if( heurdata->permute )
   {
      SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) );
   }

   /* solve the subproblem */
   SCIPdebugMessage("Solve Crossover subMIP\n");
   retcode = SCIPsolve(subscip);

   /* Errors in solving the subproblem should not kill the overall solving process.
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode);
   }

   heurdata->usednodes += SCIPgetNNodes(subscip);

   /* check, whether a solution was found */
   if( SCIPgetNSols(subscip) > 0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;
      int solindex;                             /* index of the solution created by crossover          */

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      solindex = -1;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) );
      }

      if( success )
      {
         int tmp;

         assert(solindex != -1);

         *result = SCIP_FOUNDSOL;

         /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable
          * in order to avoid incest ;)
          */
         for( i = 0; i < nusedsols; i++ )
         {
            SOLTUPLE* elem;
            tmp = selection[i];
            selection[i] = solindex;

            SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) );
            SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) );
            selection[i] = tmp;
         }

         /* if solution was among the best ones, crossover should not be called until another good solution was found */
         if( !heurdata->randomization )
         {
            heurdata->prevbestsol = SCIPgetBestSol(scip);
            heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1];
         }
      }

      /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */
      if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) )
         updateFailureStatistic(scip, heurdata);
   }
   else
   {
      /* if no new solution was found, run was a failure */
      updateFailureStatistic(scip, heurdata);
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &selection);
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
/** reduced cost propagation method for an LP solution */
static
SCIP_DECL_PROPEXEC(propExecRedcost)
{  /*lint --e{715}*/
   SCIP_PROPDATA* propdata;
   SCIP_COL** cols;
   SCIP_Real requiredredcost;
   SCIP_Real cutoffbound;
   SCIP_Real lpobjval;
   SCIP_Bool propbinvars;
   SCIP_Bool cutoff;
   int nchgbds;
   int ncols;
   int c;

   *result = SCIP_DIDNOTRUN;

   /* in case we have a zero objective function, we skip the reduced cost propagator */
   if( SCIPgetNObjVars(scip) == 0 )
      return SCIP_OKAY;

   /* propagator can only be applied during solving stage */
   if( SCIPgetStage(scip) < SCIP_STAGE_SOLVING )
      return SCIP_OKAY;

   /* we cannot apply reduced cost fixing, if we want to solve exactly */
   /**@todo implement reduced cost fixing with interval arithmetics */
   if( SCIPisExactSolve(scip) )
      return SCIP_OKAY;

   /* only call propagator, if the current node has an LP */
   if( !SCIPhasCurrentNodeLP(scip) )
      return SCIP_OKAY;

   /* only call propagator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call propagator, if the current LP is a valid relaxation */
   if( !SCIPisLPRelax(scip) )
      return SCIP_OKAY;

   /* we cannot apply reduced cost strengthening, if no simplex basis is available */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* get current cutoff bound */
   cutoffbound = SCIPgetCutoffbound(scip);

   /* reduced cost strengthening can only be applied, if we have a finite cutoff */
   if( SCIPisInfinity(scip, cutoffbound) )
      return SCIP_OKAY;

   /* get LP columns */
   cols = SCIPgetLPCols(scip);
   ncols = SCIPgetNLPCols(scip);

   /* do nothing if the LP has no columns (is empty) */
   if( ncols == 0 )
      return SCIP_OKAY;

   /* get propagator data */
   propdata = SCIPpropGetData(prop);
   assert(propdata != NULL);

   /* chack if all integral variables are fixed and the continuous variables should not be propagated */
   if( !propdata->continuous && SCIPgetNPseudoBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get LP objective value */
   lpobjval = SCIPgetLPObjval(scip);

   /* check if binary variables should be propagated */
   propbinvars = (SCIPgetDepth(scip) == 0) || (cutoffbound - lpobjval < 5 * propdata->maxredcost);

   /* skip the propagator if the problem has only binary variables and those should not be propagated */
   if( !propbinvars && SCIPgetNVars(scip) == SCIPgetNBinVars(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;
   cutoff = FALSE;
   nchgbds = 0;

   /* compute the required reduced cost which are needed for a binary variable to be fixed */
   requiredredcost = cutoffbound - lpobjval;

   SCIPdebugMessage("lpobjval <%g>, cutoffbound <%g>, max reduced <%g>, propgate binary %u, use implics %u\n",
      lpobjval, cutoffbound, propdata->maxredcost, propbinvars, propdata->usefullimplics);

   /* check reduced costs for non-basic columns */
   for( c = 0; c < ncols && !cutoff; ++c )
   {
      SCIP_VAR* var;

      var = SCIPcolGetVar(cols[c]);

      /* skip continuous variables in case the corresponding parameter is set */
      if( !propdata->continuous && !SCIPvarIsIntegral(var) )
         continue;

      if( SCIPvarIsBinary(var) )
      {
         if( propbinvars )
         {
            if( SCIPgetDepth(scip) == 0 )
            {
               SCIP_CALL( propagateRootRedcostBinvar(scip, propdata, var, cols[c], cutoffbound, &nchgbds) );
            }
            else
            {
               SCIP_CALL( propagateRedcostBinvar(scip, propdata, var, cols[c], requiredredcost, &nchgbds, &cutoff) );
            }
         }
      }
      else
      {
         SCIP_CALL( propagateRedcostVar(scip, var, cols[c], lpobjval, cutoffbound, &nchgbds) );
      }
   }

   if( cutoff )
   {
      *result = SCIP_CUTOFF;

      SCIPdebugMessage("node %"SCIP_LONGINT_FORMAT": detected cutoff\n",
         SCIPnodeGetNumber(SCIPgetCurrentNode(scip)));
   }
   else if( nchgbds > 0 )
   {
      *result = SCIP_REDUCEDDOM;

      SCIPdebugMessage("node %"SCIP_LONGINT_FORMAT": %d bound changes (max redcost <%g>)\n",
         SCIPnodeGetNumber(SCIPgetCurrentNode(scip)) , nchgbds, propdata->maxredcost);
   }

   return SCIP_OKAY;
}
/** propagate the given binary variable/column using the root reduced cost stored in the SCIP internal data structers
 *  and check if the implictions can be useful. Deppending on that implictions are used or not used during the search to
 *  strength the reduced costs.
 */
static
SCIP_RETCODE propagateRootRedcostBinvar(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_PROPDATA*        propdata,           /**< propagator data structure */
   SCIP_VAR*             var,                /**< variable to use for propagation */
   SCIP_COL*             col,                /**< LP column of the variable */
   SCIP_Real             cutoffbound,        /**< the current cutoff bound */
   int*                  nchgbds             /**< pointer to count the number of bound changes */
   )
{
   SCIP_Real rootredcost;
   SCIP_Real rootsol;
   SCIP_Real rootlpobjval;

   assert(SCIPgetDepth(scip) == 0);

   /* skip binary variable if it is locally fixed */
   if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 )
      return SCIP_OKAY;

   rootredcost = SCIPvarGetBestRootRedcost(var);
   rootsol = SCIPvarGetBestRootSol(var);
   rootlpobjval = SCIPvarGetBestRootLPObjval(var);

   if( SCIPisFeasZero(scip, rootredcost) )
      return SCIP_OKAY;

   assert(rootlpobjval != SCIP_INVALID); /*lint !e777*/

   if( rootsol > 0.5 )
   {
      assert(!SCIPisFeasPositive(scip, rootredcost));

      /* update maximum reduced cost of a single binary variable */
      propdata->maxredcost = MAX(propdata->maxredcost, -rootredcost);

      if( rootlpobjval - rootredcost > cutoffbound )
      {
         SCIPdebugMessage("globally fix binary variable <%s> to 1.0\n", SCIPvarGetName(var));

         SCIP_CALL( SCIPchgVarLb(scip, var, 1.0) );
         (*nchgbds)++;
         return SCIP_OKAY;
      }
   }
   else
   {
      assert(!SCIPisFeasNegative(scip, rootredcost));

      /* update maximum reduced cost of a single binary variable */
      propdata->maxredcost = MAX(propdata->maxredcost, rootredcost);

      if( rootlpobjval + rootredcost > cutoffbound )
      {
         SCIPdebugMessage("globally fix binary variable <%s> to 0.0\n", SCIPvarGetName(var));

         SCIP_CALL( SCIPchgVarUb(scip, var, 0.0) );
         (*nchgbds)++;
         return SCIP_OKAY;
      }
   }

   /* evaluate if the implications are useful; the implications are seen to be useful if they provide an increase for
    * the root reduced costs
    */
   if( !propdata->usefullimplics )
   {
      SCIP_Real lbredcost;
      SCIP_Real ubredcost;

      lbredcost = SCIPgetVarImplRedcost(scip, var, FALSE);
      assert(!SCIPisFeasPositive(scip, lbredcost));

      ubredcost = SCIPgetVarImplRedcost(scip, var, TRUE);
      assert(!SCIPisFeasNegative(scip, ubredcost));

      switch( SCIPcolGetBasisStatus(col) )
      {
      case SCIP_BASESTAT_LOWER:
         ubredcost -= SCIPgetVarRedcost(scip, var);
         assert(!SCIPisFeasNegative(scip, ubredcost));
         break;

      case SCIP_BASESTAT_UPPER:
         lbredcost -= SCIPgetVarRedcost(scip, var);
         assert(!SCIPisFeasPositive(scip, lbredcost));
         break;

      case SCIP_BASESTAT_BASIC:
      case SCIP_BASESTAT_ZERO:
      default:
         break;
      }

      propdata->usefullimplics = (lbredcost < 0.0) || (ubredcost > 0.0);
   }

   return SCIP_OKAY;
}
Example #17
0
/** try given solution */
static
SCIP_RETCODE trySolCandidate(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_HEUR*            heur,               /**< indicator heuristic */
   SCIP_HEURDATA*        heurdata,           /**< heuristic data */
   int                   nindconss,          /**< number of indicator constraints */
   SCIP_CONS**           indconss,           /**< indicator constraints */
   SCIP_Bool*            solcand,            /**< values for indicator variables in partial solution */
   int*                  nfoundsols          /**< number of solutions found */
   )
{
   SCIP_Bool cutoff;
   SCIP_Bool lperror;
   SCIP_Bool stored;
   SCIP_SOL* sol;
   int c;

   assert( scip != NULL );
   assert( heur != NULL );
   assert( heurdata != NULL );
   assert( nindconss == 0 || indconss != NULL );
   assert( solcand != NULL );
   assert( nfoundsols != NULL );

   SCIPdebugMessage("Trying to generate feasible solution with indicators from solution candidate ...\n");
   *nfoundsols = 0;

   SCIP_CALL( SCIPstartProbing(scip) );

   /* we can stop here if we have already reached the maximal depth */
   if( SCIPgetDepthLimit(scip) <= SCIPgetDepth(scip) )
   {
      SCIP_CALL( SCIPendProbing(scip) );
      return SCIP_OKAY;
   }

   SCIP_CALL( SCIPnewProbingNode(scip) );

   /* fix variables */
   for (c = 0; c < nindconss; ++c)
   {
      SCIP_VAR* binvar;

      /* skip nonactive constraints */
      if ( ! SCIPconsIsActive(indconss[c]) )
         continue;

      binvar = SCIPgetBinaryVarIndicator(indconss[c]);
      assert( binvar != NULL );

      /* Fix binary variables not in cover to 1 and corresponding slack variables to 0. The other binary variables are fixed to 0. */
      if ( ! solcand[c] )
      {
         /* to be sure, check for non-fixed variables */
         if ( SCIPvarGetLbLocal(binvar) < 0.5 && SCIPvarGetUbLocal(binvar) > 0.5 )
         {
            SCIP_CALL( SCIPchgVarLbProbing(scip, binvar, 1.0) );
         }
      }
      else
      {
         if ( SCIPvarGetUbLocal(binvar) > 0.5 && SCIPvarGetLbLocal(binvar) < 0.5 )
         {
            SCIP_CALL( SCIPchgVarUbProbing(scip, binvar, 0.0) );
         }
      }
   }

   /* propagate variables */
   SCIP_CALL( SCIPpropagateProbing(scip, -1, &cutoff, NULL) );
   if ( cutoff )
   {
      SCIPdebugMessage("Solution candidate reaches cutoff (in propagation).\n");
      SCIP_CALL( SCIPendProbing(scip) );
      return SCIP_OKAY;
   }

   /* solve LP to move continuous variables */
   SCIP_CALL( SCIPsolveProbingLP(scip, -1, &lperror, &cutoff) );

   /* the LP often reaches the objective limit - we currently do not use such solutions */
   if ( lperror || cutoff || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
   {
#ifdef SCIP_DEBUG
      if ( lperror )
         SCIPdebugMessage("An LP error occured.\n");
      else
         SCIPdebugMessage("Solution candidate reaches cutoff (in LP solving).\n");
#endif
      SCIP_CALL( SCIPendProbing(scip) );
      return SCIP_OKAY;
   }

   /* create solution */
   SCIP_CALL( SCIPcreateSol(scip, &sol, heur) );

   /* copy the current LP solution to the working solution */
   SCIP_CALL( SCIPlinkLPSol(scip, sol) );

   /* check solution for feasibility */
#ifdef SCIP_DEBUG
   SCIPdebugMessage("Found solution candidate with value %g.\n", SCIPgetSolTransObj(scip, sol));
#ifdef SCIP_MORE_DEBUG
   SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) );
#endif
   SCIP_CALL( SCIPtrySolFree(scip, &sol, TRUE, TRUE, TRUE, TRUE, &stored) );
   if ( stored )
   {
      ++(*nfoundsols);
      SCIPdebugMessage("Solution is feasible and stored.\n");
   }
   else
      SCIPdebugMessage("Solution was not stored.\n");
#else
   /* only check integrality, because we solved an LP */
   SCIP_CALL( SCIPtrySolFree(scip, &sol, FALSE, FALSE, TRUE, FALSE, &stored) );
   if ( stored )
      ++(*nfoundsols);
#endif
   SCIP_CALL( SCIPendProbing(scip) );

   /* possibly perform one-opt */
   if ( stored && heurdata->oneopt )
   {
      int nfound = 0;
      assert( *nfoundsols > 0 );
      SCIP_CALL( tryOneOpt(scip, heur, heurdata, nindconss, indconss, solcand, &nfound) );
   }

   return SCIP_OKAY;
}
Example #18
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR** pseudocands;
   SCIP_VAR** fixcands;
   SCIP_Real* fixcandscores;
   SCIP_Real searchubbound;
   SCIP_Real searchavgbound;
   SCIP_Real searchbound;
   SCIP_Real objval;
   SCIP_Bool lperror;
   SCIP_Bool cutoff;
   SCIP_Bool backtracked;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int nfixcands;
   int nbinfixcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int nextcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 100);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get unfixed integer variables */
   SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nfixcands == 0 )
      return SCIP_OKAY;

   /* calculate the objective search bound */
   if( SCIPgetNSolsFound(scip) == 0 )
   {
      if( heurdata->maxdiveubquotnosol > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquotnosol > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   else
   {
      if( heurdata->maxdiveubquot > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquot > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   searchbound = MIN(searchubbound, searchavgbound);
   if( SCIPisObjIntegral(scip) )
      searchbound = SCIPceil(scip, searchbound);

   /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
   maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   maxdivedepth = MIN(maxdivedepth, maxdepth);
   maxdivedepth *= 10;

   *result = SCIP_DIDNOTFIND;

   /* start diving */
   SCIP_CALL( SCIPstartProbing(scip) );

   /* enables collection of variable statistics during probing */
   SCIPenableVarHistory(scip);

   SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound));

   /* copy the pseudo candidates into own array, because we want to reorder them */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) );

   /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */
   SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) );
   nbinfixcands = 0;
   for( c = 0; c < nfixcands; ++c )
   {
      SCIP_VAR* var;
      SCIP_Real score;
      int colveclen;
      int left;
      int right;
      int i;

      assert(c >= nbinfixcands);
      var = fixcands[c];
      assert(SCIPvarIsIntegral(var));
      colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0);
      if( SCIPvarIsBinary(var) )
      {
         score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE)
            + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0;

         /* shift the non-binary variables one slot to the right */
         for( i = c; i > nbinfixcands; --i )
         {
            fixcands[i] = fixcands[i-1];
            fixcandscores[i] = fixcandscores[i-1];
         }
         /* put the new candidate into the first nbinfixcands slot */
         left = 0;
         right = nbinfixcands;
         nbinfixcands++;
      }
      else
      {
         score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE))
            + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var)
            + (SCIP_Real)colveclen/10000.0;

         /* put the new candidate in the slots after the binary candidates */
         left = nbinfixcands;
         right = c;
      }
      for( i = right; i > left && score > fixcandscores[i-1]; --i )
      {
         fixcands[i] = fixcands[i-1];
         fixcandscores[i] = fixcandscores[i-1];
      }
      fixcands[i] = var;
      fixcandscores[i] = score;
      SCIPdebugMessage("  <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d  ->  score=%g\n",
         SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE),
         SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var),
         colveclen, score);
   }
   SCIPfreeBufferArray(scip, &fixcandscores);

   /* get LP objective value */
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   objval = SCIPgetLPObjval(scip);

   /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with
    * the depth 10
    */
   lperror = FALSE;
   cutoff = FALSE;
   divedepth = 0;
   nextcand = 0;
   while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL
      && (divedepth < 10
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
      && !SCIPisStopped(scip) )
   {
      SCIP_VAR* var;
      SCIP_Real bestsolval;
      SCIP_Real bestfixval;
      int bestcand;
      SCIP_Longint nnewlpiterations;
      SCIP_Longint nnewdomreds;

      /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */
      if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) )
      {
         SCIP_CALL( SCIPnewProbingNode(scip) );
         divedepth++;
      }
      else
         break;

      nnewlpiterations = 0;
      nnewdomreds = 0;

      /* fix binary variable that is closest to 1 in the LP solution to 1;
       * if all binary variables are fixed, fix integer variable with least fractionality in LP solution
       */
      bestcand = -1;
      bestsolval = -1.0;
      bestfixval = 1.0;

      /* look in the binary variables for fixing candidates */
      for( c = nextcand; c < nbinfixcands; ++c )
      {
         SCIP_Real solval;

         var = fixcands[c];

         /* ignore already fixed variables */
         if( var == NULL )
            continue;
         if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 )
         {
            fixcands[c] = NULL;
            continue;
         }

         /* get the LP solution value */
         solval = SCIPvarGetLPSol(var);

         if( solval > bestsolval )
         {
            bestcand = c;
            bestfixval = 1.0;
            bestsolval = solval;
            if( SCIPisGE(scip, bestsolval, 1.0) )
            {
               /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */
               break;
            }
            else if( SCIPisLE(scip, bestsolval, 0.0) )
            {
               /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */
               bestfixval = 0.0;
            }
         }
      }

      /* if all binary variables are fixed, look in the integer variables for a fixing candidate */
      if( bestcand == -1 )
      {
         SCIP_Real bestfrac;

         bestfrac = SCIP_INVALID;
         for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c )
         {
            SCIP_Real solval;
            SCIP_Real frac;

            var = fixcands[c];

            /* ignore already fixed variables */
            if( var == NULL )
               continue;
            if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 )
            {
               fixcands[c] = NULL;
               continue;
            }

            /* get the LP solution value */
            solval = SCIPvarGetLPSol(var);
            frac = SCIPfrac(scip, solval);

            /* ignore integer variables that are currently integral */
            if( SCIPisFeasFracIntegral(scip, frac) )
               continue;

            if( frac < bestfrac )
            {
               bestcand = c;
               bestsolval = solval;
               bestfrac = frac;
               bestfixval = SCIPfloor(scip, bestsolval + 0.5);
               if( SCIPisZero(scip, bestfrac) )
               {
                  /* we found an unfixed integer variable with integral LP solution value */
                  break;
               }
            }
         }
      }
      assert(-1 <= bestcand && bestcand < nfixcands);

      /* if there is no unfixed candidate left, we are done */
      if( bestcand == -1 )
         break;

      var = fixcands[bestcand];
      assert(var != NULL);
      assert(SCIPvarIsIntegral(var));
      assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5);
      assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var)));
      assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var)));

      backtracked = FALSE;
      do
      {
         /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
          * occured or variable was fixed by propagation while backtracking => Abort diving!
          */
         if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
         {
            SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var));
            cutoff = TRUE;
            break;
         }
         if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) )
         {
            SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
            assert(backtracked);
            break;
         }

         /* apply fixing of best candidate */
         SCIPdebugMessage("  dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n",
            divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip),
            SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
         SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) );

         /* apply domain propagation */
         SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) );
         if( !cutoff )
         {
            /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution
             * stays valid, and the LP does not need to be resolved
             */
            if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
            {
            /* resolve the diving LP */
               /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                */
#ifdef NDEBUG
               SCIP_RETCODE retstat;
               nlpiterations = SCIPgetNLPIterations(scip);
               retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
               if( retstat != SCIP_OKAY )
               {
                  SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat);
               }
#else
               nlpiterations = SCIPgetNLPIterations(scip);
               SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

               if( lperror )
                  break;

               /* update iteration count */
               nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations;
               heurdata->nlpiterations += nnewlpiterations;

               /* get LP solution status */
               lpsolstat = SCIPgetLPSolstat(scip);
               assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                     (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }
         }

         /* perform backtracking if a cutoff was detected */
         if( cutoff && !backtracked && heurdata->backtrack )
         {
            SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
            SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );

            /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */
            assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip));

            SCIP_CALL( SCIPnewProbingNode(scip) );

            bestfixval = SCIPvarIsBinary(var)
               ? 1.0 - bestfixval
               : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1);

            backtracked = TRUE;
         }
         else
            backtracked = FALSE;
      }
      while( backtracked );

      if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* get new objective value */
         objval = SCIPgetLPObjval(scip);

         if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
         {
            /* we must start again with the first candidate, since the LP solution changed */
            nextcand = 0;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );
            if( success )
            {
               SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n",
                  SCIPgetSolOrigObj(scip, heurdata->sol));

               /* try to add solution to SCIP */
               SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

               /* check, if solution was feasible and good enough */
               if( success )
               {
                  SCIPdebugMessage(" -> solution was feasible and good enough\n");
                  *result = SCIP_FOUNDSOL;
               }
            }
         }
         else
            nextcand = bestcand+1; /* continue with the next candidate in the following loop */
      }
      SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound);
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &fixcands);

   /* end diving */
   SCIP_CALL( SCIPendProbing(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   SCIPdebugMessage("intdiving heuristic finished\n");

   return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_VAR** vars;
   SCIP_Real* rootsol;
   SCIP_Real* objchgvals;
   int* softroundings;
   int* intvalrounds;
   int nvars;
   int nbinvars;
   int nintvars;
   int nlpcands;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_Real absstartobjval;
   SCIP_Real objstep;
   SCIP_Real alpha;
   SCIP_Real oldobj;
   SCIP_Real newobj;
   SCIP_Bool lperror;
   SCIP_Bool lpsolchanged;
   SCIP_Longint nsolsfound;
   SCIP_Longint ncalls;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int startnlpcands;
   int ncycles;
   int i;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only apply heuristic, if only a few solutions have been found */
   if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols )
      return SCIP_OKAY;

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 30);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get number of fractional variables, that should be integral */
   nlpcands = SCIPgetNLPBranchCands(scip);

   /* don't try to dive, if there are no fractional variables */
   if( nlpcands == 0 )
      return SCIP_OKAY;

   /* calculate the maximal diving depth */
   nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   if( SCIPgetNSolsFound(scip) == 0 )
      maxdivedepth = (int)(heurdata->depthfacnosol * nvars);
   else
      maxdivedepth = (int)(heurdata->depthfac * nvars);
   maxdivedepth = MAX(maxdivedepth, 10);

   *result = SCIP_DIDNOTFIND;

   /* get all variables of LP */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );

   /* get root solution value of all binary and integer variables */
   SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) );
   for( i = 0; i < nbinvars + nintvars; i++ )
      rootsol[i] = SCIPvarGetRootSol(vars[i]);

   /* get current LP objective value, and calculate length of a single step in an objective coefficient */
   absstartobjval = SCIPgetLPObjval(scip);
   absstartobjval = ABS(absstartobjval);
   absstartobjval = MAX(absstartobjval, 1.0);
   objstep = absstartobjval / 10.0;

   /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */
   SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) );
   BMSclearMemoryArray(softroundings, nbinvars + nintvars);
   SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) );
   BMSclearMemoryArray(intvalrounds, nbinvars + nintvars);

   /* allocate temporary memory for buffering objective changes */
   SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) );

   /* start diving */
   SCIP_CALL( SCIPstartDive(scip) );

   SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth,
      SCIPgetLPObjval(scip), objstep);

   lperror = FALSE;
   divedepth = 0;
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   alpha = heurdata->alpha;
   ncycles = 0;
   lpsolchanged = TRUE;
   startnlpcands = nlpcands;
   while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10
      && (divedepth < 10
         || nlpcands <= startnlpcands - divedepth/2
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations))
      && !SCIPisStopped(scip) )
   {
      SCIP_Bool success;
      int hardroundingidx;
      int hardroundingdir;
      SCIP_Real hardroundingoldbd;
      SCIP_Real hardroundingnewbd;
      SCIP_Bool boundschanged;

      SCIP_RETCODE retcode;

      /* create solution from diving LP and try to round it */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

      if( success )
      {
         SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

         /* try to add solution to SCIP */
         SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

         /* check, if solution was feasible and good enough */
         if( success )
         {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
         }
      }

      divedepth++;
      hardroundingidx = -1;
      hardroundingdir = 0;
      hardroundingoldbd = 0.0;
      hardroundingnewbd = 0.0;
      boundschanged = FALSE;

      SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations);

      /* round solution x* from diving LP:
       *   - x~_j = down(x*_j)    if x*_j is integer or binary variable and x*_j <= root solution_j
       *   - x~_j = up(x*_j)      if x*_j is integer or binary variable and x*_j  > root solution_j
       *   - x~_j = x*_j          if x*_j is continuous variable
       * change objective function in diving LP:
       *   - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j
       *   - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j)
       */
      for( i = 0; i < nbinvars + nintvars; i++ )
      {
         SCIP_VAR* var;
         SCIP_Real solval;

         var = vars[i];
         oldobj = SCIPgetVarObjDive(scip, var);
         newobj = oldobj;

         solval =  SCIPvarGetLPSol(var);
         if( SCIPisFeasIntegral(scip, solval) )
         {
            /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its
             * current integral value;
             * otherwise, fade out the objective value
             */
            if( softroundings[i] != 0 && lpsolchanged )
            {
               intvalrounds[i]++;
               if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 )
               {
                  /* use exact integral value, if the variable is only integral within numerical tolerances */
                  solval = SCIPfloor(scip, solval+0.5);
                  SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval);
                  SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) );
                  SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) );
                  boundschanged = TRUE;
               }
            }
            else
               newobj = alpha * oldobj;
         }
         else if( solval <= rootsol[i] )
         {
            /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds;
             * otherwise, apply soft rounding by changing the objective value
             */
            softroundings[i]--;
            if( softroundings[i] <= -10 && hardroundingidx == -1 )
            {
               SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n",
                  SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval));
               hardroundingidx = i;
               hardroundingdir = -1;
               hardroundingoldbd = SCIPgetVarUbDive(scip, var);
               hardroundingnewbd = SCIPfeasFloor(scip, solval);
               SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) );
               boundschanged = TRUE;
            }
            else
               newobj = alpha * oldobj + objstep;
         }
         else
         {
            /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds;
             * otherwise, apply soft rounding by changing the objective value
             */
            softroundings[i]++;
            if( softroundings[i] >= +10 && hardroundingidx == -1 )
            {
               SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n",
                  SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval));
               hardroundingidx = i;
               hardroundingdir = +1;
               hardroundingoldbd = SCIPgetVarLbDive(scip, var);
               hardroundingnewbd = SCIPfeasCeil(scip, solval);
               SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) );
               boundschanged = TRUE;
            }
            else
               newobj = alpha * oldobj - objstep;
         }

         /* remember the objective change */
         objchgvals[i] = newobj;
      }

      /* apply objective changes if there was no bound change */
      if( !boundschanged )
      {
         /* apply cached changes on integer variables */
         for( i = 0; i < nbinvars + nintvars; ++i )
         {
            SCIP_VAR* var;

            var = vars[i];
            SCIPdebugMessage(" -> i=%d  var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n",
               i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]);

            SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) );
         }

         /* fade out the objective values of the continuous variables */
         for( i = nbinvars + nintvars; i < nvars; i++ )
         {
            SCIP_VAR* var;

            var = vars[i];
            oldobj = SCIPgetVarObjDive(scip, var);
            newobj = alpha * oldobj;

            SCIPdebugMessage(" -> i=%d  var <%s>, solval=%g, oldobj=%g, newobj=%g\n",
               i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj);

            SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) );
         }
      }

   SOLVEAGAIN:
      /* resolve the diving LP */
      nlpiterations = SCIPgetNLPIterations(scip);

      retcode = SCIPsolveDiveLP(scip,  MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror);
      lpsolstat = SCIPgetLPSolstat(scip);

      /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
       * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY )
         {
            SCIP_CALL( retcode );
         }
#endif
         SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode);
         SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n");
      }

      if( lperror )
         break;

      /* update iteration count */
      heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

      /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */
      lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations);
      if( lpsolchanged )
         ncycles = 0;
      else if( !boundschanged ) /* do not count if integral variables have been fixed */
         ncycles++;

      /* get LP solution status and number of fractional variables, that should be integral */
      if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 )
      {
         SCIP_VAR* var;

         var = vars[hardroundingidx];

         /* round the hard rounded variable to the opposite direction and resolve the LP */
         if( hardroundingdir == -1 )
         {
            SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0);
            SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) );
            SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) );
         }
         else
         {
            SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0);
            SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) );
            SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) );
         }
         hardroundingidx = -1;
         goto SOLVEAGAIN;
      }
      if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
         nlpcands = SCIPgetNLPBranchCands(scip);
      SCIPdebugMessage("   -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands);
   }

   SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n",
      lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations);

   /* check if a solution has been found */
   if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
   {
      SCIP_Bool success;

      /* create solution from diving LP */
      SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
      SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

      /* try to add solution to SCIP */
      SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

      /* check, if solution was feasible and good enough */
      if( success )
      {
         SCIPdebugMessage(" -> solution was feasible and good enough\n");
         *result = SCIP_FOUNDSOL;
      }
   }

   /* end diving */
   SCIP_CALL( SCIPendDive(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &objchgvals);
   SCIPfreeBufferArray(scip, &intvalrounds);
   SCIPfreeBufferArray(scip, &softroundings);
   SCIPfreeBufferArray(scip, &rootsol);

   SCIPdebugMessage("rootsoldiving heuristic finished\n");

   return SCIP_OKAY;
}