/** output method of display column to output file stream 'file' */ static SCIP_DECL_DISPOUTPUT(SCIPdispOutputNsols) { /*lint --e{715}*/ SCIPinfoMessage(scip, file, "%5"SCIP_LONGINT_FORMAT, SCIPgetNSolsFound(GCGpricerGetOrigprob(scip))); return SCIP_OKAY; }
SolutionStatus ILPSolverSCIP::get_status() const { int n = 0; // There are null-pointer accesses if called in the wrong stage, which happens if resetted. switch (SCIPgetStage(d_scip)) { case SCIP_STAGE_TRANSFORMED: [[fallthrough]]; case SCIP_STAGE_INITPRESOLVE: [[fallthrough]]; case SCIP_STAGE_PRESOLVING: [[fallthrough]]; case SCIP_STAGE_EXITPRESOLVE: [[fallthrough]]; case SCIP_STAGE_PRESOLVED: [[fallthrough]]; case SCIP_STAGE_INITSOLVE: [[fallthrough]]; case SCIP_STAGE_SOLVING: [[fallthrough]]; case SCIP_STAGE_SOLVED: [[fallthrough]]; case SCIP_STAGE_EXITSOLVE: n = static_cast<int>(SCIPgetNSolsFound(d_scip)); } SolutionStatus ret = (n > 0) ? SolutionStatus::SUBOPTIMAL : SolutionStatus::NO_SOLUTION; // Handle all possible status values. Almost all will be reduced to SUBOPTIMAL or NO_SOLUTION. switch (SCIPgetStatus(d_scip)) { case SCIP_STATUS_OPTIMAL: return SolutionStatus::PROVEN_OPTIMAL; case SCIP_STATUS_INFEASIBLE: return SolutionStatus::PROVEN_INFEASIBLE; case SCIP_STATUS_UNBOUNDED: return SolutionStatus::PROVEN_UNBOUNDED; case SCIP_STATUS_UNKNOWN: [[fallthrough]]; case SCIP_STATUS_INFORUNBD: [[fallthrough]]; case SCIP_STATUS_NODELIMIT: [[fallthrough]]; case SCIP_STATUS_TOTALNODELIMIT: [[fallthrough]]; case SCIP_STATUS_STALLNODELIMIT: [[fallthrough]]; case SCIP_STATUS_TIMELIMIT: [[fallthrough]]; case SCIP_STATUS_MEMLIMIT: [[fallthrough]]; case SCIP_STATUS_GAPLIMIT: [[fallthrough]]; case SCIP_STATUS_SOLLIMIT: [[fallthrough]]; case SCIP_STATUS_BESTSOLLIMIT: [[fallthrough]]; case SCIP_STATUS_RESTARTLIMIT: [[fallthrough]]; case SCIP_STATUS_USERINTERRUPT: [[fallthrough]]; case SCIP_STATUS_TERMINATE: [[fallthrough]]; default: return ret; } }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** node selection method of node selector */ static SCIP_DECL_NODESELSELECT(nodeselSelectBfs) { /*lint --e{715}*/ SCIP_NODESELDATA* nodeseldata; int minplungedepth; int maxplungedepth; int plungedepth; SCIP_Real maxplungequot; assert(nodesel != NULL); assert(strcmp(SCIPnodeselGetName(nodesel), NODESEL_NAME) == 0); assert(scip != NULL); assert(selnode != NULL); *selnode = NULL; /* get node selector user data */ nodeseldata = SCIPnodeselGetData(nodesel); assert(nodeseldata != NULL); /* calculate minimal and maximal plunging depth */ minplungedepth = nodeseldata->minplungedepth; maxplungedepth = nodeseldata->maxplungedepth; maxplungequot = nodeseldata->maxplungequot; if( minplungedepth == -1 ) { minplungedepth = SCIPgetMaxDepth(scip)/10; if( SCIPgetNStrongbranchLPIterations(scip) > 2*SCIPgetNNodeLPIterations(scip) ) minplungedepth += 10; if( maxplungedepth >= 0 ) minplungedepth = MIN(minplungedepth, maxplungedepth); } if( maxplungedepth == -1 ) maxplungedepth = SCIPgetMaxDepth(scip)/2; maxplungedepth = MAX(maxplungedepth, minplungedepth); /* check, if we exceeded the maximal plunging depth */ plungedepth = SCIPgetPlungeDepth(scip); if( plungedepth > maxplungedepth ) { /* we don't want to plunge again: select best node from the tree */ SCIPdebugMessage("plungedepth: [%d,%d], cur: %d -> abort plunging\n", minplungedepth, maxplungedepth, plungedepth); *selnode = SCIPgetBestNode(scip); SCIPdebugMessage(" -> best node : lower=%g\n", *selnode != NULL ? SCIPnodeGetLowerbound(*selnode) : SCIPinfinity(scip)); } else { SCIP_NODE* node; SCIP_Real maxbound; /* check, if plunging is forced at the current depth */ if( plungedepth < minplungedepth ) { maxbound = SCIPinfinity(scip); SCIPdebugMessage("plungedepth: [%d,%d], cur: %d => maxbound: infinity\n", minplungedepth, maxplungedepth, plungedepth); } else { SCIP_Real lowerbound; SCIP_Real cutoffbound; /* get global lower and cutoff bound */ lowerbound = SCIPgetLowerbound(scip); cutoffbound = SCIPgetCutoffbound(scip); /* if we didn't find a solution yet, the cutoff bound is usually very bad: * use only 20% of the gap as cutoff bound */ if( SCIPgetNSolsFound(scip) == 0 ) cutoffbound = lowerbound + 0.2 * (cutoffbound - lowerbound); /* calculate maximal plunging bound */ maxbound = lowerbound + maxplungequot * (cutoffbound - lowerbound); SCIPdebugMessage("plungedepth: [%d,%d], cur: %d, bounds: [%g,%g], maxbound: %g\n", minplungedepth, maxplungedepth, plungedepth, lowerbound, cutoffbound, maxbound); } /* we want to plunge again: prefer children over siblings, and siblings over leaves, * but only select a child or sibling, if its dual bound is small enough; * prefer using nodes with higher node selection priority assigned by the branching rule */ node = SCIPgetPrioChild(scip); if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected prio child: lower=%g\n", SCIPnodeGetLowerbound(*selnode)); } else { node = SCIPgetBestChild(scip); if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected best child: lower=%g\n", SCIPnodeGetLowerbound(*selnode)); } else { node = SCIPgetPrioSibling(scip); if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected prio sibling: lower=%g\n", SCIPnodeGetLowerbound(*selnode)); } else { node = SCIPgetBestSibling(scip); if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound ) { *selnode = node; SCIPdebugMessage(" -> selected best sibling: lower=%g\n", SCIPnodeGetLowerbound(*selnode)); } else { *selnode = SCIPgetBestNode(scip); SCIPdebugMessage(" -> selected best leaf: lower=%g\n", *selnode != NULL ? SCIPnodeGetLowerbound(*selnode) : SCIPinfinity(scip)); } } } } } return SCIP_OKAY; }
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */ SCIP_RETCODE SCIPapplyZeroobj( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minimprove, /**< factor by which zeroobj should at least improve the incumbent */ SCIP_Longint nnodes /**< node limit for the subproblem */ ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HEURDATA* heurdata; /* heuristic's private data structure */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_Real large; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_Bool valid; SCIP_RETCODE retcode; SCIP_SOL** subsols; int nsubsols; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(nnodes >= 0); assert(0.0 <= minimprove && minimprove <= 1.0); *result = SCIP_DIDNOTRUN; /* only call heuristic once at the root */ if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only call the heuristic if we do not have an incumbent */ if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */ valid = FALSE; /* copy complete SCIP instance */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) ); SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); /* create event handler for LP events */ eventhdlr = NULL; SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); /* get variable image and change to 0.0 in sub-SCIP */ for( i = 0; i < nvars; i++ ) { SCIP_Real adjustedbound; SCIP_Real lb; SCIP_Real ub; SCIP_Real inf; subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) ); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); inf = SCIPinfinity(subscip); /* adjust infinite bounds in order to avoid that variables with non-zero objective * get fixed to infinite value in zeroobj subproblem */ if( SCIPisInfinity(subscip, ub ) ) { adjustedbound = MAX(large, lb+large); adjustedbound = MIN(adjustedbound, inf); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) ); } if( SCIPisInfinity(subscip, -lb ) ) { adjustedbound = MIN(-large, ub-large); adjustedbound = MAX(adjustedbound, -inf); SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) ); } } /* free hash map */ SCIPhashmapFree(&varmapfw); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable expensive techniques that merely work on the dual bound */ /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); if( !SCIPisParamFixed(subscip, "presolving/maxrounds") ) { SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) ); } /* use best dfs node selection */ if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* disable feaspump and fracdiving */ if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) ); } if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) ); } /* restrict LP iterations */ SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) ); SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) ); #ifdef SCIP_DEBUG /* for debugging zeroobj, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; SCIP_CONS* origobjcons; #ifndef NDEBUG int nobjvars; nobjvars = 0; #endif cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound(scip) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) ); for( i = 0; i < nvars; ++i) { if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) ) { SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) ); #ifndef NDEBUG nobjvars++; #endif } } SCIP_CALL( SCIPaddCons(subscip, origobjcons) ); SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) ); assert(nobjvars == SCIPgetNObjVars(scip)); } /* catch LP events of sub-SCIP */ SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); if( success ) *result = SCIP_FOUNDSOL; } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Real oldobjval; SCIP_Real frac; SCIP_Real bestfrac; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; SCIP_Real actscore; SCIP_Real downscore; SCIP_Real upscore; SCIP_Real bestactscore; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip), SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound)); /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; cutoff = FALSE; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { divedepth++; SCIP_CALL( SCIPnewProbingNode(scip) ); /* choose variable fixing: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, round variable with least number of locks in corresponding direction * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - round variable with least number of locks in opposite of its feasible rounding direction */ bestcand = -1; bestactscore = -1.0; bestfrac = SCIP_INVALID; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the fractionality * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ if( mayrounddown && mayroundup ) roundup = (frac > 0.5); else roundup = mayrounddown; if( roundup ) frac = 1.0 - frac; actscore = getNActiveConsScore(scip, var, &downscore, &upscore); /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate */ assert(0.0 < frac && frac < 1.0); if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded */ actscore = getNActiveConsScore(scip, var, &downscore, &upscore); roundup = (downscore < upscore); if( roundup ) frac = 1.0 - frac; /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ assert(0.0 < frac && frac < 1.0); if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } assert(bestfrac < SCIP_INVALID); } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } assert(bestcand != -1); var = lpcands[bestcand]; backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); assert(backtracked); break; } /* apply rounding of best candidate */ if( bestcandroundup == !backtracked ) { /* round variable up */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var)); SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); } else { /* round variable down */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand])); SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) ); } /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) ); if( !cutoff ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status, objective value, and fractional variables, that should be integral */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); SCIP_CALL( SCIPnewProbingNode(scip) ); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new objective value */ oldobjval = objval; objval = SCIPgetLPObjval(scip); /* update pseudo cost values */ if( SCIPisGT(scip, objval, oldobjval) ) { if( bestcandroundup ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } else { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } } /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n", SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real primsol; SCIP_Real frac; SCIP_Real pscostquot; SCIP_Real bestpscostquot; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Real objscale; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int* roundings; int nvars; int varidx; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MIN(maxdivedepth, 10*maxdepth); *result = SCIP_DIDNOTFIND; /* get temporary memory for remembering the current soft roundings */ SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) ); BMSclearMemoryArray(roundings, nvars); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth); /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10 && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_RETCODE retcode; divedepth++; /* choose variable for objective change: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, change objective value of variable with largest rel. difference of pseudo cost values * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - change objective value of variable with largest rel. difference of pseudo cost values */ bestcand = -1; bestpscostquot = -1.0; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); primsol = lpcandssol[c]; frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the pseudo cost values * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ roundup = FALSE; if( mayrounddown && mayroundup ) calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); else if( mayrounddown ) calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup); else calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate */ if( pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */ calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } var = lpcands[bestcand]; /* check, if the best candidate was already subject to soft rounding */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] == +1 ) { /* variable was already soft rounded upwards: hard round it downwards */ SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else if( roundings[varidx] == -1 ) { /* variable was already soft rounded downwards: hard round it upwards */ SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else { assert(roundings[varidx] == 0); /* apply soft rounding of best candidate via a change in the objective value */ objscale = divedepth * 1000.0; oldobj = SCIPgetVarObjDive(scip, var); if( bestcandroundup ) { /* soft round variable up: make objective value (more) negative */ if( oldobj < 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MIN(newobj, -objscale); /* remember, that this variable was soft rounded upwards */ roundings[varidx] = +1; } else { /* soft round variable down: make objective value (more) positive */ if( oldobj > 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MAX(newobj, objscale); /* remember, that this variable was soft rounded downwards */ roundings[varidx] = -1; } SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj); } /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status and fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory for remembering the current soft roundings */ SCIPfreeBufferArray(scip, &roundings); SCIPdebugMessage("objpscostdiving heuristic finished\n"); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }