/** creates a new solution for the original problem by copying the solution of the subproblem */ static SCIP_RETCODE createNewSol( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< the current heuristic */ SCIP_SOL* sol, /**< solution of the subproblem */ SCIP_Bool* success /**< used to store whether new solution was found or not */ ) { SCIP_VAR** vars; /* the original problem's variables */ int nvars; /* the original problem's number of variables */ SCIP_Real* solvals; /* solution values of the subproblem */ SCIP_SOL* newsol; /* solution to be created for the original problem */ assert(scip != NULL); /* get variables' data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) ); /* copy the solution */ SCIP_CALL( SCIPgetSolVals(scip, sol, nvars, vars, solvals) ); /* create new solution for the original problem */ SCIP_CALL( SCIPcreateSol(scip, &newsol, heur) ); SCIP_CALL( SCIPsetSolVals(scip, newsol, nvars, vars, solvals) ); /* try to add new solution to scip and free it immediately */ SCIP_CALL( SCIPtrySolFree(scip, &newsol, FALSE, TRUE, TRUE, TRUE, success) ); SCIPfreeBufferArray(scip, &solvals); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpImpliedbounds) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_VAR** fracvars; SCIP_Real* solvals; SCIP_Real* fracvals; SCIP_Bool cutoff; int nvars; int nbinvars; int nfracs; int ncuts; assert(sepa != NULL); assert(scip != NULL); *result = SCIP_DIDNOTRUN; /* gets active problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); if( nbinvars == 0 ) return SCIP_OKAY; /* get fractional problem variables */ /* todo try out also separating fractional implicit integer variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, &fracvals, NULL, &nfracs, NULL, NULL) ); if( nfracs == 0 ) return SCIP_OKAY; /* get solution values for all variables */ SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) ); SCIP_CALL( SCIPgetVarSols(scip, nvars, vars, solvals) ); /* call the cut separation */ SCIP_CALL( separateCuts(scip, sepa, NULL, solvals, fracvars, fracvals, nfracs, &cutoff, &ncuts) ); /* adjust result code */ if ( cutoff ) *result = SCIP_CUTOFF; else if ( ncuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; /* free temporary memory */ SCIPfreeBufferArray(scip, &solvals); return SCIP_OKAY; }
/** creates a new solution for the original problem by copying the solution of the subproblem */ static SCIP_RETCODE createNewSol( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP structure of the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_HEUR* heur, /**< crossover heuristic structure */ SCIP_SOL* subsol, /**< solution of the subproblem */ int* solindex, /**< index of the solution */ SCIP_Bool* success /**< used to store whether new solution was found or not */ ) { SCIP_VAR** vars; /* the original problem's variables */ int nvars; SCIP_SOL* newsol; /* solution to be created for the original problem */ SCIP_Real* subsolvals; /* solution values of the subproblem */ assert(scip != NULL); assert(subscip != NULL); assert(subvars != NULL); assert(subsol != NULL); /* get variables' data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* sub-SCIP may have more variables than the number of active (transformed) variables in the main SCIP * since constraint copying may have required the copy of variables that are fixed in the main SCIP */ assert(nvars <= SCIPgetNOrigVars(subscip)); SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); /* copy the solution */ SCIP_CALL( SCIPgetSolVals(subscip, subsol, nvars, subvars, subsolvals) ); /* create new solution for the original problem */ SCIP_CALL( SCIPcreateSol(scip, &newsol, heur) ); SCIP_CALL( SCIPsetSolVals(scip, newsol, nvars, vars, subsolvals) ); *solindex = SCIPsolGetIndex(newsol); /* try to add new solution to scip and free it immediately */ SCIP_CALL( SCIPtrySolFree(scip, &newsol, FALSE, TRUE, TRUE, TRUE, success) ); SCIPfreeBufferArray(scip, &subsolvals); return SCIP_OKAY; }
/** creates a new solution for the original problem by copying the solution of the subproblem */ static SCIP_RETCODE createNewSol( SCIP* scip, /**< SCIP data structure of the original problem */ SCIP* subscip, /**< SCIP data structure of the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_HEUR* heur, /**< the Localbranching heuristic */ SCIP_SOL* subsol, /**< solution of the subproblem */ SCIP_Bool* success /**< pointer to store, whether new solution was found */ ) { SCIP_VAR** vars; int nvars; SCIP_SOL* newsol; SCIP_Real* subsolvals; assert( scip != NULL ); assert( subscip != NULL ); assert( subvars != NULL ); assert( subsol != NULL ); /* copy the solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* sub-SCIP may have more variables than the number of active (transformed) variables in the main SCIP * since constraint copying may have required the copy of variables that are fixed in the main SCIP */ assert(nvars <= SCIPgetNOrigVars(subscip)); SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); /* copy the solution */ SCIP_CALL( SCIPgetSolVals(subscip, subsol, nvars, subvars, subsolvals) ); /* create new solution for the original problem */ SCIP_CALL( SCIPcreateSol(scip, &newsol, heur) ); SCIP_CALL( SCIPsetSolVals(scip, newsol, nvars, vars, subsolvals) ); SCIP_CALL( SCIPtrySolFree(scip, &newsol, FALSE, TRUE, TRUE, TRUE, success) ); SCIPfreeBufferArray(scip, &subsolvals); return SCIP_OKAY; }
/** main procedure of the RENS heuristic, creates and solves a subMIP */ SCIP_RETCODE SCIPapplyGcgrens( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minfixingrate, /**< minimum percentage of integer variables that have to be fixed */ SCIP_Real minimprove, /**< factor by which RENS should at least improve the incumbent */ SCIP_Longint maxnodes, /**< maximum number of nodes for the subproblem */ SCIP_Longint nstallnodes, /**< number of stalling nodes for the subproblem */ SCIP_Bool binarybounds, /**< should general integers get binary bounds [floor(.),ceil(.)]? */ SCIP_Bool uselprows /**< should subproblem be created out of the rows in the LP rows? */ ) { SCIP* subscip; /* the subproblem created by RENS */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; SCIP_Real memorylimit; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(maxnodes >= 0); assert(nstallnodes >= 0); assert(0.0 <= minfixingrate && minfixingrate <= 1.0); assert(0.0 <= minimprove && minimprove <= 1.0); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); if( uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_gcgrenssub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_gcgrenssub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; SCIP_HEURDATA* heurdata; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "gcgrens", TRUE, FALSE, TRUE, &valid) ); /** @todo check for thread safeness */ /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, minfixingrate, binarybounds, uselprows, &success) ); SCIPdebugMessage("RENS subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; if( timelimit <= 0.0 || memorylimit <= 0.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", nstallnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", maxnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(scip, "estimate") != NULL ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(scip, "inference") != NULL ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); #ifdef SCIP_DEBUG /* for debugging RENS, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; } /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); } /* presolve the subproblem */ retcode = SCIPpresolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while presolving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode); } SCIPdebugMessage("GCG RENS presolved subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success); /* after presolving, we should have at least reached a certain fixing rate over ALL variables (including continuous) * to ensure that not only the MIP but also the LP relaxation is easy enough */ if( ( nvars - SCIPgetNVars(subscip) ) / (SCIP_Real)nvars >= minfixingrate / 2.0 ) { SCIP_SOL** subsols; int nsubsols; /* solve the subproblem */ SCIPdebugMessage("solving subproblem: nstallnodes=%"SCIP_LONGINT_FORMAT", maxnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, maxnodes); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpGomory) { /*lint --e{715}*/ SCIP_SEPADATA* sepadata; SCIP_VAR** vars; SCIP_COL** cols; SCIP_ROW** rows; SCIP_Real* binvrow; SCIP_Real* cutcoefs; SCIP_Real maxscale; SCIP_Real minfrac; SCIP_Real maxfrac; SCIP_Longint maxdnom; SCIP_Bool cutoff; int* basisind; int naddedcuts; int nvars; int ncols; int nrows; int ncalls; int depth; int maxdepth; int maxsepacuts; int c; int i; assert(sepa != NULL); assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); depth = SCIPgetDepth(scip); ncalls = SCIPsepaGetNCallsAtNode(sepa); minfrac = sepadata->away; maxfrac = 1.0 - sepadata->away; /* only call separator, if we are not close to terminating */ if( SCIPisStopped(scip) ) return SCIP_OKAY; /* only call the gomory cut separator a given number of times at each node */ if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot) || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) ) return SCIP_OKAY; /* only call separator, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call separator, if the LP solution is basic */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* only call separator, if there are fractional variables */ if( SCIPgetNLPBranchCands(scip) == 0 ) return SCIP_OKAY; /* get variables data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* get LP data */ SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) ); SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); if( ncols == 0 || nrows == 0 ) return SCIP_OKAY; #if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */ if( ncols >= 50*nrows ) return SCIP_OKAY; if( ncols >= 5*nrows ) { int ncutsfound; ncutsfound = SCIPgetNCutsFound(scip); if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) ) { sepadata->lastncutsfound = ncutsfound; *result = SCIP_DELAYED; return SCIP_OKAY; } } #endif /* set the maximal denominator in rational representation of gomory cut and the maximal scale factor to * scale resulting cut to integral values to avoid numerical instabilities */ /**@todo find better but still stable gomory cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */ maxdepth = SCIPgetMaxDepth(scip); if( depth == 0 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/4 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/2 ) { maxdnom = 100; maxscale = 100.0; } else { maxdnom = 10; maxscale = 10.0; } /* allocate temporary memory */ SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) ); /* get basis indices */ SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) ); /* get the maximal number of cuts allowed in a separation round */ if( depth == 0 ) maxsepacuts = sepadata->maxsepacutsroot; else maxsepacuts = sepadata->maxsepacuts; SCIPdebugMessage("searching gomory cuts: %d cols, %d rows, maxdnom=%"SCIP_LONGINT_FORMAT", maxscale=%g, maxcuts=%d\n", ncols, nrows, maxdnom, maxscale, maxsepacuts); cutoff = FALSE; naddedcuts = 0; /* for all basic columns belonging to integer variables, try to generate a gomory cut */ for( i = 0; i < nrows && naddedcuts < maxsepacuts && !SCIPisStopped(scip) && !cutoff; ++i ) { SCIP_Bool tryrow; tryrow = FALSE; c = basisind[i]; if( c >= 0 ) { SCIP_VAR* var; assert(c < ncols); var = SCIPcolGetVar(cols[c]); if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS ) { SCIP_Real primsol; primsol = SCIPcolGetPrimsol(cols[c]); assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/ if( SCIPfeasFrac(scip, primsol) >= minfrac ) { SCIPdebugMessage("trying gomory cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol); tryrow = TRUE; } } } else if( sepadata->separaterows ) { SCIP_ROW* row; assert(0 <= -c-1 && -c-1 < nrows); row = rows[-c-1]; if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) ) { SCIP_Real primsol; primsol = SCIPgetRowActivity(scip, row); if( SCIPfeasFrac(scip, primsol) >= minfrac ) { SCIPdebugMessage("trying gomory cut for row <%s> [%g]\n", SCIProwGetName(row), primsol); tryrow = TRUE; } } } if( tryrow ) { SCIP_Real cutrhs; SCIP_Real cutact; SCIP_Bool success; SCIP_Bool cutislocal; /* get the row of B^-1 for this basic integer variable with fractional solution value */ SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow) ); cutact = 0.0; cutrhs = SCIPinfinity(scip); /* create a MIR cut out of the weighted LP rows using the B^-1 row as weights */ SCIP_CALL( SCIPcalcMIR(scip, NULL, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, FIXINTEGRALRHS, NULL, NULL, (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, minfrac, maxfrac, binvrow, 1.0, NULL, NULL, cutcoefs, &cutrhs, &cutact, &success, &cutislocal) ); assert(ALLOWLOCAL || !cutislocal); /* @todo Currently we are using the SCIPcalcMIR() function to compute the coefficients of the Gomory * cut. Alternatively, we could use the direct version (see thesis of Achterberg formula (8.4)) which * leads to cut a of the form \sum a_i x_i \geq 1. Rumor has it that these cuts are better. */ SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs); /* if successful, convert dense cut into sparse row, and add the row as a cut */ if( success && SCIPisFeasGT(scip, cutact, cutrhs) ) { SCIP_ROW* cut; char cutname[SCIP_MAXSTRLEN]; int v; /* construct cut name */ if( c >= 0 ) (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_x%d", SCIPgetNLPs(scip), c); else (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "gom%d_s%d", SCIPgetNLPs(scip), -c-1); /* create empty cut */ SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, sepadata->dynamiccuts) ); /* cache the row extension and only flush them if the cut gets added */ SCIP_CALL( SCIPcacheRowExtensions(scip, cut) ); /* collect all non-zero coefficients */ for( v = 0; v < nvars; ++v ) { if( !SCIPisZero(scip, cutcoefs[v]) ) { SCIP_CALL( SCIPaddVarToRow(scip, cut, vars[v], cutcoefs[v]) ); } } if( SCIProwGetNNonz(cut) == 0 ) { assert(SCIPisFeasNegative(scip, cutrhs)); SCIPdebugMessage(" -> gomory cut detected infeasibility with cut 0 <= %f\n", cutrhs); cutoff = TRUE; } else if( SCIProwGetNNonz(cut) == 1 ) { /* add the bound change as cut to avoid that the LP gets modified. that would mean the LP is not flushed * and the method SCIPgetLPBInvRow() fails; SCIP internally will apply that bound change automatically */ SCIP_CALL( SCIPaddCut(scip, NULL, cut, TRUE) ); naddedcuts++; } else { /* Only take efficacious cuts, except for cuts with one non-zero coefficients (= bound * changes); the latter cuts will be handeled internally in sepastore. */ if( SCIPisCutEfficacious(scip, NULL, cut) ) { assert(success == TRUE); SCIPdebugMessage(" -> gomory cut for <%s>: act=%f, rhs=%f, eff=%f\n", c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]), cutact, cutrhs, SCIPgetCutEfficacy(scip, NULL, cut)); if( sepadata->makeintegral ) { /* try to scale the cut to integral values */ SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, MAKECONTINTEGRAL, &success) ); if( sepadata->forcecuts ) success = TRUE; /* in case the left hand side in minus infinity and the right hand side is plus infinity the cut is * useless so we are not taking it at all */ if( (SCIPisInfinity(scip, -SCIProwGetLhs(cut)) && SCIPisInfinity(scip, SCIProwGetRhs(cut))) ) success = FALSE; /* @todo Trying to make the Gomory cut integral might fail. Due to numerical reasons/arguments we * currently ignore such cuts. If the cut, however, has small support (let's say smaller or equal to * 5), we might want to add that cut (even it does not have integral coefficients). To be able to * do that we need to add a rank to the data structure of a row. The rank of original rows are * zero and for aggregated rows it is the maximum over all used rows plus one. */ } if( success ) { SCIPdebugMessage(" -> found gomory cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n", cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut), SCIPgetCutEfficacy(scip, NULL, cut), SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut)); /* flush all changes before adding the cut */ SCIP_CALL( SCIPflushRowExtensions(scip, cut) ); /* add global cuts which are not implicit bound changes to the cut pool */ if( !cutislocal ) { if( sepadata->delayedcuts ) { SCIP_CALL( SCIPaddDelayedPoolCut(scip, cut) ); } else { SCIP_CALL( SCIPaddPoolCut(scip, cut) ); } } else { /* local cuts we add to the sepastore */ SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE) ); } naddedcuts++; } } } /* release the row */ SCIP_CALL( SCIPreleaseRow(scip, &cut) ); } } } /* free temporary memory */ SCIPfreeBufferArray(scip, &binvrow); SCIPfreeBufferArray(scip, &basisind); SCIPfreeBufferArray(scip, &cutcoefs); SCIPdebugMessage("end searching gomory cuts: found %d cuts\n", naddedcuts); sepadata->lastncutsfound = SCIPgetNCutsFound(scip); /* evalute the result of the separation */ if( cutoff ) *result = SCIP_CUTOFF; else if ( naddedcuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecLocalbranching) { /*lint --e{715}*/ SCIP_Longint maxnnodes; /* maximum number of subnodes */ SCIP_Longint nsubnodes; /* nodelimit for subscip */ SCIP_HEURDATA* heurdata; SCIP* subscip; /* the subproblem created by localbranching */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL* bestsol; /* best solution so far */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real timelimit; /* timelimit for subscip (equals remaining time of scip) */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Real memorylimit; SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* there should be enough binary variables that a local branching constraint makes sense */ if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize ) return SCIP_OKAY; *result = SCIP_DELAYED; /* only call heuristic, if an IP solution is at hand */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; bestsol = SCIPgetBestSol(scip); assert(bestsol != NULL); /* only call heuristic, if the best solution comes from transformed problem */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol) < heurdata->nwaitingnodes) return SCIP_OKAY; /* only call heuristic, if the best solution does not come from trivial heuristic */ if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 ) return SCIP_OKAY; /* reset neighborhood and minnodes, if new solution was found */ if( heurdata->lastsol != bestsol ) { heurdata->curneighborhoodsize = heurdata->neighborhoodsize; heurdata->curminnodes = heurdata->minnodes; heurdata->emptyneighborhoodsize = 0; heurdata->callstatus = EXECUTE; heurdata->lastsol = bestsol; } /* if no new solution was found and local branching also seems to fail, just keep on waiting */ if( heurdata->callstatus == WAITFORNEWSOL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward local branching if it succeeded often */ maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */ maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call sub problem solving */ if( nsubnodes < heurdata->curminnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("running localbranching heuristic ...\n"); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; eventhdlr = NULL; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_localbranchsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } /* create event handler for LP events */ SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } } SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not "); for (i = 0; i < nvars; ++i) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ heurdata->nodelimit = nsubnodes; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) ); } /* copy the original problem and add the local branching constraint */ if( heurdata->uselprows ) { SCIP_CALL( createSubproblem(scip, subscip, subvars) ); } SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) ); /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* catch LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); } /* solve the subproblem */ SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n", heurdata->curneighborhoodsize, nsubnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); } /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* print solving statistics of subproblem if we are in SCIP's debug mode */ SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) ); heurdata->usednodes += SCIPgetNNodes(subscip); SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n", SCIPgetNNodes(subscip), nsubnodes); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) { SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i])); *result = SCIP_FOUNDSOL; } } /* check the status of the sub-MIP */ switch( SCIPgetStatus(subscip) ) { case SCIP_STATUS_OPTIMAL: case SCIP_STATUS_BESTSOLLIMIT: heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */ SCIPdebugMessage(" -> found new solution\n"); break; case SCIP_STATUS_NODELIMIT: case SCIP_STATUS_STALLNODELIMIT: case SCIP_STATUS_TOTALNODELIMIT: heurdata->callstatus = EXECUTE; heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2; heurdata->curminnodes *= 2; SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n", heurdata->curneighborhoodsize, heurdata->curminnodes); if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize ) { heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n"); } break; case SCIP_STATUS_INFEASIBLE: case SCIP_STATUS_INFORUNBD: heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize; heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2; heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2); heurdata->callstatus = EXECUTE; SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize); break; case SCIP_STATUS_UNKNOWN: case SCIP_STATUS_USERINTERRUPT: case SCIP_STATUS_TIMELIMIT: case SCIP_STATUS_MEMLIMIT: case SCIP_STATUS_GAPLIMIT: case SCIP_STATUS_SOLLIMIT: case SCIP_STATUS_UNBOUNDED: default: heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip)); break; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** transforms given solution of the master problem into solution of the original problem * @todo think about types of epsilons used in this method */ SCIP_RETCODE GCGrelaxTransformMastersolToOrigsol( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* mastersol, /**< solution of the master problem, or NULL for current LP solution */ SCIP_SOL** origsol /**< pointer to store the new created original problem's solution */ ) { SCIP* masterprob; int npricingprobs; int* blocknrs; SCIP_Real* blockvalue; SCIP_Real increaseval; SCIP_VAR** mastervars; SCIP_Real* mastervals; int nmastervars; SCIP_VAR** vars; int nvars; SCIP_Real feastol; int i; int j; assert(scip != NULL); assert(origsol != NULL); masterprob = GCGrelaxGetMasterprob(scip); npricingprobs = GCGrelaxGetNPricingprobs(scip); assert( !SCIPisInfinity(scip, SCIPgetSolOrigObj(masterprob, mastersol)) ); SCIP_CALL( SCIPcreateSol(scip, origsol, GCGrelaxGetProbingheur(scip)) ); SCIP_CALL( SCIPallocBufferArray(scip, &blockvalue, npricingprobs) ); SCIP_CALL( SCIPallocBufferArray(scip, &blocknrs, npricingprobs) ); /* get variables of the master problem and their solution values */ SCIP_CALL( SCIPgetVarsData(masterprob, &mastervars, &nmastervars, NULL, NULL, NULL, NULL) ); assert(mastervars != NULL); assert(nmastervars >= 0); SCIP_CALL( SCIPallocBufferArray(scip, &mastervals, nmastervars) ); SCIP_CALL( SCIPgetSolVals(masterprob, mastersol, nmastervars, mastervars, mastervals) ); /* initialize the block values for the pricing problems */ for( i = 0; i < npricingprobs; i++ ) { blockvalue[i] = 0.0; blocknrs[i] = 0; } /* loop over all given master variables */ for( i = 0; i < nmastervars; i++ ) { SCIP_VAR** origvars; int norigvars; SCIP_Real* origvals; SCIP_Bool isray; int blocknr; origvars = GCGmasterVarGetOrigvars(mastervars[i]); norigvars = GCGmasterVarGetNOrigvars(mastervars[i]); origvals = GCGmasterVarGetOrigvals(mastervars[i]); blocknr = GCGvarGetBlock(mastervars[i]); isray = GCGmasterVarIsRay(mastervars[i]); assert(GCGvarIsMaster(mastervars[i])); assert(!SCIPisFeasNegative(scip, mastervals[i])); /** @todo handle infinite master solution values */ assert(!SCIPisInfinity(scip, mastervals[i])); /* first of all, handle variables representing rays */ if( isray ) { assert(blocknr >= 0); /* we also want to take into account variables representing rays, that have a small value (between normal and feas eps), * so we do no feas comparison here */ if( SCIPisPositive(scip, mastervals[i]) ) { /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { if( SCIPisZero(scip, origvals[j]) ) break; assert(!SCIPisZero(scip, origvals[j])); /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done later) */ if( GCGvarIsLinking(origvars[j]) ) continue; SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[j]), origvals[j] * mastervals[i], SCIPvarGetName(mastervars[i])); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[j], origvals[j] * mastervals[i]) ); } } mastervals[i] = 0.0; continue; } /* handle the variables with value >= 1 to get integral values in original solution */ while( SCIPisFeasGE(scip, mastervals[i], 1.0) ) { /* variable was directly transferred to the master problem (only in linking conss or linking variable) */ /** @todo this may be the wrong place for this case, handle it before the while loop * and remove the similar case in the next while loop */ if( blocknr == -1 ) { assert(norigvars == 1); assert(origvals[0] == 1.0); /* increase the corresponding value */ SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i])); SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) ); mastervals[i] = 0.0; } else { assert(blocknr >= 0); /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { SCIP_VAR* pricingvar; int norigpricingvars; SCIP_VAR** origpricingvars; if( SCIPisZero(scip, origvals[j]) ) break; assert(!SCIPisZero(scip, origvals[j])); /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */ if( GCGvarIsLinking(origvars[j]) ) continue; pricingvar = GCGoriginalVarGetPricingVar(origvars[j]); assert(GCGvarIsPricing(pricingvar)); norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar); origpricingvars = GCGpricingVarGetOrigvars(pricingvar); /* just in case a variable has a value higher than the number of blocks, it represents */ if( norigpricingvars <= blocknrs[blocknr] ) { SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), mastervals[i] * origvals[j], SCIPvarGetName(mastervars[i])); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], mastervals[i] * origvals[j]) ); mastervals[i] = 1.0; } /* this should be default */ else { SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j], SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j]) ); } } mastervals[i] = mastervals[i] - 1.0; blocknrs[blocknr]++; } } } /* loop over all given master variables */ for( i = 0; i < nmastervars; i++ ) { SCIP_VAR** origvars; int norigvars; SCIP_Real* origvals; int blocknr; origvars = GCGmasterVarGetOrigvars(mastervars[i]); norigvars = GCGmasterVarGetNOrigvars(mastervars[i]); origvals = GCGmasterVarGetOrigvals(mastervars[i]); blocknr = GCGvarGetBlock(mastervars[i]); if( SCIPisFeasZero(scip, mastervals[i]) ) { continue; } assert(SCIPisFeasGE(scip, mastervals[i], 0.0) && SCIPisFeasLT(scip, mastervals[i], 1.0)); while( SCIPisFeasPositive(scip, mastervals[i]) ) { assert(GCGvarIsMaster(mastervars[i])); assert(!GCGmasterVarIsRay(mastervars[i])); if( blocknr == -1 ) { assert(norigvars == 1); assert(origvals[0] == 1.0); SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) ); mastervals[i] = 0.0; } else { increaseval = MIN(mastervals[i], 1.0 - blockvalue[blocknr]); /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { SCIP_VAR* pricingvar; int norigpricingvars; SCIP_VAR** origpricingvars; if( SCIPisZero(scip, origvals[j]) ) continue; /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */ if( GCGvarIsLinking(origvars[j]) ) continue; pricingvar = GCGoriginalVarGetPricingVar(origvars[j]); assert(GCGvarIsPricing(pricingvar)); norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar); origpricingvars = GCGpricingVarGetOrigvars(pricingvar); if( norigpricingvars <= blocknrs[blocknr] ) { increaseval = mastervals[i]; SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], origvals[j] * increaseval) ); } else { /* increase the corresponding value */ SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) ); SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j] * increaseval) ); } } mastervals[i] = mastervals[i] - increaseval; if( SCIPisFeasZero(scip, mastervals[i]) ) { mastervals[i] = 0.0; } blockvalue[blocknr] += increaseval; /* if the value assigned to the block is equal to 1, this block is full and we take the next block */ if( SCIPisFeasGE(scip, blockvalue[blocknr], 1.0) ) { blockvalue[blocknr] = 0.0; blocknrs[blocknr]++; } } } } SCIPfreeBufferArray(scip, &mastervals); SCIPfreeBufferArray(scip, &blocknrs); SCIPfreeBufferArray(scip, &blockvalue); /* if the solution violates one of its bounds by more than feastol * and less than 10*feastol, round it and print a warning */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPgetRealParam(scip, "numerics/feastol", &feastol) ); for( i = 0; i < nvars; ++i ) { SCIP_Real solval; SCIP_Real lb; SCIP_Real ub; solval = SCIPgetSolVal(scip, *origsol, vars[i]); lb = SCIPvarGetLbLocal(vars[i]); ub = SCIPvarGetUbLocal(vars[i]); if( SCIPisFeasGT(scip, solval, ub) && EPSEQ(solval, ub, 10 * feastol) ) { SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], ub) ); SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n", SCIPvarGetName(vars[i]), solval, ub); } else if( SCIPisFeasLT(scip, solval, lb) && EPSEQ(solval, lb, 10 * feastol) ) { SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], lb) ); SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n", SCIPvarGetName(vars[i]), solval, lb); } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOneopt) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* bestsol; /* incumbent solution */ SCIP_SOL* worksol; /* heuristic's working solution */ SCIP_VAR** vars; /* SCIP variables */ SCIP_VAR** shiftcands; /* shiftable variables */ SCIP_ROW** lprows; /* SCIP LP rows */ SCIP_Real* activities; /* row activities for working solution */ SCIP_Real* shiftvals; SCIP_Real lb; SCIP_Real ub; SCIP_Bool localrows; SCIP_Bool valid; int nchgbound; int nbinvars; int nintvars; int nvars; int nlprows; int i; int nshiftcands; int shiftcandssize; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); *result = SCIP_DELAYED; /* we only want to process each solution once */ bestsol = SCIPgetBestSol(scip); if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) ) return SCIP_OKAY; /* reset the timing mask to its default value (at the root node it could be different) */ if( SCIPgetNNodes(scip) > 1 ) SCIPheurSetTimingmask(heur, HEUR_TIMING); /* get problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; /* do not run if there are no discrete variables */ if( nintvars == 0 ) { *result = SCIP_DIDNOTRUN; return SCIP_OKAY; } if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_Real* subsolvals; /* solution values of the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_SOL* startsol; SCIP_SOL** subsols; int nsubsols; if( !heurdata->beforepresol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* copy complete SCIP instance */ valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) ); SCIP_CALL( SCIPtransformProb(subscip) ); /* get variable image */ for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* copy the solution */ SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) ); /* create start solution for the subproblem */ SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) ); SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) ); /* try to add new solution to sub-SCIP and free it immediately */ valid = FALSE; SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) ); SCIPfreeBufferArray(scip, &subsolvals); SCIPhashmapFree(&varmapfw); /* disable statistic timing inside sub SCIP */ SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) ); /* deactivate basically everything except oneopt in the sub-SCIP */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* if necessary, some of the parameters have to be unfixed first */ if( SCIPisParamFixed(subscip, "lp/solvefreq") ) { SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) ); /* avoid recursive call, which would lead to an endless loop */ if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) ); if( valid ) { retcode = SCIPsolve(subscip); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); valid = FALSE; for( i = 0; i < nsubsols && !valid; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) ); if( valid ) *result = SCIP_FOUNDSOL; } /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; } /* we can only work on solutions valid in the transformed space */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) ) { SCIP_Bool cutoff; cutoff = FALSE; SCIP_CALL( SCIPconstructLP(scip, &cutoff) ); SCIP_CALL( SCIPflushLP(scip) ); /* get problem variables again, SCIPconstructLP() might have added new variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; } /* we need an LP */ if( SCIPgetNLPRows(scip) == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; nchgbound = 0; /* initialize data */ nshiftcands = 0; shiftcandssize = 8; heurdata->lastsolindex = SCIPsolGetIndex(bestsol); SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) ); SCIPsolSetHeur(worksol,heur); SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n"); /* maybe change solution values due to global bound changes first */ for( i = nvars - 1; i >= 0; --i ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; lb = SCIPvarGetLbGlobal(var); ub = SCIPvarGetUbGlobal(var); solval = SCIPgetSolVal(scip, bestsol,var); /* old solution value is smaller than the actual lower bound */ if( SCIPisFeasLT(scip, solval, lb) ) { /* set the solution value to the global lower bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb); } /* old solution value is greater than the actual upper bound */ else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) ) { /* set the solution value to the global upper bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub); } } SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound); SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); localrows = FALSE; valid = TRUE; /* initialize activities */ for( i = 0; i < nlprows; ++i ) { SCIP_ROW* row; row = lprows[i]; assert(SCIProwGetLPPos(row) == i); if( !SCIProwIsLocal(row) ) { activities[i] = SCIPgetRowSolActivity(scip, row, worksol); SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]); if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) ) { valid = FALSE; SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row)); break; } } else localrows = TRUE; } if( !valid ) { /** @todo try to correct lp rows */ SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n"); goto TERMINATE; } SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) ); SCIPdebugMessage("Starting 1-opt heuristic\n"); /* enumerate all integer variables and find out which of them are shiftable */ for( i = 0; i < nintvars; i++ ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_Real shiftval; SCIP_Real solval; /* find out whether the variable can be shifted */ solval = SCIPgetSolVal(scip, worksol, vars[i]); shiftval = calcShiftVal(scip, vars[i], solval, activities); /* insert the variable into the list of shifting candidates */ if( !SCIPisFeasZero(scip, shiftval) ) { SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); if( nshiftcands == shiftcandssize) { shiftcandssize *= 8; SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) ); } shiftcands[nshiftcands] = vars[i]; shiftvals[nshiftcands] = shiftval; nshiftcands++; } } } /* if at least one variable can be shifted, shift variables sorted by their objective */ if( nshiftcands > 0 ) { SCIP_Real shiftval; SCIP_Real solval; SCIP_VAR* var; /* the case that exactly one variable can be shifted is slightly easier */ if( nshiftcands == 1 ) { var = shiftcands[0]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = shiftvals[0]; assert(!SCIPisFeasZero(scip,shiftval)); SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n", SCIPvarGetName(var), shiftval); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); } else { SCIP_Real* objcoeffs; SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) ); SCIPdebugMessage(" %d shiftcands found \n", nshiftcands); /* sort the variables by their objective, optionally weighted with the shiftval */ if( heurdata->weightedobj ) { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i]; } else { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i]); } /* sort arrays with respect to the first one */ SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands); /* try to shift each variable -> Activities have to be updated */ for( i = 0; i < nshiftcands; ++i ) { var = shiftcands[i]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = calcShiftVal(scip, var, solval, activities); SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); assert(i > 0 || !SCIPisFeasZero(scip, shiftval)); assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var))); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) ); } SCIPfreeBufferArray(scip, &objcoeffs); } /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous * variables to the best possible value */ if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to * TRUE if local rows are present */ SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) ); if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } else { SCIP_Bool lperror; #ifdef NDEBUG SCIP_RETCODE retstat; #endif SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n"); /* start diving to calculate the LP relaxation */ SCIP_CALL( SCIPstartDive(scip) ); /* set the bounds of the variables: fixed for integers, global bounds for continuous */ for( i = 0; i < nvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) ); } } /* apply this after global bounds to not cause an error with intermediate empty domains */ for( i = 0; i < nintvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { solval = SCIPgetSolVal(scip, worksol, vars[i]); SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) ); } } /* solve LP */ SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat); } #else SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) ); #endif SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip)); /* check if this is a feasible solution */ if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, worksol) ); SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check solution for feasibility */ if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } /* terminate the diving */ SCIP_CALL( SCIPendDive(scip) ); } } SCIPdebugMessage("Finished 1-opt heuristic\n"); SCIPfreeBufferArray(scip, &shiftvals); SCIPfreeBufferArray(scip, &shiftcands); TERMINATE: SCIPfreeBufferArray(scip, &activities); SCIP_CALL( SCIPfreeSol(scip, &worksol) ); return SCIP_OKAY; }
/** creates the all variables of the subproblem */ static SCIP_RETCODE fixVariables( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblemd */ SCIP_VAR** subvars, /**< the variables of the subproblem */ int* selection, /**< pool of solutions crossover will use */ SCIP_HEURDATA* heurdata, /**< primal heuristic data */ SCIP_Bool* success /**< pointer to store whether the problem was created successfully */ ) { SCIP_VAR** vars; /* original scip variables */ SCIP_SOL** sols; /* pool of solutions */ SCIP_Real fixingrate; /* percentage of variables that are fixed */ int nvars; int nbinvars; int nintvars; int i; int j; int fixingcounter; sols = SCIPgetSols(scip); assert(sols != NULL); /* get required data of the original problem */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); fixingcounter = 0; /* create the binary and general integer variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_Real solval; SCIP_Bool fixable; fixable = TRUE; solval = SCIPgetSolVal(scip, sols[selection[0]], vars[i]); /* check, whether variable's value is identical for each selected solution */ for( j = 1; j < heurdata->nusedsols; j++ ) { SCIP_Real varsolval; varsolval = SCIPgetSolVal(scip, sols[selection[j]], vars[i]); if( REALABS(solval - varsolval) > 0.5 ) { fixable = FALSE; break; } } /* original solval can be outside transformed global bounds */ fixable = fixable && SCIPvarGetLbGlobal(vars[i]) <= solval && solval <= SCIPvarGetUbGlobal(vars[i]); /* if solutions' values are equal, variable is fixed in the subproblem */ if( fixable ) { SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) ); fixingcounter++; } } fixingrate = (SCIP_Real)fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1)); /* if all variables were fixed or amount of fixed variables is insufficient, skip residual part of * subproblem creation and abort immediately */ *success = fixingcounter < nbinvars + nintvars && fixingrate >= heurdata->minfixingrate; return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpRapidlearning) {/*lint --e{715}*/ SCIP* subscip; /* the subproblem created by rapid learning */ SCIP_SEPADATA* sepadata; /* separator's private data */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_HASHMAP* varmapbw; /* mapping of sub-SCIP variables to SCIP variables */ SCIP_CONSHDLR** conshdlrs; /* array of constraint handler's that might that might obtain conflicts */ int* oldnconss; /* number of constraints without rapid learning conflicts */ SCIP_Longint nodelimit; /* node limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real memorylimit; /* memory limit for the subproblem */ int nconshdlrs; /* size of conshdlr and oldnconss array */ int nfixedvars; /* number of variables that could be fixed by rapid learning */ int nvars; /* number of variables */ int restartnum; /* maximal number of conflicts that should be created */ int i; /* counter */ SCIP_Bool success; /* was problem creation / copying constraint successful? */ SCIP_RETCODE retcode; /* used for catching sub-SCIP errors in debug mode */ int nconflicts; /* statistic: number of conflicts applied */ int nbdchgs; /* statistic: number of bound changes applied */ int n1startinfers; /* statistic: number of one side infer values */ int n2startinfers; /* statistic: number of both side infer values */ SCIP_Bool soladded; /* statistic: was a new incumbent found? */ SCIP_Bool dualboundchg; /* statistic: was a new dual bound found? */ SCIP_Bool disabledualreductions; /* TRUE, if dual reductions in sub-SCIP are not valid for original SCIP, * e.g., because a constraint could not be copied or a primal solution * could not be copied back */ int ndiscvars; soladded = FALSE; assert(sepa != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; ndiscvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip)+SCIPgetNImplVars(scip); /* only run when still not fixed binary variables exists */ if( ndiscvars == 0 ) return SCIP_OKAY; /* get separator's data */ sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); /* only run for integer programs */ if( !sepadata->contvars && ndiscvars != SCIPgetNVars(scip) ) return SCIP_OKAY; /* only run if there are few enough continuous variables */ if( sepadata->contvars && SCIPgetNContVars(scip) > sepadata->contvarsquot * SCIPgetNVars(scip) ) return SCIP_OKAY; /* do not run if pricers are present */ if( SCIPgetNActivePricers(scip) > 0 ) return SCIP_OKAY; /* if the separator should be exclusive to the root node, this prevents multiple calls due to restarts */ if( SCIPsepaGetFreq(sepa) == 0 && SCIPsepaGetNCalls(sepa) > 0) return SCIP_OKAY; /* call separator at most once per node */ if( SCIPsepaGetNCallsAtNode(sepa) > 0 ) return SCIP_OKAY; /* do not call rapid learning, if the problem is too big */ if( SCIPgetNVars(scip) > sepadata->maxnvars || SCIPgetNConss(scip) > sepadata->maxnconss ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; /* copy the subproblem */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rapid", FALSE, FALSE, &success) ); if( sepadata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, FALSE) ); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); SCIPhashmapFree(&varmapfw); /* this avoids dual presolving */ if( !success ) { for( i = 0; i < nvars; i++ ) { SCIP_CALL( SCIPaddVarLocks(subscip, subvars[i], 1, 1 ) ); } } SCIPdebugMessage("Copying SCIP was%s successful.\n", success ? "" : " not"); /* mimic an FD solver: DFS, no LP solving, 1-FUIP instead of all-FUIP */ SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/fuiplevels", 1) ); SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); SCIP_CALL( SCIPsetBoolParam(subscip, "constraints/disableenfops", TRUE) ); SCIP_CALL( SCIPsetIntParam(subscip, "propagating/pseudoobj/freq", -1) ); /* use inference branching */ SCIP_CALL( SCIPsetBoolParam(subscip, "branching/inference/useweightedsum", FALSE) ); /* only create short conflicts */ SCIP_CALL( SCIPsetRealParam(subscip, "conflict/maxvarsfac", 0.05) ); /* set limits for the subproblem */ nodelimit = SCIPgetNLPIterations(scip); nodelimit = MAX(sepadata->minnodes, nodelimit); nodelimit = MIN(sepadata->maxnodes, nodelimit); restartnum = 1000; /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; if( timelimit <= 0.0 || memorylimit <= 0.0 ) goto TERMINATE; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit/5) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/restarts", 0) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/restartnum", restartnum) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* add an objective cutoff */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetUpperbound(scip)) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapbw, SCIPblkmem(scip), SCIPcalcHashtableSize(5 * nvars)) ); /* store reversing mapping of variables */ SCIP_CALL( SCIPtransformProb(subscip) ); for( i = 0; i < nvars; ++i) { SCIP_CALL( SCIPhashmapInsert(varmapbw, SCIPvarGetTransVar(subvars[i]), vars[i]) ); } /** allocate memory for constraints storage. Each constraint that will be created from now on will be a conflict. * Therefore, we need to remember oldnconss to get the conflicts from the FD search. */ nconshdlrs = 4; SCIP_CALL( SCIPallocBufferArray(scip, &conshdlrs, nconshdlrs) ); SCIP_CALL( SCIPallocBufferArray(scip, &oldnconss, nconshdlrs) ); /* store number of constraints before rapid learning search */ conshdlrs[0] = SCIPfindConshdlr(subscip, "bounddisjunction"); conshdlrs[1] = SCIPfindConshdlr(subscip, "setppc"); conshdlrs[2] = SCIPfindConshdlr(subscip, "linear"); conshdlrs[3] = SCIPfindConshdlr(subscip, "logicor"); /* redundant constraints might be eliminated in presolving */ SCIP_CALL( SCIPpresolve(subscip)); for( i = 0; i < nconshdlrs; ++i) { if( conshdlrs[i] != NULL ) oldnconss[i] = SCIPconshdlrGetNConss(conshdlrs[i]); } nfixedvars = SCIPgetNFixedVars(scip); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } /* abort solving, if limit of applied conflicts is reached */ if( SCIPgetNConflictConssApplied(subscip) >= restartnum ) { SCIPdebugMessage("finish after %lld successful conflict calls.\n", SCIPgetNConflictConssApplied(subscip)); } /* if the first 20% of the solution process were successful, proceed */ else if( (sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPisFeasLT(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) || (sepadata->applybdchgs && SCIPgetNFixedVars(subscip) > nfixedvars) || (sepadata->applyconflicts && SCIPgetNConflictConssApplied(subscip) > 0) ) { SCIPdebugMessage("proceed solving after the first 20%% of the solution process, since:\n"); if( SCIPgetNSols(subscip) > 0 && SCIPisFeasLE(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) { SCIPdebugMessage(" - there was a better solution (%f < %f)\n",SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip)); } if( SCIPgetNFixedVars(subscip) > nfixedvars ) { SCIPdebugMessage(" - there were %d variables fixed\n", SCIPgetNFixedVars(scip)-nfixedvars ); } if( SCIPgetNConflictConssFound(subscip) > 0 ) { SCIPdebugMessage(" - there were %lld conflict constraints created\n", SCIPgetNConflictConssApplied(subscip)); } /* set node limit to 100% */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit) ); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } } else { SCIPdebugMessage("do not proceed solving after the first 20%% of the solution process.\n"); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif disabledualreductions = FALSE; /* check, whether a solution was found */ if( sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPfindHeur(scip, "trysol") != NULL ) { SCIP_HEUR* heurtrysol; SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until was declared to be feasible */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); soladded = FALSE; heurtrysol = SCIPfindHeur(scip, "trysol"); /* sequentially add solutions to trysol heuristic */ for( i = 0; i < nsubsols && !soladded; ++i ) { SCIPdebugMessage("Try to create new solution by copying subscip solution.\n"); SCIP_CALL( createNewSol(scip, subscip, subvars, heurtrysol, subsols[i], &soladded) ); } if( !soladded || !SCIPisEQ(scip, SCIPgetSolOrigObj(subscip, subsols[i-1]), SCIPgetSolOrigObj(subscip, subsols[0])) ) disabledualreductions = TRUE; } /* if the sub problem was solved completely, we update the dual bound */ dualboundchg = FALSE; if( sepadata->applysolved && !disabledualreductions && (SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL || SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE) ) { /* we need to multiply the dualbound with the scaling factor and add the offset, * because this information has been disregarded in the sub-SCIP */ SCIPdebugMessage("Update old dualbound %g to new dualbound %g.\n", SCIPgetDualbound(scip), SCIPgetTransObjscale(scip) * SCIPgetDualbound(subscip) + SCIPgetTransObjoffset(scip)); SCIP_CALL( SCIPupdateLocalDualbound(scip, SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip)) ); dualboundchg = TRUE; } /* check, whether conflicts were created */ nconflicts = 0; if( sepadata->applyconflicts && !disabledualreductions && SCIPgetNConflictConssApplied(subscip) > 0 ) { SCIP_HASHMAP* consmap; int hashtablesize; assert(SCIPgetNConflictConssApplied(subscip) < (SCIP_Longint) INT_MAX); hashtablesize = (int) SCIPgetNConflictConssApplied(subscip); assert(hashtablesize < INT_MAX/5); hashtablesize *= 5; /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), SCIPcalcHashtableSize(hashtablesize)) ); /* loop over all constraint handlers that might contain conflict constraints */ for( i = 0; i < nconshdlrs; ++i) { /* copy constraints that have been created in FD run */ if( conshdlrs[i] != NULL && SCIPconshdlrGetNConss(conshdlrs[i]) > oldnconss[i] ) { SCIP_CONS** conss; int c; int nconss; nconss = SCIPconshdlrGetNConss(conshdlrs[i]); conss = SCIPconshdlrGetConss(conshdlrs[i]); /* loop over all constraints that have been added in sub-SCIP run, these are the conflicts */ for( c = oldnconss[i]; c < nconss; ++c) { SCIP_CONS* cons; SCIP_CONS* conscopy; cons = conss[c]; assert(cons != NULL); success = FALSE; SCIP_CALL( SCIPgetConsCopy(subscip, scip, cons, &conscopy, conshdlrs[i], varmapbw, consmap, NULL, SCIPconsIsInitial(cons), SCIPconsIsSeparated(cons), SCIPconsIsEnforced(cons), SCIPconsIsChecked(cons), SCIPconsIsPropagated(cons), TRUE, FALSE, SCIPconsIsDynamic(cons), SCIPconsIsRemovable(cons), FALSE, TRUE, &success) ); if( success ) { nconflicts++; SCIP_CALL( SCIPaddCons(scip, conscopy) ); SCIP_CALL( SCIPreleaseCons(scip, &conscopy) ); } else { SCIPdebugMessage("failed to copy conflict constraint %s back to original SCIP\n", SCIPconsGetName(cons)); } } } } SCIPhashmapFree(&consmap); } /* check, whether tighter global bounds were detected */ nbdchgs = 0; if( sepadata->applybdchgs && !disabledualreductions ) for( i = 0; i < nvars; ++i ) { SCIP_Bool infeasible; SCIP_Bool tightened; assert(SCIPisLE(scip, SCIPvarGetLbGlobal(vars[i]), SCIPvarGetLbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetLbGlobal(subvars[i]), SCIPvarGetUbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetUbGlobal(subvars[i]), SCIPvarGetUbGlobal(vars[i]))); /* update the bounds of the original SCIP, if a better bound was proven in the sub-SCIP */ SCIP_CALL( SCIPtightenVarUb(scip, vars[i], SCIPvarGetUbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; SCIP_CALL( SCIPtightenVarLb(scip, vars[i], SCIPvarGetLbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; } n1startinfers = 0; n2startinfers = 0; /* install start values for inference branching */ if( sepadata->applyinfervals && (!sepadata->reducedinfer || soladded || nbdchgs+nconflicts > 0) ) { for( i = 0; i < nvars; ++i ) { SCIP_Real downinfer; SCIP_Real upinfer; SCIP_Real downvsids; SCIP_Real upvsids; SCIP_Real downconflen; SCIP_Real upconflen; /* copy downwards branching statistics */ downvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); /* copy upwards branching statistics */ upvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); /* memorize statistics */ if( downinfer+downconflen+downvsids > 0.0 || upinfer+upconflen+upvsids != 0 ) n1startinfers++; if( downinfer+downconflen+downvsids > 0.0 && upinfer+upconflen+upvsids != 0 ) n2startinfers++; SCIP_CALL( SCIPinitVarBranchStats(scip, vars[i], 0.0, 0.0, downvsids, upvsids, downconflen, upconflen, downinfer, upinfer, 0.0, 0.0) ); } } SCIPdebugPrintf("XXX Rapidlearning added %d conflicts, changed %d bounds, %s primal solution, %s dual bound improvement.\n", nconflicts, nbdchgs, soladded ? "found" : "no", dualboundchg ? "found" : "no"); SCIPdebugPrintf("YYY Infervalues initialized on one side: %5.2f %% of variables, %5.2f %% on both sides\n", 100.0 * n1startinfers/(SCIP_Real)nvars, 100.0 * n2startinfers/(SCIP_Real)nvars); /* change result pointer */ if( nconflicts > 0 || dualboundchg ) *result = SCIP_CONSADDED; else if( nbdchgs > 0 ) *result = SCIP_REDUCEDDOM; /* free local data */ SCIPfreeBufferArray(scip, &oldnconss); SCIPfreeBufferArray(scip, &conshdlrs); SCIPhashmapFree(&varmapbw); TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** arbitrary primal solution separation method of separator */ static SCIP_DECL_SEPAEXECSOL(sepaExecsolImpliedbounds) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_VAR** fracvars; SCIP_Real* solvals; SCIP_Real* fracvals; SCIP_Bool cutoff; int nvars; int nbinvars; int nfracs; int ncuts; int i; assert(sepa != NULL); assert(scip != NULL); *result = SCIP_DIDNOTRUN; /* gets active problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); if( nbinvars == 0 ) return SCIP_OKAY; /* get solution values for all variables */ SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) ); SCIP_CALL( SCIPgetSolVals(scip, sol, nvars, vars, solvals) ); /* get binary problem variables that are fractional in given solution */ SCIP_CALL( SCIPallocBufferArray(scip, &fracvars, nbinvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &fracvals, nbinvars) ); nfracs = 0; for( i = 0; i < nbinvars; ++i ) { if( !SCIPisFeasIntegral(scip, solvals[i]) ) { fracvars[nfracs] = vars[i]; fracvals[nfracs] = solvals[i]; nfracs++; } } /* call the cut separation */ ncuts = 0; cutoff = FALSE; if( nfracs > 0 ) { SCIP_CALL( separateCuts(scip, sepa, sol, solvals, fracvars, fracvals, nfracs, &cutoff, &ncuts) ); } /* adjust result code */ if ( cutoff ) *result = SCIP_CUTOFF; else if ( ncuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; /* free temporary memory */ SCIPfreeBufferArray(scip, &fracvals); SCIPfreeBufferArray(scip, &fracvars); SCIPfreeBufferArray(scip, &solvals); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }
/** creates a subproblem for subscip by fixing a number of variables */ static SCIP_RETCODE createSubproblem( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_Real minfixingrate, /**< percentage of integer variables that have to be fixed */ SCIP_Bool binarybounds, /**< should general integers get binary bounds [floor(.),ceil(.)] ? */ SCIP_Bool uselprows, /**< should subproblem be created out of the rows in the LP rows? */ SCIP_Bool* success /**< pointer to store whether the problem was created successfully */ ) { SCIP_VAR** vars; /* original SCIP variables */ SCIP_Real fixingrate; int nvars; int nbinvars; int nintvars; int i; int fixingcounter; assert(scip != NULL); assert(subscip != NULL); assert(subvars != NULL); assert(0.0 <= minfixingrate && minfixingrate <= 1.0); /* get required variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); fixingcounter = 0; /* change bounds of variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_Real lpsolval; SCIP_Real lb; SCIP_Real ub; /* get the current LP solution for each variable */ lpsolval = SCIPgetRelaxSolVal(scip, vars[i]); if( SCIPisFeasIntegral(scip, lpsolval) ) { /* fix variables to current LP solution if it is integral, * use exact integral value, if the variable is only integral within numerical tolerances */ lb = SCIPfloor(scip, lpsolval+0.5); ub = lb; fixingcounter++; } else if( binarybounds ) { /* if the sub problem should be a binary problem, change the bounds to nearest integers */ lb = SCIPfeasFloor(scip,lpsolval); ub = SCIPfeasCeil(scip,lpsolval); } else { /* otherwise just copy bounds */ lb = SCIPvarGetLbGlobal(vars[i]); ub = SCIPvarGetUbGlobal(vars[i]); } /* perform the bound change */ SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], lb) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], ub) ); } /* abort, if all integer variables were fixed (which should not happen for MIP) */ if( fixingcounter == nbinvars + nintvars ) { *success = FALSE; return SCIP_OKAY; } else fixingrate = fixingcounter / (SCIP_Real)(MAX(nbinvars + nintvars, 1)); SCIPdebugMessage("fixing rate: %g = %d of %d\n", fixingrate, fixingcounter, nbinvars + nintvars); /* abort, if the amount of fixed variables is insufficient */ if( fixingrate < minfixingrate ) { *success = FALSE; return SCIP_OKAY; } if( uselprows ) { SCIP_ROW** rows; /* original scip rows */ int nrows; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { SCIP_CONS* cons; SCIP_VAR** consvars; SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* vals; int nnonz; int j; /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert( lhs <= rhs ); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(subscip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(subscip, &consvars); } } *success = TRUE; return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecTrivial) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_SOL* lbsol; /* solution where all variables are set to their lower bounds */ SCIP_SOL* ubsol; /* solution where all variables are set to their upper bounds */ SCIP_SOL* zerosol; /* solution where all variables are set to zero */ SCIP_SOL* locksol; /* solution where all variables are set to the bound with the fewer locks */ SCIP_Real large; int nvars; int nbinvars; int i; SCIP_Bool success; SCIP_Bool zerovalid; *result = SCIP_DIDNOTRUN; if( SCIPgetNRuns(scip) > 1 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; success = FALSE; /* initialize data structure */ SCIP_CALL( SCIPcreateSol(scip, &lbsol, heur) ); SCIP_CALL( SCIPcreateSol(scip, &ubsol, heur) ); SCIP_CALL( SCIPcreateSol(scip, &zerosol, heur) ); SCIP_CALL( SCIPcreateSol(scip, &locksol, heur) ); /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* if the problem is binary, we do not have to check the zero solution, since it is equal to the lower bound * solution */ zerovalid = (nvars != nbinvars); assert(vars != NULL || nvars == 0); for( i = 0; i < nvars; i++ ) { SCIP_Real lb; SCIP_Real ub; assert(vars != NULL); /* this assert is needed for flexelint */ lb = SCIPvarGetLbLocal(vars[i]); ub = SCIPvarGetUbLocal(vars[i]); /* if problem is obviously infeasible due to empty domain, stop */ if( SCIPisGT(scip, lb, ub) ) goto TERMINATE; /* set bounds to sufficient large value */ if( SCIPisInfinity(scip, -lb) ) lb = MIN(-large, ub); if( SCIPisInfinity(scip, ub) ) { SCIP_Real tmp; tmp = SCIPvarGetLbLocal(vars[i]); ub = MAX(tmp, large); } SCIP_CALL( SCIPsetSolVal(scip, lbsol, vars[i], lb) ); SCIP_CALL( SCIPsetSolVal(scip, ubsol, vars[i], ub) ); /* try the zero vector, if it is in the bounds region */ if( zerovalid ) { if( SCIPisLE(scip, lb, 0.0) && SCIPisLE(scip, 0.0, ub) ) { SCIP_CALL( SCIPsetSolVal(scip, zerosol, vars[i], 0.0) ); } else zerovalid = FALSE; } /* set variables to the bound with fewer locks, if tie choose an average value */ if( SCIPvarGetNLocksDown(vars[i]) > SCIPvarGetNLocksUp(vars[i]) ) { SCIP_CALL( SCIPsetSolVal(scip, locksol, vars[i], ub) ); } else if( SCIPvarGetNLocksDown(vars[i]) < SCIPvarGetNLocksUp(vars[i]) ) { SCIP_CALL( SCIPsetSolVal(scip, locksol, vars[i], lb) ); } else { SCIP_Real solval; solval = (lb+ub)/2.0; /* if a tie occurs, roughly every third integer variable will be rounded up */ if( SCIPvarGetType(vars[i]) != SCIP_VARTYPE_CONTINUOUS ) solval = i % 3 == 0 ? SCIPceil(scip,solval) : SCIPfloor(scip,solval); assert(SCIPisFeasLE(scip,SCIPvarGetLbLocal(vars[i]),solval) && SCIPisFeasLE(scip,solval,SCIPvarGetUbLocal(vars[i]))); SCIP_CALL( SCIPsetSolVal(scip, locksol, vars[i], solval) ); } } /* try lower bound solution */ SCIPdebugMessage("try lower bound solution\n"); SCIP_CALL( SCIPtrySol(scip, lbsol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible lower bound solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, lbsol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } /* try upper bound solution */ SCIPdebugMessage("try upper bound solution\n"); SCIP_CALL( SCIPtrySol(scip, ubsol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible upper bound solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, ubsol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } /* try zero solution */ if( zerovalid ) { SCIPdebugMessage("try zero solution\n"); SCIP_CALL( SCIPtrySol(scip, zerosol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible zero solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, zerosol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } } /* try lock solution */ SCIPdebugMessage("try lock solution\n"); SCIP_CALL( SCIPtrySol(scip, locksol, FALSE, FALSE, TRUE, TRUE, &success) ); if( success ) { SCIPdebugMessage("found feasible lock solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, locksol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } TERMINATE: /* free solutions */ SCIP_CALL( SCIPfreeSol(scip, &lbsol) ); SCIP_CALL( SCIPfreeSol(scip, &ubsol) ); SCIP_CALL( SCIPfreeSol(scip, &zerosol) ); SCIP_CALL( SCIPfreeSol(scip, &locksol) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecCrossover) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* primal heuristic data */ SCIP* subscip; /* the subproblem created by crossover */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL** sols; SCIP_Real memorylimit; /* memory limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Bool success; SCIP_Longint nstallnodes; /* node limit for the subproblem */ int* selection; /* pool of solutions crossover uses */ int nvars; /* number of original problem's variables */ int nbinvars; int nintvars; int nusedsols; int i; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nusedsols = heurdata->nusedsols; *result = SCIP_DELAYED; /* only call heuristic, if enough solutions are at hand */ if( SCIPgetNSols(scip) < nusedsols ) return SCIP_OKAY; sols = SCIPgetSols(scip); assert(sols != NULL); /* if one good solution was found, heuristic should not be delayed any longer */ if( sols[nusedsols-1] != heurdata->prevlastsol ) { heurdata->nextnodenumber = SCIPgetNNodes(scip); if( sols[0] != heurdata->prevbestsol ) heurdata->nfailures = 0; } /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */ else if( !heurdata->randomization ) return SCIP_OKAY; /* if heuristic should be delayed, wait until certain number of nodes is reached */ if( SCIPgetNNodes(scip) < heurdata->nextnodenumber ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward Crossover if it succeeded often */ nstallnodes = (SCIP_Longint) (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); /* count the setup costs for the sub-MIP as 100 nodes */ nstallnodes -= 100 * SCIPheurGetNCalls(heur); nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); assert(nvars > 0); /* check whether discrete variables are available */ if( nbinvars == 0 && nintvars == 0 ) return SCIP_OKAY; /* initializing the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_crossoversub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } } SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) ); for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); success = FALSE; /* create a new problem, which fixes variables with same value in a certain set of solutions */ SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) ); heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = sols[heurdata->nusedsols-1]; /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */ if( !success ) { *result = SCIP_DIDNOTRUN; /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the * solution was not fruitful in the sense that it was too big */ updateFailureStatistic(scip, heurdata); goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip))); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* permute the subproblem to increase diversification */ if( heurdata->permute ) { SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) ); } /* solve the subproblem */ SCIPdebugMessage("Solve Crossover subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process. * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; int solindex; /* index of the solution created by crossover */ /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; solindex = -1; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) ); } if( success ) { int tmp; assert(solindex != -1); *result = SCIP_FOUNDSOL; /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable * in order to avoid incest ;) */ for( i = 0; i < nusedsols; i++ ) { SOLTUPLE* elem; tmp = selection[i]; selection[i] = solindex; SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) ); SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) ); selection[i] = tmp; } /* if solution was among the best ones, crossover should not be called until another good solution was found */ if( !heurdata->randomization ) { heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1]; } } /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */ if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) ) updateFailureStatistic(scip, heurdata); } else { /* if no new solution was found, run was a failure */ updateFailureStatistic(scip, heurdata); } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &selection); SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** call writing method */ static SCIP_RETCODE writeBounds( SCIP* scip, /**< SCIP data structure */ FILE* file, /**< file to write to or NULL */ SCIP_Bool writesubmipdualbound/**< write dualbounds of submip roots for all open nodes */ ) { SCIP_NODE** opennodes; int nopennodes; int n; int v; assert(scip != NULL); nopennodes = -1; #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Status after %"SCIP_LONGINT_FORMAT" processed nodes (%d open)\n", SCIPgetNNodes(scip), SCIPgetNNodesLeft(scip)); SCIPinfoMessage(scip, file, "Primalbound: %g\n", SCIPgetPrimalbound(scip)); SCIPinfoMessage(scip, file, "Dualbound: %g\n", SCIPgetDualbound(scip)); #else SCIPinfoMessage(scip, file, "PB %g\n", SCIPgetPrimalbound(scip)); #endif /* get all open nodes and therefor print all dualbounds */ for( v = 2; v >= 0; --v ) { SCIP_NODE* node; switch( v ) { case 2: SCIP_CALL( SCIPgetChildren(scip, &opennodes, &nopennodes) ); break; case 1: SCIP_CALL( SCIPgetSiblings(scip, &opennodes, &nopennodes) ); break; case 0: SCIP_CALL( SCIPgetLeaves(scip, &opennodes, &nopennodes) ); break; default: assert(0); break; } assert(nopennodes >= 0); /* print all node information */ for( n = nopennodes - 1; n >= 0 && !SCIPisStopped(scip); --n ) { node = opennodes[n]; if( writesubmipdualbound ) { SCIP* subscip; SCIP_Bool valid; SCIP_HASHMAP* varmap; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ int nvars; SCIP_Real submipdb; SCIP_Bool cutoff; SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmap, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); submipdb = SCIP_INVALID; valid = FALSE; cutoff = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmap, NULL, "__boundwriting", TRUE, FALSE, TRUE, &valid) ); if( valid ) { SCIP_VAR** branchvars; SCIP_Real* branchbounds; SCIP_BOUNDTYPE* boundtypes; int nbranchvars; int size; size = SCIPnodeGetDepth(node); /* allocate memory for all branching decisions */ SCIP_CALL( SCIPallocBufferArray(scip, &branchvars, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &branchbounds, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &boundtypes, size) ); /* we assume that we only have one branching decision at each node */ SCIPnodeGetAncestorBranchings( node, branchvars, branchbounds, boundtypes, &nbranchvars, size ); /* check if did not have enough memory */ if( nbranchvars > size ) { size = nbranchvars; SCIP_CALL( SCIPallocBufferArray(scip, &branchvars, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &branchbounds, size) ); SCIP_CALL( SCIPallocBufferArray(scip, &boundtypes, size) ); /* now getting all information */ SCIPnodeGetAncestorBranchings( node, branchvars, branchbounds, boundtypes, &nbranchvars, size ); } /* apply all changes to the submip */ SCIP_CALL( applyDomainChanges(subscip, branchvars, branchbounds, boundtypes, nbranchvars, varmap) ); /* free memory for all branching decisions */ SCIPfreeBufferArray(scip, &boundtypes); SCIPfreeBufferArray(scip, &branchbounds); SCIPfreeBufferArray(scip, &branchvars); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* solve only root node */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); /* set cutoffbound as objective limit for subscip */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetCutoffbound(scip)) ); SCIP_CALL( SCIPsolve(subscip) ); cutoff = (SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE); submipdb = SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip); } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g, nodesubmiprootdualbound: %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g %g %s\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node), submipdb, cutoff ? "(cutoff)" : ""); #endif /* free hash map */ SCIPhashmapFree(&varmap); SCIP_CALL( SCIPfree(&subscip) ); } else { #ifdef LONGSTATS SCIPinfoMessage(scip, file, "Node %"SCIP_LONGINT_FORMAT" (depth %d): dualbound: %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #else SCIPinfoMessage(scip, file, "%"SCIP_LONGINT_FORMAT" %d %g\n", SCIPnodeGetNumber(node), SCIPnodeGetDepth(node), SCIPgetNodeDualbound(scip, node)); #endif } } } #ifdef LONGSTATS SCIPinfoMessage(scip, file, "\n"); #endif return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpStrongcg) { /*lint --e{715}*/ SCIP_SEPADATA* sepadata; SCIP_VAR** vars; SCIP_COL** cols; SCIP_ROW** rows; SCIP_Real* varsolvals; SCIP_Real* binvrow; SCIP_Real* cutcoefs; SCIP_Real cutrhs; SCIP_Real cutact; SCIP_Real maxscale; SCIP_Longint maxdnom; int* basisind; int* inds; int ninds; int nvars; int ncols; int nrows; int ncalls; int depth; int maxdepth; int maxsepacuts; int ncuts; int c; int i; int cutrank; SCIP_Bool success; SCIP_Bool cutislocal; char normtype; assert(sepa != NULL); assert(strcmp(SCIPsepaGetName(sepa), SEPA_NAME) == 0); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); depth = SCIPgetDepth(scip); ncalls = SCIPsepaGetNCallsAtNode(sepa); /* only call separator, if we are not close to terminating */ if( SCIPisStopped(scip) ) return SCIP_OKAY; /* only call the strong CG cut separator a given number of times at each node */ if( (depth == 0 && sepadata->maxroundsroot >= 0 && ncalls >= sepadata->maxroundsroot) || (depth > 0 && sepadata->maxrounds >= 0 && ncalls >= sepadata->maxrounds) ) return SCIP_OKAY; /* only call separator, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call separator, if the LP solution is basic */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* only call separator, if there are fractional variables */ if( SCIPgetNLPBranchCands(scip) == 0 ) return SCIP_OKAY; /* get variables data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* get LP data */ SCIP_CALL( SCIPgetLPColsData(scip, &cols, &ncols) ); SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); if( ncols == 0 || nrows == 0 ) return SCIP_OKAY; #if 0 /* if too many columns, separator is usually very slow: delay it until no other cuts have been found */ if( ncols >= 50*nrows ) return SCIP_OKAY; if( ncols >= 5*nrows ) { int ncutsfound; ncutsfound = SCIPgetNCutsFound(scip); if( ncutsfound > sepadata->lastncutsfound || !SCIPsepaWasLPDelayed(sepa) ) { sepadata->lastncutsfound = ncutsfound; *result = SCIP_DELAYED; return SCIP_OKAY; } } #endif /* get the type of norm to use for efficacy calculations */ SCIP_CALL( SCIPgetCharParam(scip, "separating/efficacynorm", &normtype) ); /* set the maximal denominator in rational representation of strong CG cut and the maximal scale factor to * scale resulting cut to integral values to avoid numerical instabilities */ /**@todo find better but still stable strong CG cut settings: look at dcmulti, gesa3, khb0525, misc06, p2756 */ maxdepth = SCIPgetMaxDepth(scip); if( depth == 0 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/4 ) { maxdnom = 1000; maxscale = 1000.0; } else if( depth <= maxdepth/2 ) { maxdnom = 100; maxscale = 100.0; } else { maxdnom = 10; maxscale = 10.0; } *result = SCIP_DIDNOTFIND; /* allocate temporary memory */ SCIP_CALL( SCIPallocBufferArray(scip, &cutcoefs, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &basisind, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &binvrow, nrows) ); SCIP_CALL( SCIPallocBufferArray(scip, &inds, nrows) ); varsolvals = NULL; /* allocate this later, if needed */ /* get basis indices */ SCIP_CALL( SCIPgetLPBasisInd(scip, basisind) ); /* get the maximal number of cuts allowed in a separation round */ if( depth == 0 ) maxsepacuts = sepadata->maxsepacutsroot; else maxsepacuts = sepadata->maxsepacuts; SCIPdebugMessage("searching strong CG cuts: %d cols, %d rows, maxdnom=%" SCIP_LONGINT_FORMAT ", maxscale=%g, maxcuts=%d\n", ncols, nrows, maxdnom, maxscale, maxsepacuts); /* for all basic columns belonging to integer variables, try to generate a strong CG cut */ ncuts = 0; for( i = 0; i < nrows && ncuts < maxsepacuts && !SCIPisStopped(scip) && *result != SCIP_CUTOFF; ++i ) { SCIP_Bool tryrow; tryrow = FALSE; c = basisind[i]; if( c >= 0 ) { SCIP_VAR* var; assert(c < ncols); var = SCIPcolGetVar(cols[c]); if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS ) { SCIP_Real primsol; primsol = SCIPcolGetPrimsol(cols[c]); assert(SCIPgetVarSol(scip, var) == primsol); /*lint !e777*/ if( SCIPfeasFrac(scip, primsol) >= MINFRAC ) { SCIPdebugMessage("trying strong CG cut for col <%s> [%g]\n", SCIPvarGetName(var), primsol); tryrow = TRUE; } } } #ifdef SEPARATEROWS else { SCIP_ROW* row; assert(0 <= -c-1 && -c-1 < nrows); row = rows[-c-1]; if( SCIProwIsIntegral(row) && !SCIProwIsModifiable(row) ) { SCIP_Real primsol; primsol = SCIPgetRowActivity(scip, row); if( SCIPfeasFrac(scip, primsol) >= MINFRAC ) { SCIPdebugMessage("trying strong CG cut for row <%s> [%g]\n", SCIProwGetName(row), primsol); tryrow = TRUE; } } } #endif if( tryrow ) { /* get the row of B^-1 for this basic integer variable with fractional solution value */ SCIP_CALL( SCIPgetLPBInvRow(scip, i, binvrow, inds, &ninds) ); #ifdef SCIP_DEBUG /* initialize variables, that might not have been initialized in SCIPcalcMIR if success == FALSE */ cutact = 0.0; cutrhs = SCIPinfinity(scip); #endif /* create a strong CG cut out of the weighted LP rows using the B^-1 row as weights */ SCIP_CALL( SCIPcalcStrongCG(scip, BOUNDSWITCH, USEVBDS, ALLOWLOCAL, (int) MAXAGGRLEN(nvars), sepadata->maxweightrange, MINFRAC, MAXFRAC, binvrow, inds, ninds, 1.0, cutcoefs, &cutrhs, &cutact, &success, &cutislocal, &cutrank) ); assert(ALLOWLOCAL || !cutislocal); SCIPdebugMessage(" -> success=%u: %g <= %g\n", success, cutact, cutrhs); /* if successful, convert dense cut into sparse row, and add the row as a cut */ if( success && SCIPisFeasGT(scip, cutact, cutrhs) ) { SCIP_VAR** cutvars; SCIP_Real* cutvals; SCIP_Real cutnorm; int cutlen; /* if this is the first successful cut, get the LP solution for all COLUMN variables */ if( varsolvals == NULL ) { int v; SCIP_CALL( SCIPallocBufferArray(scip, &varsolvals, nvars) ); for( v = 0; v < nvars; ++v ) { if( SCIPvarGetStatus(vars[v]) == SCIP_VARSTATUS_COLUMN ) varsolvals[v] = SCIPvarGetLPSol(vars[v]); } } assert(varsolvals != NULL); /* get temporary memory for storing the cut as sparse row */ SCIP_CALL( SCIPallocBufferArray(scip, &cutvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &cutvals, nvars) ); /* store the cut as sparse row, calculate activity and norm of cut */ SCIP_CALL( storeCutInArrays(scip, nvars, vars, cutcoefs, varsolvals, normtype, cutvars, cutvals, &cutlen, &cutact, &cutnorm) ); SCIPdebugMessage(" -> strong CG cut for <%s>: act=%f, rhs=%f, norm=%f, eff=%f, rank=%d\n", c >= 0 ? SCIPvarGetName(SCIPcolGetVar(cols[c])) : SCIProwGetName(rows[-c-1]), cutact, cutrhs, cutnorm, (cutact - cutrhs)/cutnorm, cutrank); if( SCIPisPositive(scip, cutnorm) && SCIPisEfficacious(scip, (cutact - cutrhs)/cutnorm) ) { SCIP_ROW* cut; char cutname[SCIP_MAXSTRLEN]; /* create the cut */ if( c >= 0 ) (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_x%d", SCIPgetNLPs(scip), c); else (void) SCIPsnprintf(cutname, SCIP_MAXSTRLEN, "scg%d_s%d", SCIPgetNLPs(scip), -c-1); SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &cut, sepa, cutname, -SCIPinfinity(scip), cutrhs, cutislocal, FALSE, sepadata->dynamiccuts) ); SCIP_CALL( SCIPaddVarsToRow(scip, cut, cutlen, cutvars, cutvals) ); /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/ SCIProwChgRank(cut, cutrank); assert(success); #ifdef MAKECUTINTEGRAL /* try to scale the cut to integral values */ SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, MAKECONTINTEGRAL, &success) ); #else #ifdef MAKEINTCUTINTEGRAL /* try to scale the cut to integral values if there are no continuous variables * -> leads to an integral slack variable that can later be used for other cuts */ { int k = 0; while ( k < cutlen && SCIPvarIsIntegral(cutvars[k]) ) ++k; if( k == cutlen ) { SCIP_CALL( SCIPmakeRowIntegral(scip, cut, -SCIPepsilon(scip), SCIPsumepsilon(scip), maxdnom, maxscale, MAKECONTINTEGRAL, &success) ); } } #endif #endif #ifndef FORCECUTINTEGRAL success = TRUE; #endif if( success ) { if( !SCIPisCutEfficacious(scip, NULL, cut) ) { SCIPdebugMessage(" -> strong CG cut <%s> no longer efficacious: act=%f, rhs=%f, norm=%f, eff=%f\n", cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut), SCIPgetCutEfficacy(scip, NULL, cut)); /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/ success = FALSE; } else { SCIP_Bool infeasible; SCIPdebugMessage(" -> found strong CG cut <%s>: act=%f, rhs=%f, norm=%f, eff=%f, min=%f, max=%f (range=%f)\n", cutname, SCIPgetRowLPActivity(scip, cut), SCIProwGetRhs(cut), SCIProwGetNorm(cut), SCIPgetCutEfficacy(scip, NULL, cut), SCIPgetRowMinCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut), SCIPgetRowMaxCoef(scip, cut)/SCIPgetRowMinCoef(scip, cut)); /*SCIPdebug( SCIP_CALL(SCIPprintRow(scip, cut, NULL)) );*/ SCIP_CALL( SCIPaddCut(scip, NULL, cut, FALSE, &infeasible) ); if ( infeasible ) *result = SCIP_CUTOFF; else { if( !cutislocal ) { SCIP_CALL( SCIPaddPoolCut(scip, cut) ); } *result = SCIP_SEPARATED; } ncuts++; } } else { SCIPdebugMessage(" -> strong CG cut <%s> couldn't be scaled to integral coefficients: act=%f, rhs=%f, norm=%f, eff=%f\n", cutname, cutact, cutrhs, cutnorm, SCIPgetCutEfficacy(scip, NULL, cut)); } /* release the row */ SCIP_CALL( SCIPreleaseRow(scip, &cut) ); } /* free temporary memory */ SCIPfreeBufferArray(scip, &cutvals); SCIPfreeBufferArray(scip, &cutvars); } } } /* free temporary memory */ SCIPfreeBufferArrayNull(scip, &varsolvals); SCIPfreeBufferArray(scip, &inds); SCIPfreeBufferArray(scip, &binvrow); SCIPfreeBufferArray(scip, &basisind); SCIPfreeBufferArray(scip, &cutcoefs); SCIPdebugMessage("end searching strong CG cuts: found %d cuts\n", ncuts); sepadata->lastncutsfound = SCIPgetNCutsFound(scip); return SCIP_OKAY; }
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */ SCIP_RETCODE SCIPapplyZeroobj( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minimprove, /**< factor by which zeroobj should at least improve the incumbent */ SCIP_Longint nnodes /**< node limit for the subproblem */ ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HEURDATA* heurdata; /* heuristic's private data structure */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_Real large; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_Bool valid; SCIP_RETCODE retcode; SCIP_SOL** subsols; int nsubsols; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(nnodes >= 0); assert(0.0 <= minimprove && minimprove <= 1.0); *result = SCIP_DIDNOTRUN; /* only call heuristic once at the root */ if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only call the heuristic if we do not have an incumbent */ if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */ valid = FALSE; /* copy complete SCIP instance */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) ); SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); /* create event handler for LP events */ eventhdlr = NULL; SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); /* get variable image and change to 0.0 in sub-SCIP */ for( i = 0; i < nvars; i++ ) { SCIP_Real adjustedbound; SCIP_Real lb; SCIP_Real ub; SCIP_Real inf; subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) ); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); inf = SCIPinfinity(subscip); /* adjust infinite bounds in order to avoid that variables with non-zero objective * get fixed to infinite value in zeroobj subproblem */ if( SCIPisInfinity(subscip, ub ) ) { adjustedbound = MAX(large, lb+large); adjustedbound = MIN(adjustedbound, inf); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) ); } if( SCIPisInfinity(subscip, -lb ) ) { adjustedbound = MIN(-large, ub-large); adjustedbound = MAX(adjustedbound, -inf); SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) ); } } /* free hash map */ SCIPhashmapFree(&varmapfw); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable expensive techniques that merely work on the dual bound */ /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); if( !SCIPisParamFixed(subscip, "presolving/maxrounds") ) { SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) ); } /* use best dfs node selection */ if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* disable feaspump and fracdiving */ if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) ); } if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) ); } /* restrict LP iterations */ SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) ); SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) ); #ifdef SCIP_DEBUG /* for debugging zeroobj, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; SCIP_CONS* origobjcons; #ifndef NDEBUG int nobjvars; nobjvars = 0; #endif cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound(scip) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) ); for( i = 0; i < nvars; ++i) { if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) ) { SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) ); #ifndef NDEBUG nobjvars++; #endif } } SCIP_CALL( SCIPaddCons(subscip, origobjcons) ); SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) ); assert(nobjvars == SCIPgetNObjVars(scip)); } /* catch LP events of sub-SCIP */ SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); if( success ) *result = SCIP_FOUNDSOL; } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** create the extra constraint of local branching and add it to subscip */ static SCIP_RETCODE addLocalBranchingConstraint( SCIP* scip, /**< SCIP data structure of the original problem */ SCIP* subscip, /**< SCIP data structure of the subproblem */ SCIP_VAR** subvars, /**< variables of the subproblem */ SCIP_HEURDATA* heurdata /**< heuristic's data structure */ ) { SCIP_CONS* cons; /* local branching constraint to create */ SCIP_VAR** consvars; SCIP_VAR** vars; SCIP_SOL* bestsol; int nbinvars; int i; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* consvals; char consname[SCIP_MAXSTRLEN]; (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "%s_localbranchcons", SCIPgetProbName(scip)); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, NULL, &nbinvars, NULL, NULL, NULL) ); bestsol = SCIPgetBestSol(scip); assert( bestsol != NULL ); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nbinvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &consvals, nbinvars) ); /* set initial left and right hand sides of local branching constraint */ lhs = (SCIP_Real)heurdata->emptyneighborhoodsize + 1.0; rhs = (SCIP_Real)heurdata->curneighborhoodsize; /* create the distance (to incumbent) function of the binary variables */ for( i = 0; i < nbinvars; i++ ) { SCIP_Real solval; solval = SCIPgetSolVal(scip, bestsol, vars[i]); assert( SCIPisFeasIntegral(scip,solval) ); /* is variable i part of the binary support of bestsol? */ if( SCIPisFeasEQ(scip,solval,1.0) ) { consvals[i] = -1.0; rhs -= 1.0; lhs -= 1.0; } else consvals[i] = 1.0; consvars[i] = subvars[i]; assert( SCIPvarGetType(consvars[i]) == SCIP_VARTYPE_BINARY ); } /* creates localbranching constraint and adds it to subscip */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, consname, nbinvars, consvars, consvals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free local memory */ SCIPfreeBufferArray(scip, &consvals); SCIPfreeBufferArray(scip, &consvars); return SCIP_OKAY; }
/** creates a subproblem for subscip by fixing a number of variables */ static SCIP_RETCODE createSubproblem( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_Real minfixingrate, /**< percentage of integer variables that have to be fixed */ unsigned int* randseed, /**< a seed value for the random number generator */ SCIP_Bool uselprows /**< should subproblem be created out of the rows in the LP rows? */ ) { SCIP_VAR** vars; /* original scip variables */ SCIP_SOL* sol; /* pool of solutions */ SCIP_Bool* marked; /* array of markers, which variables to fixed */ SCIP_Bool fixingmarker; /* which flag should label a fixed variable? */ int nvars; int nbinvars; int nintvars; int i; int j; int nmarkers; /* get required data of the original problem */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); sol = SCIPgetBestSol(scip); assert(sol != NULL); SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) ); if( minfixingrate > 0.5 ) { nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars)); fixingmarker = FALSE; } else { nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars)); fixingmarker = TRUE; } assert( 0 <= nmarkers && nmarkers <= SCIPceil(scip,(nbinvars+nintvars)/2.0 ) ); j = 0; BMSclearMemoryArray(marked, nbinvars+nintvars); while( j < nmarkers ) { do { i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed); } while( marked[i] ); marked[i] = TRUE; j++; } assert( j == nmarkers ); /* change bounds of variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { /* fix all randomly marked variables */ if( marked[i] == fixingmarker ) { SCIP_Real solval; SCIP_Real lb; SCIP_Real ub; solval = SCIPgetSolVal(scip, sol, vars[i]); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); assert(SCIPisLE(scip, lb, ub)); /* due to dual reductions, it may happen that the solution value is not in the variable's domain anymore */ if( SCIPisLT(scip, solval, lb) ) solval = lb; else if( SCIPisGT(scip, solval, ub) ) solval = ub; /* perform the bound change */ if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) ) { SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) ); } } } if( uselprows ) { SCIP_ROW** rows; /* original scip rows */ int nrows; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { SCIP_CONS* cons; SCIP_VAR** consvars; SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* vals; int nnonz; /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert( lhs <= rhs ); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(scip, &consvars); } } SCIPfreeBufferArray(scip, &marked); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOctane) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_SOL** first_sols; /* stores the first ffirst sols in order to check for common violation of a row */ SCIP_VAR** vars; /* the variables of the problem */ SCIP_VAR** fracvars; /* variables, that are fractional in current LP solution */ SCIP_VAR** subspacevars; /* the variables on which the search is performed. Either coinciding with vars or with the * space of all fractional variables of the current LP solution */ SCIP_Real p; /* n/2 - <delta,x> ( for some facet delta ) */ SCIP_Real q; /* <delta,a> */ SCIP_Real* rayorigin; /* origin of the ray, vector x in paper */ SCIP_Real* raydirection; /* direction of the ray, vector a in paper */ SCIP_Real* negquotient; /* negated quotient of rayorigin and raydirection, vector v in paper */ SCIP_Real* lambda; /* stores the distance of the facets (s.b.) to the origin of the ray */ SCIP_Bool usefracspace; /* determines whether the search concentrates on fractional variables and fixes integer ones */ SCIP_Bool cons_viol; /* used for checking whether a linear constraint is violated by one of the possible solutions */ SCIP_Bool success; SCIP_Bool* sign; /* signature of the direction of the ray */ SCIP_Bool** facets; /* list of extended facets */ int nvars; /* number of variables */ int nbinvars; /* number of 0-1-variables */ int nfracvars; /* number of fractional variables in current LP solution */ int nsubspacevars; /* dimension of the subspace on which the search is performed */ int nfacets; /* number of facets hidden by the ray that where already found */ int i; /* counter */ int j; /* counter */ int f_max; /* {0,1}-points to be checked */ int f_first; /* {0,1}-points to be generated at first in order to check whether a restart is necessary */ int r; /* counter */ int firstrule; int* perm; /* stores the way in which the coordinates were permuted */ int* fracspace; /* maps the variables of the subspace to the original variables */ assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* OCTANE is for use in 0-1 programs only */ if( nvars != nbinvars ) return SCIP_OKAY; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* don't call heuristic, if it was not successful enough in the past */ /*lint --e{647}*/ if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 ) return SCIP_OKAY; SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) ); /* don't use integral starting points */ if( nfracvars == 0 ) return SCIP_OKAY; /* get working pointers from heurdata */ sol = heurdata->sol; assert( sol != NULL ); f_max = heurdata->f_max; f_first = heurdata->f_first; usefracspace = heurdata->usefracspace; SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) ); /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */ if( usefracspace ) { nsubspacevars = nfracvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars); for( i = nvars - 1; i >= 0; --i ) fracspace[i] = -1; for( i = nsubspacevars - 1; i >= 0; --i ) fracspace[SCIPvarGetProbindex(subspacevars[i])] = i; } else { int currentindex; nsubspacevars = nvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); /* only copy the variables which are in the current LP */ currentindex = 0; for( i = 0; i < nvars; ++i ) { if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 ) { subspacevars[currentindex] = vars[i]; fracspace[i] = currentindex; ++currentindex; } else { fracspace[i] = -1; --nsubspacevars; } } } /* nothing to do for empty search space */ if( nsubspacevars == 0 ) return SCIP_OKAY; assert(0 < nsubspacevars && nsubspacevars <= nvars); for( i = 0; i < nsubspacevars; i++) assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i); /* at most 2^(n-1) facets can be hit */ if( nsubspacevars < 30 ) { /*lint --e{701}*/ assert(f_max > 0); f_max = MIN(f_max, 1 << (nsubspacevars - 1) ); } f_first = MIN(f_first, f_max); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) ); SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) ); for( i = f_max; i >= 0; --i ) { /*lint --e{866}*/ SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) ); } SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) ); *result = SCIP_DIDNOTFIND; /* starting OCTANE */ SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n", usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5); /* generate starting point in original coordinates */ SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) ); for( i = nsubspacevars - 1; i >= 0; --i ) rayorigin[i] -= 0.5; firstrule = heurdata->lastrule; ++firstrule; for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ ) { SCIP_ROW** rows; int nrows; /* generate shooting ray in original coordinates by certain rules */ switch(r % 5) { case 1: if( heurdata->useavgnbray ) { SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) ); } break; case 2: if( heurdata->useobjray ) { SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 3: if( heurdata->usediffray ) { SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 4: if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) ); } break; case 0: if( heurdata->useavgray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) ); } break; default: SCIPerrorMessage("invalid ray rule identifier\n"); SCIPABORT(); } /* there must be a feasible direction for the shooting ray */ if( isZero(scip, raydirection, nsubspacevars) ) continue; /* transform coordinates such that raydirection >= 0 */ flipCoords(rayorigin, raydirection, sign, nsubspacevars); for( i = f_max - 1; i >= 0; --i) lambda[i] = SCIPinfinity(scip); /* calculate negquotient, initialize perm, facets[0], p, and q */ p = 0.5 * nsubspacevars; q = 0.0; for( i = nsubspacevars - 1; i >= 0; --i ) { /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */ if( SCIPisFeasZero(scip, raydirection[i]) ) { if( rayorigin[i] < 0 ) negquotient[i] = SCIPinfinity(scip); else negquotient[i] = -SCIPinfinity(scip); } else negquotient[i] = - (rayorigin[i] / raydirection[i]); perm[i] = i; /* initialization of facets[0] to the all-one facet with p and q its characteristic values */ facets[0][i] = TRUE; p -= rayorigin[i]; q += raydirection[i]; } assert(SCIPisPositive(scip, q)); /* resort the coordinates in nonincreasing order of negquotient */ SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars); #ifndef NDEBUG for( i = 0; i < nsubspacevars; i++ ) assert( raydirection[i] >= 0 ); for( i = 1; i < nsubspacevars; i++ ) assert( negquotient[i - 1] >= negquotient[i] ); #endif /* finished initialization */ /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */ for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i ) { facets[0][i] = FALSE; p += 2 * rayorigin[i]; q -= 2 * raydirection[i]; assert(SCIPisPositive(scip, p)); assert(SCIPisPositive(scip, q)); } /* avoid dividing by values close to 0.0 */ if( !SCIPisFeasPositive(scip, q) ) continue; /* assert necessary for flexelint */ assert(q > 0); lambda[0] = p / q; nfacets = 1; /* find the first facets hit by the ray */ for( i = 0; i < nfacets && i < f_first; ++i) generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); /* construct the first ffirst possible solutions */ for( i = 0; i < nfacets && i < f_first; ++i ) { SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) ); SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) ); assert( first_sols[i] != NULL ); } /* try, whether there is a row violated by all of the first ffirst solutions */ cons_viol = FALSE; SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); for( i = nrows - 1; i >= 0; --i ) { if( !SCIProwIsLocal(rows[i]) ) { SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real rowval; SCIP_Real* coeffs; int nnonzerovars; int k; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]); rhs = SCIProwGetRhs(rows[i]); coeffs = SCIProwGetVals(rows[i]); nnonzerovars = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j])); /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */ if( lhs > rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( lhs <= rowval ) { cons_viol = FALSE; break; } } } /* dito for the right hand side */ else if( rhs < rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( rhs >= rowval ) { cons_viol = FALSE; break; } } } /* break as soon as one row is violated by all of the ffirst solutions */ if( cons_viol ) break; } } if( !cons_viol ) { /* if there was no row violated by all solutions, try whether one or more of them are feasible */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { assert(first_sols[i] != NULL); SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } /* search for further facets and construct and try solutions out of facets fixed as closest ones */ for( i = f_first; i < f_max; ++i) { if( i >= nfacets ) break; generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) ); SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } } /* finished OCTANE */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) ); } } heurdata->lastrule = r; if( *result == SCIP_FOUNDSOL ) ++(heurdata->nsuccess); /* free temporary memory */ SCIPfreeBufferArray(scip, &first_sols); for( i = f_max; i >= 0; --i ) SCIPfreeBufferArray(scip, &facets[i]); SCIPfreeBufferArray(scip, &facets); SCIPfreeBufferArray(scip, &lambda); SCIPfreeBufferArray(scip, &perm); SCIPfreeBufferArray(scip, &sign); SCIPfreeBufferArray(scip, &negquotient); SCIPfreeBufferArray(scip, &raydirection); SCIPfreeBufferArray(scip, &rayorigin); SCIPfreeBufferArray(scip, &subspacevars); SCIPfreeBufferArray(scip, &fracspace); return SCIP_OKAY; }