/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZeroobj) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP_Longint nnodes; /* number of stalling nodes for the subproblem */ assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* calculate the maximal number of branching nodes until heuristic is aborted */ nnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward zeroobj if it succeeded often */ nnodes = (SCIP_Longint)(nnodes * 3.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0)); nnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-SCIP as 100 nodes */ nnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nnodes -= heurdata->usednodes; nnodes = MIN(nnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nnodes < heurdata->minnodes ) { SCIPdebugMessage("skipping zeroobj: nnodes=%"SCIP_LONGINT_FORMAT", minnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes, heurdata->minnodes); return SCIP_OKAY; } /* do not run zeroobj, if the problem does not have an objective function anyway */ if( SCIPgetNObjVars(scip) == 0 ) { SCIPdebugMessage("skipping zeroobj: pure feasibility problem anyway\n"); return SCIP_OKAY; } if( SCIPisStopped(scip) ) return SCIP_OKAY; SCIP_CALL( SCIPapplyZeroobj(scip, heur, result, heurdata->minimprove, nnodes) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecDistributiondiving) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_DIVESET* diveset; int nlprows; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nlprows = SCIPgetNLPRows(scip); if( nlprows == 0 ) return SCIP_OKAY; /* terminate if there are no integer variables (note that, e.g., SOS1 variables may be present) */ if( SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* select and store the scoring parameter for this call of the heuristic */ if( heurdata->scoreparam == 'r' ) heurdata->score = SCOREPARAM_VALUES[SCIPheurGetNCalls(heur) % SCOREPARAM_VALUESLEN]; else heurdata->score = heurdata->scoreparam; SCIP_CALL( heurdataEnsureArraySize(scip, heurdata, nlprows) ); assert(SCIPheurGetNDivesets(heur) > 0); assert(SCIPheurGetDivesets(heur) != NULL); diveset = SCIPheurGetDivesets(heur)[0]; assert(diveset != NULL); SCIP_CALL( SCIPperformGenericDivingAlgorithm(scip, diveset, heurdata->sol, heur, result, nodeinfeasible) ); SCIP_CALL( heurdataFreeArrays(scip, heurdata) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */ SCIP_RETCODE SCIPapplyZeroobj( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minimprove, /**< factor by which zeroobj should at least improve the incumbent */ SCIP_Longint nnodes /**< node limit for the subproblem */ ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HEURDATA* heurdata; /* heuristic's private data structure */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_Real large; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_Bool valid; SCIP_RETCODE retcode; SCIP_SOL** subsols; int nsubsols; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(nnodes >= 0); assert(0.0 <= minimprove && minimprove <= 1.0); *result = SCIP_DIDNOTRUN; /* only call heuristic once at the root */ if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only call the heuristic if we do not have an incumbent */ if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */ valid = FALSE; /* copy complete SCIP instance */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) ); SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); /* create event handler for LP events */ eventhdlr = NULL; SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); /* get variable image and change to 0.0 in sub-SCIP */ for( i = 0; i < nvars; i++ ) { SCIP_Real adjustedbound; SCIP_Real lb; SCIP_Real ub; SCIP_Real inf; subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) ); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); inf = SCIPinfinity(subscip); /* adjust infinite bounds in order to avoid that variables with non-zero objective * get fixed to infinite value in zeroobj subproblem */ if( SCIPisInfinity(subscip, ub ) ) { adjustedbound = MAX(large, lb+large); adjustedbound = MIN(adjustedbound, inf); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) ); } if( SCIPisInfinity(subscip, -lb ) ) { adjustedbound = MIN(-large, ub-large); adjustedbound = MAX(adjustedbound, -inf); SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) ); } } /* free hash map */ SCIPhashmapFree(&varmapfw); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable expensive techniques that merely work on the dual bound */ /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); if( !SCIPisParamFixed(subscip, "presolving/maxrounds") ) { SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) ); } /* use best dfs node selection */ if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* disable feaspump and fracdiving */ if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) ); } if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) ); } /* restrict LP iterations */ SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) ); SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) ); #ifdef SCIP_DEBUG /* for debugging zeroobj, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; SCIP_CONS* origobjcons; #ifndef NDEBUG int nobjvars; nobjvars = 0; #endif cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound(scip) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) ); for( i = 0; i < nvars; ++i) { if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) ) { SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) ); #ifndef NDEBUG nobjvars++; #endif } } SCIP_CALL( SCIPaddCons(subscip, origobjcons) ); SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) ); assert(nobjvars == SCIPgetNObjVars(scip)); } /* catch LP events of sub-SCIP */ SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); if( success ) *result = SCIP_FOUNDSOL; } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Real oldobjval; SCIP_Real frac; SCIP_Real bestfrac; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; SCIP_Real actscore; SCIP_Real downscore; SCIP_Real upscore; SCIP_Real bestactscore; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip), SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound)); /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; cutoff = FALSE; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { divedepth++; SCIP_CALL( SCIPnewProbingNode(scip) ); /* choose variable fixing: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, round variable with least number of locks in corresponding direction * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - round variable with least number of locks in opposite of its feasible rounding direction */ bestcand = -1; bestactscore = -1.0; bestfrac = SCIP_INVALID; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the fractionality * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ if( mayrounddown && mayroundup ) roundup = (frac > 0.5); else roundup = mayrounddown; if( roundup ) frac = 1.0 - frac; actscore = getNActiveConsScore(scip, var, &downscore, &upscore); /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate */ assert(0.0 < frac && frac < 1.0); if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded */ actscore = getNActiveConsScore(scip, var, &downscore, &upscore); roundup = (downscore < upscore); if( roundup ) frac = 1.0 - frac; /* penalize too small fractions */ if( frac < 0.01 ) actscore *= 0.01; /* prefer decisions on binary variables */ if( !SCIPvarIsBinary(var) ) actscore *= 0.01; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ assert(0.0 < frac && frac < 1.0); if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) ) { bestcand = c; bestactscore = actscore; bestfrac = frac; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } assert(bestfrac < SCIP_INVALID); } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } assert(bestcand != -1); var = lpcands[bestcand]; backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]); assert(backtracked); break; } /* apply rounding of best candidate */ if( bestcandroundup == !backtracked ) { /* round variable up */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var)); SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); } else { /* round variable down */ SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand])); SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) ); } /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) ); if( !cutoff ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status, objective value, and fractional variables, that should be integral */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); SCIP_CALL( SCIPnewProbingNode(scip) ); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new objective value */ oldobjval = objval; objval = SCIPgetLPObjval(scip); /* update pseudo cost values */ if( SCIPisGT(scip, objval, oldobjval) ) { if( bestcandroundup ) { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } else { SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand], objval - oldobjval, 1.0) ); } } /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n", SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real primsol; SCIP_Real frac; SCIP_Real pscostquot; SCIP_Real bestpscostquot; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Real objscale; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int* roundings; int nvars; int varidx; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MIN(maxdivedepth, 10*maxdepth); *result = SCIP_DIDNOTFIND; /* get temporary memory for remembering the current soft roundings */ SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) ); BMSclearMemoryArray(roundings, nvars); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth); /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10 && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_RETCODE retcode; divedepth++; /* choose variable for objective change: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, change objective value of variable with largest rel. difference of pseudo cost values * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - change objective value of variable with largest rel. difference of pseudo cost values */ bestcand = -1; bestpscostquot = -1.0; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); primsol = lpcandssol[c]; frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the pseudo cost values * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ roundup = FALSE; if( mayrounddown && mayroundup ) calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); else if( mayrounddown ) calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup); else calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate */ if( pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */ calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } var = lpcands[bestcand]; /* check, if the best candidate was already subject to soft rounding */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] == +1 ) { /* variable was already soft rounded upwards: hard round it downwards */ SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else if( roundings[varidx] == -1 ) { /* variable was already soft rounded downwards: hard round it upwards */ SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else { assert(roundings[varidx] == 0); /* apply soft rounding of best candidate via a change in the objective value */ objscale = divedepth * 1000.0; oldobj = SCIPgetVarObjDive(scip, var); if( bestcandroundup ) { /* soft round variable up: make objective value (more) negative */ if( oldobj < 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MIN(newobj, -objscale); /* remember, that this variable was soft rounded upwards */ roundings[varidx] = +1; } else { /* soft round variable down: make objective value (more) positive */ if( oldobj > 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MAX(newobj, objscale); /* remember, that this variable was soft rounded downwards */ roundings[varidx] = -1; } SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj); } /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status and fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory for remembering the current soft roundings */ SCIPfreeBufferArray(scip, &roundings); SCIPdebugMessage("objpscostdiving heuristic finished\n"); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZirounding) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_VAR** zilpcands; SCIP_VAR** slackvars; SCIP_Real* upslacks; SCIP_Real* downslacks; SCIP_Real* activities; SCIP_Real* slackvarcoeffs; SCIP_Bool* rowneedsslackvar; SCIP_ROW** rows; SCIP_Real* lpcandssol; SCIP_Real* solarray; SCIP_Longint nlps; int currentlpcands; int nlpcands; int nimplfracs; int i; int c; int nslacks; int nroundings; SCIP_RETCODE retcode; SCIP_Bool improvementfound; SCIP_Bool numericalerror; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic if an optimal LP-solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation * to number of calls falls below heurdata->stoppercentage */ if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage ) return SCIP_OKAY; /* assure that heuristic has not already been called after the last LP had been solved */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* get fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) ); nlpcands = nlpcands + nimplfracs; /* make sure that there is at least one fractional variable that should be integral */ if( nlpcands == 0 ) return SCIP_OKAY; assert(nlpcands > 0); assert(lpcands != NULL); assert(lpcandssol != NULL); /* get LP rows data */ rows = SCIPgetLPRows(scip); nslacks = SCIPgetNLPRows(scip); /* cannot do anything if LP is empty */ if( nslacks == 0 ) return SCIP_OKAY; assert(rows != NULL); assert(nslacks > 0); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); *result = SCIP_DIDNOTFIND; solarray = NULL; zilpcands = NULL; retcode = SCIP_OKAY; /* copy the current LP solution to the working solution and allocate memory for local data */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE); /* copy necessary data to local arrays */ BMScopyMemoryArray(solarray, lpcandssol, nlpcands); BMScopyMemoryArray(zilpcands, lpcands, nlpcands); /* allocate buffer data arrays */ SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE); BMSclearMemoryArray(slackvars, nslacks); BMSclearMemoryArray(slackvarcoeffs, nslacks); BMSclearMemoryArray(rowneedsslackvar, nslacks); numericalerror = FALSE; nroundings = 0; /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */ for( c = 0; c < nlpcands; ++c ) { SCIP_VAR* cand; SCIP_ROW** candrows; int r; int ncandrows; cand = zilpcands[c]; assert(cand != NULL); assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0); candrows = SCIPcolGetRows(SCIPvarGetCol(cand)); ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand)); assert(candrows == NULL || ncandrows > 0); for( r = 0; r < ncandrows; ++r ) { int rowpos; assert(candrows != NULL); /* to please flexelint */ assert(candrows[r] != NULL); rowpos = SCIProwGetLPPos(candrows[r]); if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) ) { rowneedsslackvar[rowpos] = TRUE; SCIPdebugMessage(" Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand)); } } } /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero, * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering */ for( i = 0; i < nslacks; ++i ) { SCIP_ROW* row; SCIP_Real lhs; SCIP_Real rhs; row = rows[i]; assert(row != NULL); lhs = SCIProwGetLhs(row); rhs = SCIProwGetRhs(row); /* get row activity */ activities[i] = SCIPgetRowActivity(scip, row); assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs)); /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */ if( SCIPisInfinity(scip, -lhs) ) downslacks[i] = SCIPinfinity(scip); else downslacks[i] = activities[i] - lhs; if( SCIPisInfinity(scip, rhs) ) upslacks[i] = SCIPinfinity(scip); else upslacks[i] = rhs - activities[i]; SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]); /* row is an equation. Try to find a slack variable in the row, i.e., * a continuous variable which occurs only in this row. If no such variable exists, * there is no hope for an IP-feasible solution in this round */ if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] ) { /* @todo: This is only necessary for rows containing fractional variables. */ rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i])); if( slackvars[i] == NULL ) { SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row)); goto TERMINATE; } else { SCIP_Real ubslackvar; SCIP_Real lbslackvar; SCIP_Real solvalslackvar; SCIP_Real coeffslackvar; SCIP_Real ubgap; SCIP_Real lbgap; assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS); solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]); ubslackvar = SCIPvarGetUbGlobal(slackvars[i]); lbslackvar = SCIPvarGetLbGlobal(slackvars[i]); coeffslackvar = slackvarcoeffs[i]; assert(!SCIPisFeasZero(scip, coeffslackvar)); ubgap = ubslackvar - solvalslackvar; lbgap = solvalslackvar - lbslackvar; if( SCIPisFeasZero(scip, ubgap) ) ubgap = 0.0; if( SCIPisFeasZero(scip, lbgap) ) lbgap = 0.0; if( SCIPisFeasPositive(scip, coeffslackvar) ) { if( !SCIPisInfinity(scip, lbslackvar) ) upslacks[i] += coeffslackvar * lbgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, ubslackvar) ) downslacks[i] += coeffslackvar * ubgap; else downslacks[i] = SCIPinfinity(scip); } else { if( !SCIPisInfinity(scip, ubslackvar) ) upslacks[i] -= coeffslackvar * ubgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, lbslackvar) ) downslacks[i] -= coeffslackvar * lbgap; else downslacks[i] = SCIPinfinity(scip); } SCIPdebugMessage(" Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g \n", SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar, upslacks[i], downslacks[i]); } } /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are * significantly smaller than zero -> terminate */ if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) ) goto TERMINATE; } assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL)); /* initialize number of remaining variables and flag to enter the main loop */ currentlpcands = nlpcands; improvementfound = TRUE; /* iterate over variables as long as there are fractional variables left */ while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) ) { /*lint --e{850}*/ improvementfound = FALSE; nroundings++; SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands); /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */ for( c = 0; c < currentlpcands; ++c ) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real upperbound; SCIP_Real lowerbound; SCIP_Real up; SCIP_Real down; SCIP_Real ziup; SCIP_Real zidown; SCIP_Real zicurrent; SCIP_Real shiftval; DIRECTION direction; /* get values from local data */ oldsolval = solarray[c]; var = zilpcands[c]; assert(!SCIPisFeasIntegral(scip, oldsolval)); assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); /* calculate bounds for variable and make sure that there are no numerical inconsistencies */ upperbound = SCIPinfinity(scip); lowerbound = SCIPinfinity(scip); calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror); if( numericalerror ) goto TERMINATE; /* calculate the possible values after shifting */ up = oldsolval + upperbound; down = oldsolval - lowerbound; /* if the variable is integer or implicit binary, do not shift further than the nearest integer */ if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY) { SCIP_Real ceilx; SCIP_Real floorx; ceilx = SCIPfeasCeil(scip, oldsolval); floorx = SCIPfeasFloor(scip, oldsolval); up = MIN(up, ceilx); down = MAX(down, floorx); } /* calculate necessary values */ ziup = getZiValue(scip, up); zidown = getZiValue(scip, down); zicurrent = getZiValue(scip, oldsolval); /* calculate the shifting direction that reduces ZI-value the most, * if both directions improve ZI-value equally, take the direction which improves the objective */ if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) ) { if( SCIPisFeasEQ(scip,ziup, zidown) ) direction = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP; else if( SCIPisFeasLT(scip, zidown, ziup) ) direction = DIRECTION_DOWN; else direction = DIRECTION_UP; /* once a possible shifting direction and value have been found, variable value is updated */ shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval); /* this improves numerical stability in some cases */ if( direction == DIRECTION_UP ) shiftval = MIN(shiftval, upperbound); else shiftval = MIN(shiftval, lowerbound); /* update the solution */ solarray[c] = direction == DIRECTION_UP ? up : down; SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) ); /* update the rows activities and slacks */ SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks, downslacks, activities, slackvars, slackvarcoeffs, nslacks) ); SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n", SCIPvarGetIndex(var), oldsolval, shiftval); /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement * might affect many LP rows and their current slacks and thus make further rounding steps possible */ improvementfound = TRUE; } /* if solution value of variable has become feasibly integral due to rounding step, * variable is put at the end of remaining candidates array so as not to be considered in future loops */ if( SCIPisFeasIntegral(scip, solarray[c]) ) { zilpcands[c] = zilpcands[currentlpcands - 1]; solarray[c] = solarray[currentlpcands - 1]; currentlpcands--; /* counter is decreased if end of candidates array has not been reached yet */ if( c < currentlpcands ) c--; } else if( nroundings == heurdata->maxroundingloops - 1 ) goto TERMINATE; } } /* in case that no candidate is left for rounding after the final main loop * the found solution has to be checked for feasibility in the original problem */ if( currentlpcands == 0 ) { SCIP_Bool stored; SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored)); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif SCIPstatisticMessage(" ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol)); *result = SCIP_FOUNDSOL; } } /* free memory for all locally allocated data */ TERMINATE: SCIPfreeBufferArrayNull(scip, &activities); SCIPfreeBufferArrayNull(scip, &rowneedsslackvar); SCIPfreeBufferArrayNull(scip, &slackvarcoeffs); SCIPfreeBufferArrayNull(scip, &downslacks); SCIPfreeBufferArrayNull(scip, &upslacks); SCIPfreeBufferArrayNull(scip, &slackvars); SCIPfreeBufferArrayNull(scip, &zilpcands); SCIPfreeBufferArrayNull(scip, &solarray); return retcode; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecGcgrens) { /*lint --e{715}*/ SCIP* masterprob; SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP_Longint nstallnodes; /* number of stalling nodes for the subproblem */ assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get master problem */ masterprob = GCGrelaxGetMasterprob(scip); assert( masterprob != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* do not execute the heuristic on invalid relaxation solutions * (which is the case if the node has been cut off) */ if( !SCIPisRelaxSolValid(scip) ) { SCIPdebugMessage("skipping GCG RENS: invalid relaxation solution\n"); return SCIP_OKAY; } /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetStage(masterprob) > SCIP_STAGE_SOLVING || SCIPgetLPSolstat(masterprob) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only continue with some fractional variables */ if( SCIPgetNExternBranchCands(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward RENS if it succeeded often */ nstallnodes = (SCIP_Longint)(nstallnodes * 3.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0)); nstallnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-SCIP as 100 nodes */ nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) { SCIPdebugMessage("skipping RENS: nstallnodes=%"SCIP_LONGINT_FORMAT", minnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, heurdata->minnodes); return SCIP_OKAY; } if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPapplyGcgrens(scip, heur, result, heurdata->minfixingrate, heurdata->minimprove, heurdata->maxnodes, nstallnodes, heurdata->binarybounds, heurdata->uselprows) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecLocalbranching) { /*lint --e{715}*/ SCIP_Longint maxnnodes; /* maximum number of subnodes */ SCIP_Longint nsubnodes; /* nodelimit for subscip */ SCIP_HEURDATA* heurdata; SCIP* subscip; /* the subproblem created by localbranching */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL* bestsol; /* best solution so far */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real timelimit; /* timelimit for subscip (equals remaining time of scip) */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Real memorylimit; SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* there should be enough binary variables that a local branching constraint makes sense */ if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize ) return SCIP_OKAY; *result = SCIP_DELAYED; /* only call heuristic, if an IP solution is at hand */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; bestsol = SCIPgetBestSol(scip); assert(bestsol != NULL); /* only call heuristic, if the best solution comes from transformed problem */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol) < heurdata->nwaitingnodes) return SCIP_OKAY; /* only call heuristic, if the best solution does not come from trivial heuristic */ if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 ) return SCIP_OKAY; /* reset neighborhood and minnodes, if new solution was found */ if( heurdata->lastsol != bestsol ) { heurdata->curneighborhoodsize = heurdata->neighborhoodsize; heurdata->curminnodes = heurdata->minnodes; heurdata->emptyneighborhoodsize = 0; heurdata->callstatus = EXECUTE; heurdata->lastsol = bestsol; } /* if no new solution was found and local branching also seems to fail, just keep on waiting */ if( heurdata->callstatus == WAITFORNEWSOL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward local branching if it succeeded often */ maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */ maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call sub problem solving */ if( nsubnodes < heurdata->curminnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("running localbranching heuristic ...\n"); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; eventhdlr = NULL; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_localbranchsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } /* create event handler for LP events */ SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } } SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not "); for (i = 0; i < nvars; ++i) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ heurdata->nodelimit = nsubnodes; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) ); } /* copy the original problem and add the local branching constraint */ if( heurdata->uselprows ) { SCIP_CALL( createSubproblem(scip, subscip, subvars) ); } SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) ); /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* catch LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); } /* solve the subproblem */ SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n", heurdata->curneighborhoodsize, nsubnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); } /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* print solving statistics of subproblem if we are in SCIP's debug mode */ SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) ); heurdata->usednodes += SCIPgetNNodes(subscip); SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n", SCIPgetNNodes(subscip), nsubnodes); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) { SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i])); *result = SCIP_FOUNDSOL; } } /* check the status of the sub-MIP */ switch( SCIPgetStatus(subscip) ) { case SCIP_STATUS_OPTIMAL: case SCIP_STATUS_BESTSOLLIMIT: heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */ SCIPdebugMessage(" -> found new solution\n"); break; case SCIP_STATUS_NODELIMIT: case SCIP_STATUS_STALLNODELIMIT: case SCIP_STATUS_TOTALNODELIMIT: heurdata->callstatus = EXECUTE; heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2; heurdata->curminnodes *= 2; SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n", heurdata->curneighborhoodsize, heurdata->curminnodes); if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize ) { heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n"); } break; case SCIP_STATUS_INFEASIBLE: case SCIP_STATUS_INFORUNBD: heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize; heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2; heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2); heurdata->callstatus = EXECUTE; SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize); break; case SCIP_STATUS_UNKNOWN: case SCIP_STATUS_USERINTERRUPT: case SCIP_STATUS_TIMELIMIT: case SCIP_STATUS_MEMLIMIT: case SCIP_STATUS_GAPLIMIT: case SCIP_STATUS_SOLLIMIT: case SCIP_STATUS_UNBOUNDED: default: heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip)); break; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecCrossover) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* primal heuristic data */ SCIP* subscip; /* the subproblem created by crossover */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL** sols; SCIP_Real memorylimit; /* memory limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Bool success; SCIP_Longint nstallnodes; /* node limit for the subproblem */ int* selection; /* pool of solutions crossover uses */ int nvars; /* number of original problem's variables */ int nbinvars; int nintvars; int nusedsols; int i; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nusedsols = heurdata->nusedsols; *result = SCIP_DELAYED; /* only call heuristic, if enough solutions are at hand */ if( SCIPgetNSols(scip) < nusedsols ) return SCIP_OKAY; sols = SCIPgetSols(scip); assert(sols != NULL); /* if one good solution was found, heuristic should not be delayed any longer */ if( sols[nusedsols-1] != heurdata->prevlastsol ) { heurdata->nextnodenumber = SCIPgetNNodes(scip); if( sols[0] != heurdata->prevbestsol ) heurdata->nfailures = 0; } /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */ else if( !heurdata->randomization ) return SCIP_OKAY; /* if heuristic should be delayed, wait until certain number of nodes is reached */ if( SCIPgetNNodes(scip) < heurdata->nextnodenumber ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward Crossover if it succeeded often */ nstallnodes = (SCIP_Longint) (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); /* count the setup costs for the sub-MIP as 100 nodes */ nstallnodes -= 100 * SCIPheurGetNCalls(heur); nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); assert(nvars > 0); /* check whether discrete variables are available */ if( nbinvars == 0 && nintvars == 0 ) return SCIP_OKAY; /* initializing the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_crossoversub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } } SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) ); for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); success = FALSE; /* create a new problem, which fixes variables with same value in a certain set of solutions */ SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) ); heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = sols[heurdata->nusedsols-1]; /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */ if( !success ) { *result = SCIP_DIDNOTRUN; /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the * solution was not fruitful in the sense that it was too big */ updateFailureStatistic(scip, heurdata); goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip))); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* permute the subproblem to increase diversification */ if( heurdata->permute ) { SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) ); } /* solve the subproblem */ SCIPdebugMessage("Solve Crossover subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process. * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; int solindex; /* index of the solution created by crossover */ /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; solindex = -1; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) ); } if( success ) { int tmp; assert(solindex != -1); *result = SCIP_FOUNDSOL; /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable * in order to avoid incest ;) */ for( i = 0; i < nusedsols; i++ ) { SOLTUPLE* elem; tmp = selection[i]; selection[i] = solindex; SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) ); SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) ); selection[i] = tmp; } /* if solution was among the best ones, crossover should not be called until another good solution was found */ if( !heurdata->randomization ) { heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1]; } } /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */ if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) ) updateFailureStatistic(scip, heurdata); } else { /* if no new solution was found, run was a failure */ updateFailureStatistic(scip, heurdata); } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &selection); SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecShifting) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_ROW** lprows; SCIP_Real* activities; SCIP_ROW** violrows; SCIP_Real* nincreases; SCIP_Real* ndecreases; int* violrowpos; int* nfracsinrow; SCIP_Real increaseweight; SCIP_Real obj; SCIP_Real bestshiftval; SCIP_Real minobj; int nlpcands; int nlprows; int nvars; int nfrac; int nviolrows; int nprevviolrows; int minnviolrows; int nnonimprovingshifts; int c; int r; SCIP_Longint nlps; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nnodes; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* don't call heuristic, if we have already processed the current LP solution */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* don't call heuristic, if it was not successful enough in the past */ ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur); nnodes = SCIPgetNNodes(scip); if( nnodes % ((ncalls/100)/(nsolsfound+1)+1) != 0 ) return SCIP_OKAY; /* get fractional variables, that should be integral */ /* todo check if heuristic should include implicit integer variables for its calculations */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) ); nfrac = nlpcands; /* only call heuristic, if LP solution is fractional */ if( nfrac == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get LP rows */ SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIPdebugMessage("executing shifting heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac); /* get memory for activities, violated rows, and row violation positions */ nvars = SCIPgetNVars(scip); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &nfracsinrow, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &nincreases, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &ndecreases, nvars) ); BMSclearMemoryArray(nfracsinrow, nlprows); BMSclearMemoryArray(nincreases, nvars); BMSclearMemoryArray(ndecreases, nvars); /* get the activities for all globally valid rows; * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated */ nviolrows = 0; for( r = 0; r < nlprows; ++r ) { SCIP_ROW* row; row = lprows[r]; assert(SCIProwGetLPPos(row) == r); if( !SCIProwIsLocal(row) ) { activities[r] = SCIPgetRowActivity(scip, row); if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) ) { violrows[nviolrows] = row; violrowpos[r] = nviolrows; nviolrows++; } else violrowpos[r] = -1; } } /* calc the current number of fractional variables in rows */ for( c = 0; c < nlpcands; ++c ) addFracCounter(nfracsinrow, nlprows, lpcands[c], +1); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* calculate the minimal objective value possible after rounding fractional variables */ minobj = SCIPgetSolTransObj(scip, sol); assert(minobj < SCIPgetCutoffbound(scip)); for( c = 0; c < nlpcands; ++c ) { obj = SCIPvarGetObj(lpcands[c]); bestshiftval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]); minobj += obj * (bestshiftval - lpcandssol[c]); } /* try to shift remaining variables in order to become/stay feasible */ nnonimprovingshifts = 0; minnviolrows = INT_MAX; increaseweight = 1.0; while( (nfrac > 0 || nviolrows > 0) && nnonimprovingshifts < MAXSHIFTINGS ) { SCIP_VAR* shiftvar; SCIP_Real oldsolval; SCIP_Real newsolval; SCIP_Bool oldsolvalisfrac; int probindex; SCIPdebugMessage("shifting heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g), cutoff=%g\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj), SCIPretransformObj(scip, SCIPgetCutoffbound(scip))); nprevviolrows = nviolrows; /* choose next variable to process: * - if a violated row exists, shift a variable decreasing the violation, that has least impact on other rows * - otherwise, shift a variable, that has strongest devastating impact on rows in opposite direction */ shiftvar = NULL; oldsolval = 0.0; newsolval = 0.0; if( nviolrows > 0 && (nfrac == 0 || nnonimprovingshifts < MAXSHIFTINGS-1) ) { SCIP_ROW* row; int rowidx; int rowpos; int direction; rowidx = -1; rowpos = -1; row = NULL; if( nfrac > 0 ) { for( rowidx = nviolrows-1; rowidx >= 0; --rowidx ) { row = violrows[rowidx]; rowpos = SCIProwGetLPPos(row); assert(violrowpos[rowpos] == rowidx); if( nfracsinrow[rowpos] > 0 ) break; } } if( rowidx == -1 ) { rowidx = SCIPgetRandomInt(0, nviolrows-1, &heurdata->randseed); row = violrows[rowidx]; rowpos = SCIProwGetLPPos(row); assert(0 <= rowpos && rowpos < nlprows); assert(violrowpos[rowpos] == rowidx); assert(nfracsinrow[rowpos] == 0); } assert(violrowpos[rowpos] == rowidx); SCIPdebugMessage("shifting heuristic: try to fix violated row <%s>: %g <= %g <= %g\n", SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row)); SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); /* get direction in which activity must be shifted */ assert(SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row))); direction = SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ? +1 : -1; /* search a variable that can shift the activity in the necessary direction */ SCIP_CALL( selectShifting(scip, sol, row, activities[rowpos], direction, nincreases, ndecreases, increaseweight, &shiftvar, &oldsolval, &newsolval) ); } if( shiftvar == NULL && nfrac > 0 ) { SCIPdebugMessage("shifting heuristic: search rounding variable and try to stay feasible\n"); SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &shiftvar, &oldsolval, &newsolval) ); } /* check, whether shifting was possible */ if( shiftvar == NULL || SCIPisEQ(scip, oldsolval, newsolval) ) { SCIPdebugMessage("shifting heuristic: -> didn't find a shifting variable\n"); break; } SCIPdebugMessage("shifting heuristic: -> shift var <%s>[%g,%g], type=%d, oldval=%g, newval=%g, obj=%g\n", SCIPvarGetName(shiftvar), SCIPvarGetLbGlobal(shiftvar), SCIPvarGetUbGlobal(shiftvar), SCIPvarGetType(shiftvar), oldsolval, newsolval, SCIPvarGetObj(shiftvar)); /* update row activities of globally valid rows */ SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, shiftvar, oldsolval, newsolval) ); if( nviolrows >= nprevviolrows ) nnonimprovingshifts++; else if( nviolrows < minnviolrows ) { minnviolrows = nviolrows; nnonimprovingshifts = 0; } /* store new solution value and decrease fractionality counter */ SCIP_CALL( SCIPsetSolVal(scip, sol, shiftvar, newsolval) ); /* update fractionality counter and minimal objective value possible after shifting remaining variables */ oldsolvalisfrac = !SCIPisFeasIntegral(scip, oldsolval) && (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER); obj = SCIPvarGetObj(shiftvar); if( (SCIPvarGetType(shiftvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(shiftvar) == SCIP_VARTYPE_INTEGER) && oldsolvalisfrac ) { assert(SCIPisFeasIntegral(scip, newsolval)); nfrac--; nnonimprovingshifts = 0; minnviolrows = INT_MAX; addFracCounter(nfracsinrow, nlprows, shiftvar, -1); /* the rounding was already calculated into the minobj -> update only if rounding in "wrong" direction */ if( obj > 0.0 && newsolval > oldsolval ) minobj += obj; else if( obj < 0.0 && newsolval < oldsolval ) minobj -= obj; } else { /* update minimal possible objective value */ minobj += obj * (newsolval - oldsolval); } /* update increase/decrease arrays */ if( !oldsolvalisfrac ) { probindex = SCIPvarGetProbindex(shiftvar); assert(0 <= probindex && probindex < nvars); increaseweight *= WEIGHTFACTOR; if( newsolval < oldsolval ) ndecreases[probindex] += increaseweight; else nincreases[probindex] += increaseweight; if( increaseweight >= 1e+09 ) { int i; for( i = 0; i < nvars; ++i ) { nincreases[i] /= increaseweight; ndecreases[i] /= increaseweight; } increaseweight = 1.0; } } SCIPdebugMessage("shifting heuristic: -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); } /* check, if the new solution is feasible */ if( nfrac == 0 && nviolrows == 0 ) { SCIP_Bool stored; /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because this is already * done in the shifting heuristic itself; however, we better check feasibility of LP rows, * because of numerical problems with activity updating */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); if( stored ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ) ); *result = SCIP_FOUNDSOL; } } /* free memory buffers */ SCIPfreeBufferArray(scip, &ndecreases); SCIPfreeBufferArray(scip, &nincreases); SCIPfreeBufferArray(scip, &nfracsinrow); SCIPfreeBufferArray(scip, &violrowpos); SCIPfreeBufferArray(scip, &violrows); SCIPfreeBufferArray(scip, &activities); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRootsoldiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_VAR** vars; SCIP_Real* rootsol; SCIP_Real* objchgvals; int* softroundings; int* intvalrounds; int nvars; int nbinvars; int nintvars; int nlpcands; SCIP_LPSOLSTAT lpsolstat; SCIP_Real absstartobjval; SCIP_Real objstep; SCIP_Real alpha; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Bool lperror; SCIP_Bool lpsolchanged; SCIP_Longint nsolsfound; SCIP_Longint ncalls; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int depth; int maxdepth; int maxdivedepth; int divedepth; int startnlpcands; int ncycles; int i; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get number of fractional variables, that should be integral */ nlpcands = SCIPgetNLPBranchCands(scip); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MAX(maxdivedepth, 10); *result = SCIP_DIDNOTFIND; /* get all variables of LP */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); /* get root solution value of all binary and integer variables */ SCIP_CALL( SCIPallocBufferArray(scip, &rootsol, nbinvars + nintvars) ); for( i = 0; i < nbinvars + nintvars; i++ ) rootsol[i] = SCIPvarGetRootSol(vars[i]); /* get current LP objective value, and calculate length of a single step in an objective coefficient */ absstartobjval = SCIPgetLPObjval(scip); absstartobjval = ABS(absstartobjval); absstartobjval = MAX(absstartobjval, 1.0); objstep = absstartobjval / 10.0; /* initialize array storing the preferred soft rounding directions and counting the integral value rounds */ SCIP_CALL( SCIPallocBufferArray(scip, &softroundings, nbinvars + nintvars) ); BMSclearMemoryArray(softroundings, nbinvars + nintvars); SCIP_CALL( SCIPallocBufferArray(scip, &intvalrounds, nbinvars + nintvars) ); BMSclearMemoryArray(intvalrounds, nbinvars + nintvars); /* allocate temporary memory for buffering objective changes */ SCIP_CALL( SCIPallocBufferArray(scip, &objchgvals, nbinvars + nintvars) ); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing rootsoldiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d, LPobj=%g, objstep=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth, SCIPgetLPObjval(scip), objstep); lperror = FALSE; divedepth = 0; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; alpha = heurdata->alpha; ncycles = 0; lpsolchanged = TRUE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && ncycles < 10 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_Bool success; int hardroundingidx; int hardroundingdir; SCIP_Real hardroundingoldbd; SCIP_Real hardroundingnewbd; SCIP_Bool boundschanged; SCIP_RETCODE retcode; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("rootsoldiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } divedepth++; hardroundingidx = -1; hardroundingdir = 0; hardroundingoldbd = 0.0; hardroundingnewbd = 0.0; boundschanged = FALSE; SCIPdebugMessage("dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT":\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* round solution x* from diving LP: * - x~_j = down(x*_j) if x*_j is integer or binary variable and x*_j <= root solution_j * - x~_j = up(x*_j) if x*_j is integer or binary variable and x*_j > root solution_j * - x~_j = x*_j if x*_j is continuous variable * change objective function in diving LP: * - if x*_j is integral, or j is a continuous variable, set obj'_j = alpha * obj_j * - otherwise, set obj'_j = alpha * obj_j + sign(x*_j - x~_j) */ for( i = 0; i < nbinvars + nintvars; i++ ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = oldobj; solval = SCIPvarGetLPSol(var); if( SCIPisFeasIntegral(scip, solval) ) { /* if the variable became integral after a soft rounding, count the rounds; after a while, fix it to its * current integral value; * otherwise, fade out the objective value */ if( softroundings[i] != 0 && lpsolchanged ) { intvalrounds[i]++; if( intvalrounds[i] == 5 && SCIPgetVarLbDive(scip, var) < SCIPgetVarUbDive(scip, var) - 0.5 ) { /* use exact integral value, if the variable is only integral within numerical tolerances */ solval = SCIPfloor(scip, solval+0.5); SCIPdebugMessage(" -> fixing <%s> = %g\n", SCIPvarGetName(var), solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, solval) ); boundschanged = TRUE; } } else newobj = alpha * oldobj; } else if( solval <= rootsol[i] ) { /* if the variable was soft rounded most of the time downwards, round it downwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]--; if( softroundings[i] <= -10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] <= %g\n", SCIPvarGetName(var), solval, SCIPfeasFloor(scip, solval)); hardroundingidx = i; hardroundingdir = -1; hardroundingoldbd = SCIPgetVarUbDive(scip, var); hardroundingnewbd = SCIPfeasFloor(scip, solval); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj + objstep; } else { /* if the variable was soft rounded most of the time upwards, round it upwards by changing the bounds; * otherwise, apply soft rounding by changing the objective value */ softroundings[i]++; if( softroundings[i] >= +10 && hardroundingidx == -1 ) { SCIPdebugMessage(" -> hard rounding <%s>[%g] >= %g\n", SCIPvarGetName(var), solval, SCIPfeasCeil(scip, solval)); hardroundingidx = i; hardroundingdir = +1; hardroundingoldbd = SCIPgetVarLbDive(scip, var); hardroundingnewbd = SCIPfeasCeil(scip, solval); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd) ); boundschanged = TRUE; } else newobj = alpha * oldobj - objstep; } /* remember the objective change */ objchgvals[i] = newobj; } /* apply objective changes if there was no bound change */ if( !boundschanged ) { /* apply cached changes on integer variables */ for( i = 0; i < nbinvars + nintvars; ++i ) { SCIP_VAR* var; var = vars[i]; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, rootsol=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), rootsol[i], SCIPgetVarObjDive(scip, var), objchgvals[i]); SCIP_CALL( SCIPchgVarObjDive(scip, var, objchgvals[i]) ); } /* fade out the objective values of the continuous variables */ for( i = nbinvars + nintvars; i < nvars; i++ ) { SCIP_VAR* var; var = vars[i]; oldobj = SCIPgetVarObjDive(scip, var); newobj = alpha * oldobj; SCIPdebugMessage(" -> i=%d var <%s>, solval=%g, oldobj=%g, newobj=%g\n", i, SCIPvarGetName(var), SCIPvarGetLPSol(var), oldobj, newobj); SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); } } SOLVEAGAIN: /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Rootsoldiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* if no LP iterations were performed, we stayed at the same solution -> count this cycling */ lpsolchanged = (SCIPgetNLPIterations(scip) != nlpiterations); if( lpsolchanged ) ncycles = 0; else if( !boundschanged ) /* do not count if integral variables have been fixed */ ncycles++; /* get LP solution status and number of fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE && hardroundingidx != -1 ) { SCIP_VAR* var; var = vars[hardroundingidx]; /* round the hard rounded variable to the opposite direction and resolve the LP */ if( hardroundingdir == -1 ) { SCIPdebugMessage(" -> opposite hard rounding <%s> >= %g\n", SCIPvarGetName(var), hardroundingnewbd + 1.0); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingnewbd + 1.0) ); } else { SCIPdebugMessage(" -> opposite hard rounding <%s> <= %g\n", SCIPvarGetName(var), hardroundingnewbd - 1.0); SCIP_CALL( SCIPchgVarLbDive(scip, var, hardroundingoldbd) ); SCIP_CALL( SCIPchgVarUbDive(scip, var, hardroundingnewbd - 1.0) ); } hardroundingidx = -1; goto SOLVEAGAIN; } if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) nlpcands = SCIPgetNLPBranchCands(scip); SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } SCIPdebugMessage("---> diving finished: lpsolstat = %d, depth %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT"\n", lpsolstat, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations); /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("rootsoldiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory */ SCIPfreeBufferArray(scip, &objchgvals); SCIPfreeBufferArray(scip, &intvalrounds); SCIPfreeBufferArray(scip, &softroundings); SCIPfreeBufferArray(scip, &rootsol); SCIPdebugMessage("rootsoldiving heuristic finished\n"); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecRounding) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_ROW** lprows; SCIP_Real* activities; SCIP_ROW** violrows; int* violrowpos; SCIP_Real obj; SCIP_Real bestroundval; SCIP_Real minobj; int nlpcands; int nlprows; int nfrac; int nviolrows; int c; int r; SCIP_Longint nlps; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nnodes; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* don't call heuristic, if we have already processed the current LP solution */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* don't call heuristic, if it was not successful enough in the past */ ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + SCIPheurGetNSolsFound(heur); nnodes = SCIPgetNNodes(scip); if( nnodes % ((ncalls/heurdata->successfactor)/(nsolsfound+1)+1) != 0 ) return SCIP_OKAY; /* get fractional variables, that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, NULL) ); nfrac = nlpcands; /* only call heuristic, if LP solution is fractional */ if( nfrac == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get LP rows */ SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIPdebugMessage("executing rounding heuristic: %d LP rows, %d fractionals\n", nlprows, nfrac); /* get memory for activities, violated rows, and row violation positions */ SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrows, nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &violrowpos, nlprows) ); /* get the activities for all globally valid rows; * the rows should be feasible, but due to numerical inaccuracies in the LP solver, they can be violated */ nviolrows = 0; for( r = 0; r < nlprows; ++r ) { SCIP_ROW* row; row = lprows[r]; assert(SCIProwGetLPPos(row) == r); if( !SCIProwIsLocal(row) ) { activities[r] = SCIPgetRowActivity(scip, row); if( SCIPisFeasLT(scip, activities[r], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[r], SCIProwGetRhs(row)) ) { violrows[nviolrows] = row; violrowpos[r] = nviolrows; nviolrows++; } else violrowpos[r] = -1; } } /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); /* calculate the minimal objective value possible after rounding fractional variables */ minobj = SCIPgetSolTransObj(scip, sol); assert(minobj < SCIPgetCutoffbound(scip)); for( c = 0; c < nlpcands; ++c ) { obj = SCIPvarGetObj(lpcands[c]); bestroundval = obj > 0.0 ? SCIPfeasFloor(scip, lpcandssol[c]) : SCIPfeasCeil(scip, lpcandssol[c]); minobj += obj * (bestroundval - lpcandssol[c]); } /* try to round remaining variables in order to become/stay feasible */ while( nfrac > 0 ) { SCIP_VAR* roundvar; SCIP_Real oldsolval; SCIP_Real newsolval; SCIPdebugMessage("rounding heuristic: nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); /* minobj < SCIPgetCutoffbound(scip) should be true, otherwise the rounding variable selection * should have returned NULL. Due to possible cancellation we use SCIPisLE. */ assert( SCIPisLE(scip, minobj, SCIPgetCutoffbound(scip)) ); /* choose next variable to process: * - if a violated row exists, round a variable decreasing the violation, that has least impact on other rows * - otherwise, round a variable, that has strongest devastating impact on rows in opposite direction */ if( nviolrows > 0 ) { SCIP_ROW* row; int rowpos; row = violrows[nviolrows-1]; rowpos = SCIProwGetLPPos(row); assert(0 <= rowpos && rowpos < nlprows); assert(violrowpos[rowpos] == nviolrows-1); SCIPdebugMessage("rounding heuristic: try to fix violated row <%s>: %g <= %g <= %g\n", SCIProwGetName(row), SCIProwGetLhs(row), activities[rowpos], SCIProwGetRhs(row)); if( SCIPisFeasLT(scip, activities[rowpos], SCIProwGetLhs(row)) ) { /* lhs is violated: select a variable rounding, that increases the activity */ SCIP_CALL( selectIncreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) ); } else { assert(SCIPisFeasGT(scip, activities[rowpos], SCIProwGetRhs(row))); /* rhs is violated: select a variable rounding, that decreases the activity */ SCIP_CALL( selectDecreaseRounding(scip, sol, minobj, row, &roundvar, &oldsolval, &newsolval) ); } } else { SCIPdebugMessage("rounding heuristic: search rounding variable and try to stay feasible\n"); SCIP_CALL( selectEssentialRounding(scip, sol, minobj, lpcands, nlpcands, &roundvar, &oldsolval, &newsolval) ); } /* check, whether rounding was possible */ if( roundvar == NULL ) { SCIPdebugMessage("rounding heuristic: -> didn't find a rounding variable\n"); break; } SCIPdebugMessage("rounding heuristic: -> round var <%s>, oldval=%g, newval=%g, obj=%g\n", SCIPvarGetName(roundvar), oldsolval, newsolval, SCIPvarGetObj(roundvar)); /* update row activities of globally valid rows */ SCIP_CALL( updateActivities(scip, activities, violrows, violrowpos, &nviolrows, nlprows, roundvar, oldsolval, newsolval) ); /* store new solution value and decrease fractionality counter */ SCIP_CALL( SCIPsetSolVal(scip, sol, roundvar, newsolval) ); nfrac--; /* update minimal objective value possible after rounding remaining variables */ obj = SCIPvarGetObj(roundvar); if( obj > 0.0 && newsolval > oldsolval ) minobj += obj; else if( obj < 0.0 && newsolval < oldsolval ) minobj -= obj; SCIPdebugMessage("rounding heuristic: -> nfrac=%d, nviolrows=%d, obj=%g (best possible obj: %g)\n", nfrac, nviolrows, SCIPgetSolOrigObj(scip, sol), SCIPretransformObj(scip, minobj)); } /* check, if the new solution is feasible */ if( nfrac == 0 && nviolrows == 0 ) { SCIP_Bool stored; /* check solution for feasibility, and add it to solution store if possible * neither integrality nor feasibility of LP rows has to be checked, because this is already * done in the rounding heuristic itself; however, be better check feasibility of LP rows, * because of numerical problems with activity updating */ SCIP_CALL( SCIPtrySol(scip, sol, FALSE, FALSE, FALSE, TRUE, &stored) ); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif *result = SCIP_FOUNDSOL; } } /* free memory buffers */ SCIPfreeBufferArray(scip, &violrowpos); SCIPfreeBufferArray(scip, &violrows); SCIPfreeBufferArray(scip, &activities); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOctane) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_SOL** first_sols; /* stores the first ffirst sols in order to check for common violation of a row */ SCIP_VAR** vars; /* the variables of the problem */ SCIP_VAR** fracvars; /* variables, that are fractional in current LP solution */ SCIP_VAR** subspacevars; /* the variables on which the search is performed. Either coinciding with vars or with the * space of all fractional variables of the current LP solution */ SCIP_Real p; /* n/2 - <delta,x> ( for some facet delta ) */ SCIP_Real q; /* <delta,a> */ SCIP_Real* rayorigin; /* origin of the ray, vector x in paper */ SCIP_Real* raydirection; /* direction of the ray, vector a in paper */ SCIP_Real* negquotient; /* negated quotient of rayorigin and raydirection, vector v in paper */ SCIP_Real* lambda; /* stores the distance of the facets (s.b.) to the origin of the ray */ SCIP_Bool usefracspace; /* determines whether the search concentrates on fractional variables and fixes integer ones */ SCIP_Bool cons_viol; /* used for checking whether a linear constraint is violated by one of the possible solutions */ SCIP_Bool success; SCIP_Bool* sign; /* signature of the direction of the ray */ SCIP_Bool** facets; /* list of extended facets */ int nvars; /* number of variables */ int nbinvars; /* number of 0-1-variables */ int nfracvars; /* number of fractional variables in current LP solution */ int nsubspacevars; /* dimension of the subspace on which the search is performed */ int nfacets; /* number of facets hidden by the ray that where already found */ int i; /* counter */ int j; /* counter */ int f_max; /* {0,1}-points to be checked */ int f_first; /* {0,1}-points to be generated at first in order to check whether a restart is necessary */ int r; /* counter */ int firstrule; int* perm; /* stores the way in which the coordinates were permuted */ int* fracspace; /* maps the variables of the subspace to the original variables */ assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); /* OCTANE is for use in 0-1 programs only */ if( nvars != nbinvars ) return SCIP_OKAY; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* don't call heuristic, if it was not successful enough in the past */ /*lint --e{647}*/ if( SCIPgetNNodes(scip) % (SCIPheurGetNCalls(heur) / (100 * SCIPheurGetNBestSolsFound(heur) + 10*heurdata->nsuccess + 1) + 1) != 0 ) return SCIP_OKAY; SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, NULL, NULL, &nfracvars, NULL) ); /* don't use integral starting points */ if( nfracvars == 0 ) return SCIP_OKAY; /* get working pointers from heurdata */ sol = heurdata->sol; assert( sol != NULL ); f_max = heurdata->f_max; f_first = heurdata->f_first; usefracspace = heurdata->usefracspace; SCIP_CALL( SCIPallocBufferArray(scip, &fracspace, nvars) ); /* determine the space one which OCTANE should work either as the whole space or as the space of fractional variables */ if( usefracspace ) { nsubspacevars = nfracvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); BMScopyMemoryArray(subspacevars, fracvars, nsubspacevars); for( i = nvars - 1; i >= 0; --i ) fracspace[i] = -1; for( i = nsubspacevars - 1; i >= 0; --i ) fracspace[SCIPvarGetProbindex(subspacevars[i])] = i; } else { int currentindex; nsubspacevars = nvars; SCIP_CALL( SCIPallocBufferArray(scip, &subspacevars, nsubspacevars) ); /* only copy the variables which are in the current LP */ currentindex = 0; for( i = 0; i < nvars; ++i ) { if( SCIPcolGetLPPos(SCIPvarGetCol(vars[i])) >= 0 ) { subspacevars[currentindex] = vars[i]; fracspace[i] = currentindex; ++currentindex; } else { fracspace[i] = -1; --nsubspacevars; } } } /* nothing to do for empty search space */ if( nsubspacevars == 0 ) return SCIP_OKAY; assert(0 < nsubspacevars && nsubspacevars <= nvars); for( i = 0; i < nsubspacevars; i++) assert(fracspace[SCIPvarGetProbindex(subspacevars[i])] == i); /* at most 2^(n-1) facets can be hit */ if( nsubspacevars < 30 ) { /*lint --e{701}*/ assert(f_max > 0); f_max = MIN(f_max, 1 << (nsubspacevars - 1) ); } f_first = MIN(f_first, f_max); /* memory allocation */ SCIP_CALL( SCIPallocBufferArray(scip, &rayorigin, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &raydirection, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &negquotient, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &sign, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &perm, nsubspacevars) ); SCIP_CALL( SCIPallocBufferArray(scip, &lambda, f_max + 1) ); SCIP_CALL( SCIPallocBufferArray(scip, &facets, f_max + 1) ); for( i = f_max; i >= 0; --i ) { /*lint --e{866}*/ SCIP_CALL( SCIPallocBufferArray(scip, &facets[i], nsubspacevars) ); } SCIP_CALL( SCIPallocBufferArray(scip, &first_sols, f_first) ); *result = SCIP_DIDNOTFIND; /* starting OCTANE */ SCIPdebugMessage("run Octane heuristic on %s variables, which are %d vars, generate at most %d facets, using rule number %d\n", usefracspace ? "fractional" : "all", nsubspacevars, f_max, (heurdata->lastrule+1)%5); /* generate starting point in original coordinates */ SCIP_CALL( generateStartingPoint(scip, rayorigin, subspacevars, nsubspacevars) ); for( i = nsubspacevars - 1; i >= 0; --i ) rayorigin[i] -= 0.5; firstrule = heurdata->lastrule; ++firstrule; for( r = firstrule; r <= firstrule + 10 && !SCIPisStopped(scip); r++ ) { SCIP_ROW** rows; int nrows; /* generate shooting ray in original coordinates by certain rules */ switch(r % 5) { case 1: if( heurdata->useavgnbray ) { SCIP_CALL( generateAverageNBRay(scip, raydirection, fracspace, subspacevars, nsubspacevars) ); } break; case 2: if( heurdata->useobjray ) { SCIP_CALL( generateObjectiveRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 3: if( heurdata->usediffray ) { SCIP_CALL( generateDifferenceRay(scip, raydirection, subspacevars, nsubspacevars) ); } break; case 4: if( heurdata->useavgwgtray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, TRUE) ); } break; case 0: if( heurdata->useavgray && SCIPisLPSolBasic(scip) ) { SCIP_CALL( generateAverageRay(scip, raydirection, subspacevars, nsubspacevars, FALSE) ); } break; default: SCIPerrorMessage("invalid ray rule identifier\n"); SCIPABORT(); } /* there must be a feasible direction for the shooting ray */ if( isZero(scip, raydirection, nsubspacevars) ) continue; /* transform coordinates such that raydirection >= 0 */ flipCoords(rayorigin, raydirection, sign, nsubspacevars); for( i = f_max - 1; i >= 0; --i) lambda[i] = SCIPinfinity(scip); /* calculate negquotient, initialize perm, facets[0], p, and q */ p = 0.5 * nsubspacevars; q = 0.0; for( i = nsubspacevars - 1; i >= 0; --i ) { /* calculate negquotient, the ratio of rayorigin and raydirection, paying special attention to the case raydirection[i] == 0 */ if( SCIPisFeasZero(scip, raydirection[i]) ) { if( rayorigin[i] < 0 ) negquotient[i] = SCIPinfinity(scip); else negquotient[i] = -SCIPinfinity(scip); } else negquotient[i] = - (rayorigin[i] / raydirection[i]); perm[i] = i; /* initialization of facets[0] to the all-one facet with p and q its characteristic values */ facets[0][i] = TRUE; p -= rayorigin[i]; q += raydirection[i]; } assert(SCIPisPositive(scip, q)); /* resort the coordinates in nonincreasing order of negquotient */ SCIPsortDownRealRealRealBoolPtr( negquotient, raydirection, rayorigin, sign, (void**) subspacevars, nsubspacevars); #ifndef NDEBUG for( i = 0; i < nsubspacevars; i++ ) assert( raydirection[i] >= 0 ); for( i = 1; i < nsubspacevars; i++ ) assert( negquotient[i - 1] >= negquotient[i] ); #endif /* finished initialization */ /* find the first facet of the octahedron hit by a ray shot from rayorigin into direction raydirection */ for( i = 0; i < nsubspacevars && negquotient[i] * q > p; ++i ) { facets[0][i] = FALSE; p += 2 * rayorigin[i]; q -= 2 * raydirection[i]; assert(SCIPisPositive(scip, p)); assert(SCIPisPositive(scip, q)); } /* avoid dividing by values close to 0.0 */ if( !SCIPisFeasPositive(scip, q) ) continue; /* assert necessary for flexelint */ assert(q > 0); lambda[0] = p / q; nfacets = 1; /* find the first facets hit by the ray */ for( i = 0; i < nfacets && i < f_first; ++i) generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); /* construct the first ffirst possible solutions */ for( i = 0; i < nfacets && i < f_first; ++i ) { SCIP_CALL( SCIPcreateSol(scip, &first_sols[i], heur) ); SCIP_CALL( getSolFromFacet(scip, facets[i], first_sols[i], sign, subspacevars, nsubspacevars) ); assert( first_sols[i] != NULL ); } /* try, whether there is a row violated by all of the first ffirst solutions */ cons_viol = FALSE; SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); for( i = nrows - 1; i >= 0; --i ) { if( !SCIProwIsLocal(rows[i]) ) { SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real rowval; SCIP_Real* coeffs; int nnonzerovars; int k; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]); rhs = SCIProwGetRhs(rows[i]); coeffs = SCIProwGetVals(rows[i]); nnonzerovars = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[0], SCIPcolGetVar(cols[j])); /* if the row's lhs is violated by the first sol, test, whether it is violated by the next ones, too */ if( lhs > rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( lhs <= rowval ) { cons_viol = FALSE; break; } } } /* dito for the right hand side */ else if( rhs < rowval ) { cons_viol = TRUE; for( k = MIN(f_first, nfacets) - 1; k > 0; --k ) { rowval = constant; for( j = nnonzerovars - 1; j >= 0; --j ) rowval += coeffs[j] * SCIPgetSolVal(scip, first_sols[k], SCIPcolGetVar(cols[j])); if( rhs >= rowval ) { cons_viol = FALSE; break; } } } /* break as soon as one row is violated by all of the ffirst solutions */ if( cons_viol ) break; } } if( !cons_viol ) { /* if there was no row violated by all solutions, try whether one or more of them are feasible */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { assert(first_sols[i] != NULL); SCIP_CALL( SCIPtrySol(scip, first_sols[i], FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } /* search for further facets and construct and try solutions out of facets fixed as closest ones */ for( i = f_first; i < f_max; ++i) { if( i >= nfacets ) break; generateNeighborFacets(scip, facets, lambda, rayorigin, raydirection, negquotient, nsubspacevars, f_max, i, &nfacets); SCIP_CALL( getSolFromFacet(scip, facets[i], sol, sign, subspacevars, nsubspacevars) ); SCIP_CALL( SCIPtrySol(scip, sol, FALSE, TRUE, FALSE, TRUE, &success) ); if( success ) *result = SCIP_FOUNDSOL; } } /* finished OCTANE */ for( i = MIN(f_first, nfacets) - 1; i >= 0; --i ) { SCIP_CALL( SCIPfreeSol(scip, &first_sols[i]) ); } } heurdata->lastrule = r; if( *result == SCIP_FOUNDSOL ) ++(heurdata->nsuccess); /* free temporary memory */ SCIPfreeBufferArray(scip, &first_sols); for( i = f_max; i >= 0; --i ) SCIPfreeBufferArray(scip, &facets[i]); SCIPfreeBufferArray(scip, &facets); SCIPfreeBufferArray(scip, &lambda); SCIPfreeBufferArray(scip, &perm); SCIPfreeBufferArray(scip, &sign); SCIPfreeBufferArray(scip, &negquotient); SCIPfreeBufferArray(scip, &raydirection); SCIPfreeBufferArray(scip, &rayorigin); SCIPfreeBufferArray(scip, &subspacevars); SCIPfreeBufferArray(scip, &fracspace); return SCIP_OKAY; }