Example #1
0
/** checks if a given branching candidate is better than a previous one and updates the best branching candidate accordingly */
static
SCIP_RETCODE updateBestCandidate(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_BRANCHRULEDATA*  branchruledata,     /**< branching rule data */
   SCIP_VAR**            bestvar,            /**< best branching candidate */
   SCIP_Real*            bestbrpoint,        /**< branching point for best branching candidate */
   SCIP_Real*            bestscore,          /**< score of best branching candidate */
   SCIP_VAR*             cand,               /**< branching candidate to consider */
   SCIP_Real             candscoremin,       /**< minimal score of branching candidate */
   SCIP_Real             candscoremax,       /**< maximal score of branching candidate */
   SCIP_Real             candscoresum,       /**< sum of scores of branching candidate */
   SCIP_Real             candsol             /**< proposed branching point of branching candidate */          
)
{
   SCIP_Real candbrpoint;
   SCIP_Real branchscore;

   SCIP_Real deltaminus;
   SCIP_Real deltaplus;

   SCIP_Real pscostdown;
   SCIP_Real pscostup;
   
   char strategy;

   assert(scip != NULL);
   assert(branchruledata != NULL);
   assert(bestvar != NULL);
   assert(bestbrpoint != NULL);
   assert(bestscore != NULL);
   assert(cand != NULL);

   /* a branching variable candidate should either be an active problem variable or a multi-aggregated variable */
   assert(SCIPvarIsActive(SCIPvarGetProbvar(cand)) ||
      SCIPvarGetStatus(SCIPvarGetProbvar(cand)) == SCIP_VARSTATUS_MULTAGGR);
   
   if( SCIPvarGetStatus(SCIPvarGetProbvar(cand)) == SCIP_VARSTATUS_MULTAGGR )
   {
      /* for a multi-aggregated variable, we call updateBestCandidate function recursively with all variables in the multi-aggregation */
      SCIP_VAR** multvars;
      int nmultvars;
      int i;
      SCIP_Bool success;
      SCIP_Real multvarlb;
      SCIP_Real multvarub;

      cand = SCIPvarGetProbvar(cand);
      multvars = SCIPvarGetMultaggrVars(cand);
      nmultvars = SCIPvarGetMultaggrNVars(cand);

      /* if we have a candidate branching point, then first register only aggregation variables
       * for which we can compute a corresponding branching point too (see also comments below)
       * if this fails, then register all (unfixed) aggregation variables, thereby forgetting about candsol
       */
      success = FALSE;
      if( candsol != SCIP_INVALID ) /*lint !e777*/
      {
         SCIP_Real* multscalars;
         SCIP_Real minact;
         SCIP_Real maxact;
         SCIP_Real aggrvarsol;
         SCIP_Real aggrvarsol1;
         SCIP_Real aggrvarsol2;

         multscalars = SCIPvarGetMultaggrScalars(cand);

         /* for computing the branching point, we need the current bounds of the multi-aggregated variable */
         minact = SCIPcomputeVarLbLocal(scip, cand);
         maxact = SCIPcomputeVarUbLocal(scip, cand);

         for( i = 0; i < nmultvars; ++i )
         {
            /* skip fixed variables */
            multvarlb = SCIPcomputeVarLbLocal(scip, multvars[i]);
            multvarub = SCIPcomputeVarUbLocal(scip, multvars[i]);
            if( SCIPisEQ(scip, multvarlb, multvarub) )
               continue;

            assert(multscalars != NULL);
            assert(multscalars[i] != 0.0);

            /* we cannot ensure that both the upper bound in the left node and the lower bound in the right node
             * will be candsol by a clever choice for the branching point of multvars[i],
             * but we can try to ensure that at least one of them will be at candsol
             */
            if( multscalars[i] > 0.0 )
            {
               /*    cand >= candsol
                * if multvars[i] >= (candsol - (maxact - multscalars[i] * ub(multvars[i]))) / multscalars[i]
                *                 = (candsol - maxact) / multscalars[i] + ub(multvars[i])
                */
               aggrvarsol1 = (candsol - maxact) / multscalars[i] + multvarub;

               /*     cand <= candsol
                * if multvars[i] <= (candsol - (minact - multscalar[i] * lb(multvars[i]))) / multscalars[i]
                *                 = (candsol - minact) / multscalars[i] + lb(multvars[i])
                */
               aggrvarsol2 = (candsol - minact) / multscalars[i] + multvarlb;
            }
            else
            {
               /*    cand >= candsol
                * if multvars[i] <= (candsol - (maxact - multscalars[i] * lb(multvars[i]))) / multscalars[i]
                *                 = (candsol - maxact) / multscalars[i] + lb(multvars[i])
                */
               aggrvarsol2 = (candsol - maxact) / multscalars[i] + multvarlb;

               /*    cand <= candsol
                * if multvars[i] >= (candsol - (minact - multscalar[i] * ub(multvars[i]))) / multscalars[i]
                *                 = (candsol - minact) / multscalars[i] + ub(multvars[i])
                */
               aggrvarsol1 = (candsol - minact) / multscalars[i] + multvarub;
            }

            /* by the above choice, aggrvarsol1 <= ub(multvars[i]) and aggrvarsol2 >= lb(multvars[i])
             * if aggrvarsol1 <= lb(multvars[i]) or aggrvarsol2 >= ub(multvars[i]), then choose the other one
             * if both are out of bounds, then give up
             * if both are inside bounds, then choose the one closer to 0.0 (someone has better idea???)
             */
            if( SCIPisFeasLE(scip, aggrvarsol1, multvarlb) )
            {
               if( SCIPisFeasGE(scip, aggrvarsol2, multvarub) )
                  continue;
               else
                  aggrvarsol = aggrvarsol2;
            }
            else
            {
               if( SCIPisFeasGE(scip, aggrvarsol2, multvarub) )
                  aggrvarsol = aggrvarsol1;
               else
                  aggrvarsol = REALABS(aggrvarsol1) < REALABS(aggrvarsol2) ? aggrvarsol1 : aggrvarsol2;
            }
            success = TRUE;

            SCIP_CALL( updateBestCandidate(scip, branchruledata, bestvar, bestbrpoint, bestscore,
                  multvars[i], candscoremin, candscoremax, candscoresum, aggrvarsol) );
         }
      }

      if( !success )
         for( i = 0; i < nmultvars; ++i )
         {
            /* skip fixed variables */
            multvarlb = SCIPcomputeVarLbLocal(scip, multvars[i]);
            multvarub = SCIPcomputeVarUbLocal(scip, multvars[i]);
            if( SCIPisEQ(scip, multvarlb, multvarub) )
               continue;

            SCIP_CALL( updateBestCandidate(scip, branchruledata, bestvar, bestbrpoint, bestscore,
               multvars[i], candscoremin, candscoremax, candscoresum, SCIP_INVALID) );
         }

      assert(*bestvar != NULL); /* if all variables were fixed, something is strange */
      
      return SCIP_OKAY;
   }
   
   /* select branching point for this variable */
   candbrpoint = SCIPgetBranchingPoint(scip, cand, candsol);
   assert(candbrpoint >= SCIPvarGetLbLocal(cand));
   assert(candbrpoint <= SCIPvarGetUbLocal(cand));

   /* we cannot branch on a huge value for a discrete variable, because we simply cannot enumerate such huge integer values in floating point
    * arithmetics
    */
   if( SCIPvarGetType(cand) != SCIP_VARTYPE_CONTINUOUS && (SCIPisHugeValue(scip, candbrpoint) || SCIPisHugeValue(scip, -candbrpoint)) )
      return SCIP_OKAY;

   assert(SCIPvarGetType(cand) == SCIP_VARTYPE_CONTINUOUS || !SCIPisIntegral(scip, candbrpoint));

   if( SCIPvarGetType(cand) == SCIP_VARTYPE_CONTINUOUS )
      strategy = (branchruledata->strategy == 'u' ? branchruledata->updatestrategy : branchruledata->strategy);
   else
      strategy = (branchruledata->strategy == 'u' ? 'l' : branchruledata->strategy);

   switch( strategy )
   {
   case 'l':
      if( SCIPisInfinity(scip,  SCIPgetSolVal(scip, NULL, cand)) || SCIPgetSolVal(scip, NULL, cand) <= SCIPadjustedVarUb(scip, cand, candbrpoint) )
         deltaminus = 0.0;
      else
         deltaminus = SCIPgetSolVal(scip, NULL, cand) - SCIPadjustedVarUb(scip, cand, candbrpoint);
      if( SCIPisInfinity(scip, -SCIPgetSolVal(scip, NULL, cand)) || SCIPgetSolVal(scip, NULL, cand) >= SCIPadjustedVarLb(scip, cand, candbrpoint) )
         deltaplus = 0.0;
      else
         deltaplus = SCIPadjustedVarLb(scip, cand, candbrpoint) - SCIPgetSolVal(scip, NULL, cand);
      break;

   case 'd':
      if( SCIPisInfinity(scip, -SCIPvarGetLbLocal(cand)) )
         deltaminus = SCIPisInfinity(scip, candscoremax) ? SCIPinfinity(scip) : WEIGHTEDSCORING(branchruledata, candscoremin, candscoremax, candscoresum);
      else
         deltaminus = SCIPadjustedVarUb(scip, cand, candbrpoint) - SCIPvarGetLbLocal(cand);

      if( SCIPisInfinity(scip,  SCIPvarGetUbLocal(cand)) )
         deltaplus = SCIPisInfinity(scip, candscoremax) ? SCIPinfinity(scip) : WEIGHTEDSCORING(branchruledata, candscoremin, candscoremax, candscoresum);
      else
         deltaplus = SCIPvarGetUbLocal(cand) - SCIPadjustedVarLb(scip, cand, candbrpoint);
      break;
      
   case 's':
      if( SCIPisInfinity(scip, -SCIPvarGetLbLocal(cand)) )
         deltaplus = SCIPisInfinity(scip, candscoremax) ? SCIPinfinity(scip) : WEIGHTEDSCORING(branchruledata, candscoremin, candscoremax, candscoresum);
      else
         deltaplus = SCIPadjustedVarUb(scip, cand, candbrpoint) - SCIPvarGetLbLocal(cand);

      if( SCIPisInfinity(scip,  SCIPvarGetUbLocal(cand)) )
         deltaminus = SCIPisInfinity(scip, candscoremax) ? SCIPinfinity(scip) : WEIGHTEDSCORING(branchruledata, candscoremin, candscoremax, candscoresum);
      else
         deltaminus = SCIPvarGetUbLocal(cand) - SCIPadjustedVarLb(scip, cand, candbrpoint);
      break;

   case 'v':
      deltaplus = SCIPisInfinity(scip, candscoremax) ? SCIPinfinity(scip) : WEIGHTEDSCORING(branchruledata, candscoremin, candscoremax, candscoresum);
      deltaminus = deltaplus;
      break;

   default :
      SCIPerrorMessage("branching strategy %c unknown\n", strategy);
      SCIPABORT();
      return SCIP_INVALIDDATA;  /*lint !e527*/
   }

   if( SCIPisInfinity(scip, deltaminus) || SCIPisInfinity(scip, deltaplus) )
   {
      branchscore = SCIPinfinity(scip);
   }
   else
   {
      pscostdown  = SCIPgetVarPseudocostVal(scip, cand, -deltaminus);
      pscostup    = SCIPgetVarPseudocostVal(scip, cand,  deltaplus);
      branchscore = SCIPgetBranchScore(scip, cand, pscostdown, pscostup);
      assert(!SCIPisNegative(scip, branchscore));
   }
   SCIPdebugMessage("branching score variable <%s>[%g,%g] = %g; wscore = %g; type=%d bestbrscore=%g\n",
      SCIPvarGetName(cand), SCIPvarGetLbLocal(cand), SCIPvarGetUbLocal(cand), branchscore, WEIGHTEDSCORING(branchruledata, candscoremin, candscoremax, candscoresum),
      SCIPvarGetType(cand), *bestscore);

   if( SCIPisInfinity(scip, branchscore) )
      branchscore = 0.9*SCIPinfinity(scip);
   
   if( SCIPisSumGT(scip, branchscore, *bestscore) )
   {
      (*bestscore)   = branchscore;
      (*bestvar)     = cand;
      (*bestbrpoint) = candbrpoint;
   }
   else if( SCIPisSumEQ(scip, branchscore, *bestscore)
      && !(SCIPisInfinity(scip, -SCIPvarGetLbLocal(*bestvar)) && SCIPisInfinity(scip, SCIPvarGetUbLocal(*bestvar))) )
   {
      /* if best candidate so far is not unbounded to both sides, maybe take new candidate */
      if( (SCIPisInfinity(scip, -SCIPvarGetLbLocal(cand))     || SCIPisInfinity(scip, SCIPvarGetUbLocal(cand))) &&
          (SCIPisInfinity(scip, -SCIPvarGetLbLocal(*bestvar)) || SCIPisInfinity(scip, SCIPvarGetUbLocal(*bestvar))) )
      { 
         /* if both variables are unbounded but one of them is bounded on one side, take the one with the larger bound on this side (hope that this avoids branching on always the same variable) */
         if( SCIPvarGetUbLocal(cand) > SCIPvarGetUbLocal(*bestvar) || SCIPvarGetLbLocal(cand) < SCIPvarGetLbLocal(*bestvar) )
         {
            (*bestscore)   = branchscore;
            (*bestvar)     = cand;
            (*bestbrpoint) = candbrpoint;
         }
      }
      else if( SCIPvarGetType(*bestvar) == SCIPvarGetType(cand) )
      { 
         /* if both have the same type, take the one with larger diameter */
         if( SCIPvarGetUbLocal(*bestvar) - SCIPvarGetLbLocal(*bestvar) < SCIPvarGetUbLocal(cand) - SCIPvarGetLbLocal(cand) )
         {
            (*bestscore)   = branchscore;
            (*bestvar)     = cand;
            (*bestbrpoint) = candbrpoint;
         }
      }
      else if( SCIPvarGetType(*bestvar) > SCIPvarGetType(cand) )
      { 
         /* take the one with better type ("more discrete") */
         (*bestscore)   = branchscore;
         (*bestvar)     = cand;
         (*bestbrpoint) = candbrpoint;
      }
   }

   return SCIP_OKAY;
}
Example #2
0
/** compares the so far best branching candidate with a new candidate and updates best candidate, if new candidate is better */
static
void updateBestCandidate(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR**            bestvar,            /**< best branching candidate */
   SCIP_Real*            bestscore,          /**< score of best branching candidate */
   SCIP_Real*            bestobj,            /**< absolute objective value of best branching candidate */
   SCIP_Real*            bestsol,            /**< proposed branching point of best branching candidate */
   SCIP_VAR*             cand,               /**< branching candidate to consider */
   SCIP_Real             candscore,          /**< scoring of branching candidate */
   SCIP_Real             candsol             /**< proposed branching point of branching candidate */
   )
{
   SCIP_Real obj;

   assert(scip != NULL);
   assert(bestvar != NULL);
   assert(bestscore != NULL);
   assert(bestobj != NULL);
   assert(*bestobj >= 0.0);
   assert(cand != NULL);

   /* a branching variable candidate should either be an active problem variable or a multi-aggregated variable */
   assert(SCIPvarIsActive(SCIPvarGetProbvar(cand)) ||
      SCIPvarGetStatus(SCIPvarGetProbvar(cand)) == SCIP_VARSTATUS_MULTAGGR);

   if( SCIPvarGetStatus(SCIPvarGetProbvar(cand)) == SCIP_VARSTATUS_MULTAGGR )
   {
      /* for a multi-aggregated variable, we call updateBestCandidate function recursively with all variables in the multi-aggregation */
      SCIP_VAR** multvars;
      int nmultvars;
      int i;
      SCIP_Bool success;
      SCIP_Real multvarlb;
      SCIP_Real multvarub;

      cand = SCIPvarGetProbvar(cand);
      multvars = SCIPvarGetMultaggrVars(cand);
      nmultvars = SCIPvarGetMultaggrNVars(cand);

      /* if we have a candidate branching point, then first register only aggregation variables
       * for which we can compute a corresponding branching point too (see also comments below)
       * if this fails, then register all (unfixed) aggregation variables, thereby forgetting about candsol
       */
      success = FALSE;
      if( candsol != SCIP_INVALID ) /*lint !e777*/
      {
         SCIP_Real* multscalars;
         SCIP_Real minact;
         SCIP_Real maxact;
         SCIP_Real aggrvarsol;
         SCIP_Real aggrvarsol1;
         SCIP_Real aggrvarsol2;

         multscalars = SCIPvarGetMultaggrScalars(cand);

         /* for computing the branching point, we need the current bounds of the multi-aggregated variable */
         minact = SCIPcomputeVarLbLocal(scip, cand);
         maxact = SCIPcomputeVarUbLocal(scip, cand);

         for( i = 0; i < nmultvars; ++i )
         {
            /* skip fixed variables */
            multvarlb = SCIPcomputeVarLbLocal(scip, multvars[i]);
            multvarub = SCIPcomputeVarUbLocal(scip, multvars[i]);
            if( SCIPisEQ(scip, multvarlb, multvarub) )
               continue;

            assert(multscalars != NULL);
            assert(multscalars[i] != 0.0);

            /* we cannot ensure that both the upper bound in the left node and the lower bound in the right node
             * will be candsol by a clever choice for the branching point of multvars[i],
             * but we can try to ensure that at least one of them will be at candsol
             */
            if( multscalars[i] > 0.0 )
            {
               /*    cand >= candsol
                * if multvars[i] >= (candsol - (maxact - multscalars[i] * ub(multvars[i]))) / multscalars[i]
                *                 = (candsol - maxact) / multscalars[i] + ub(multvars[i])
                */
               aggrvarsol1 = (candsol - maxact) / multscalars[i] + multvarub;

               /*     cand <= candsol
                * if multvars[i] <= (candsol - (minact - multscalar[i] * lb(multvars[i]))) / multscalars[i]
                *                 = (candsol - minact) / multscalars[i] + lb(multvars[i])
                */
               aggrvarsol2 = (candsol - minact) / multscalars[i] + multvarlb;
            }
            else
            {
               /*    cand >= candsol
                * if multvars[i] <= (candsol - (maxact - multscalars[i] * lb(multvars[i]))) / multscalars[i]
                *                 = (candsol - maxact) / multscalars[i] + lb(multvars[i])
                */
               aggrvarsol2 = (candsol - maxact) / multscalars[i] + multvarlb;

               /*    cand <= candsol
                * if multvars[i] >= (candsol - (minact - multscalar[i] * ub(multvars[i]))) / multscalars[i]
                *                 = (candsol - minact) / multscalars[i] + ub(multvars[i])
                */
               aggrvarsol1 = (candsol - minact) / multscalars[i] + multvarub;
            }

            /* by the above choice, aggrvarsol1 <= ub(multvars[i]) and aggrvarsol2 >= lb(multvars[i])
             * if aggrvarsol1 <= lb(multvars[i]) or aggrvarsol2 >= ub(multvars[i]), then choose the other one
             * if both are out of bounds, then give up
             * if both are inside bounds, then choose the one closer to 0.0 (someone has better idea???)
             */
            if( SCIPisFeasLE(scip, aggrvarsol1, multvarlb) )
            {
               if( SCIPisFeasGE(scip, aggrvarsol2, multvarub) )
                  continue;
               else
                  aggrvarsol = aggrvarsol2;
            }
            else
            {
               if( SCIPisFeasGE(scip, aggrvarsol2, multvarub) )
                  aggrvarsol = aggrvarsol1;
               else
                  aggrvarsol = REALABS(aggrvarsol1) < REALABS(aggrvarsol2) ? aggrvarsol1 : aggrvarsol2;
            }
            success = TRUE;

            updateBestCandidate(scip, bestvar, bestscore, bestobj, bestsol,
                  multvars[i], candscore, aggrvarsol);
         }
      }

      if( !success )
         for( i = 0; i < nmultvars; ++i )
         {
            /* skip fixed variables */
            multvarlb = SCIPcomputeVarLbLocal(scip, multvars[i]);
            multvarub = SCIPcomputeVarUbLocal(scip, multvars[i]);
            if( SCIPisEQ(scip, multvarlb, multvarub) )
               continue;

            updateBestCandidate(scip, bestvar, bestscore, bestobj, bestsol,
               multvars[i], candscore, SCIP_INVALID);
         }

      assert(*bestvar != NULL); /* if all variables were fixed, something is strange */

      return;
   }

   candscore *= SCIPvarGetBranchFactor(cand);
   obj = SCIPvarGetObj(cand);
   obj = REALABS(obj);
   if( SCIPisInfinity(scip, *bestscore)
      || (!SCIPisInfinity(scip, candscore) && 
          (SCIPisLT(scip, candscore, *bestscore) || (SCIPisLE(scip, candscore, *bestscore) && obj > *bestobj))) )
   {
      *bestvar = cand;
      *bestscore = candscore;
      *bestobj = obj;
      *bestsol = candsol;
   }
}