/** transforms given values of the given original variables into values of the given master variables */ void GCGrelaxTransformOrigvalsToMastervals( SCIP* scip, /**< SCIP data structure */ SCIP_VAR** origvars, /**< array with (subset of the) original variables */ SCIP_Real* origvals, /**< array with values (coefs) for the given original variables */ int norigvars, /**< number of given original variables */ SCIP_VAR** mastervars, /**< array of (all present) master variables */ SCIP_Real* mastervals, /**< array to store the values of the master variables */ int nmastervars /**< number of master variables */ ) { int i; int j; int k; assert(scip != NULL); assert(origvars != NULL); assert(origvals != NULL); assert(mastervars != NULL); assert(mastervals != NULL); assert(nmastervars >= 0); /* set all values to 0 initially */ for( i = 0; i < nmastervars; i++ ) mastervals[i] = 0.0; /* iterate over all original variables */ for( i = 0; i < norigvars; i++ ) { SCIP_VAR** varmastervars; SCIP_Real* varmastervals; int blocknr; assert(GCGvarIsOriginal(origvars[i])); varmastervars = GCGoriginalVarGetMastervars(origvars[i]); varmastervals = GCGoriginalVarGetMastervals(origvars[i]); blocknr = GCGvarGetBlock(origvars[i]); /* variable belongs to no block (or is a linking variable), so it was transferred directly to the master problem, * hence, we transfer the value directly to the corresponding master variabe */ if( blocknr < 0 ) { assert(blocknr == -1 || blocknr == -2); assert(SCIPvarIsOriginal(varmastervars[0])); assert(SCIPvarGetTransVar(varmastervars[0]) != NULL); for( k = 0; k < nmastervars; k++ ) { if( mastervars[k] == SCIPvarGetTransVar(varmastervars[0]) ) { mastervals[k] += (varmastervals[0] * origvals[i]); break; } } assert(k < nmastervars); } /* variable belongs to exactly one block, so we have to look at all master variables and increase their values * if they contain the original variable */ else { SCIP_VAR* pricingvar; SCIP_VAR* origvar; SCIP_VAR** curmastervars; SCIP_Real* curmastervals; int ncurmastervars; pricingvar = GCGoriginalVarGetPricingVar(origvars[i]); assert(GCGvarIsPricing(pricingvar)); origvar = GCGpricingVarGetOriginalVar(pricingvar); assert(GCGvarIsOriginal(origvar)); curmastervars = GCGoriginalVarGetMastervars(origvar); curmastervals = GCGoriginalVarGetMastervals(origvar); ncurmastervars = GCGoriginalVarGetNMastervars(origvar); for( j = 0; j < ncurmastervars; j++ ) { assert(SCIPvarIsTransformed(curmastervars[j])); for( k = 0; k < nmastervars; k++ ) if( mastervars[k] == curmastervars[j] ) { mastervals[k] += (curmastervals[j] * origvals[i]); break; } assert(k < nmastervars); } } } }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpRapidlearning) {/*lint --e{715}*/ SCIP* subscip; /* the subproblem created by rapid learning */ SCIP_SEPADATA* sepadata; /* separator's private data */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_HASHMAP* varmapbw; /* mapping of sub-SCIP variables to SCIP variables */ SCIP_CONSHDLR** conshdlrs; /* array of constraint handler's that might that might obtain conflicts */ int* oldnconss; /* number of constraints without rapid learning conflicts */ SCIP_Longint nodelimit; /* node limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real memorylimit; /* memory limit for the subproblem */ int nconshdlrs; /* size of conshdlr and oldnconss array */ int nfixedvars; /* number of variables that could be fixed by rapid learning */ int nvars; /* number of variables */ int restartnum; /* maximal number of conflicts that should be created */ int i; /* counter */ SCIP_Bool success; /* was problem creation / copying constraint successful? */ SCIP_RETCODE retcode; /* used for catching sub-SCIP errors in debug mode */ int nconflicts; /* statistic: number of conflicts applied */ int nbdchgs; /* statistic: number of bound changes applied */ int n1startinfers; /* statistic: number of one side infer values */ int n2startinfers; /* statistic: number of both side infer values */ SCIP_Bool soladded; /* statistic: was a new incumbent found? */ SCIP_Bool dualboundchg; /* statistic: was a new dual bound found? */ SCIP_Bool disabledualreductions; /* TRUE, if dual reductions in sub-SCIP are not valid for original SCIP, * e.g., because a constraint could not be copied or a primal solution * could not be copied back */ int ndiscvars; soladded = FALSE; assert(sepa != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; ndiscvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip)+SCIPgetNImplVars(scip); /* only run when still not fixed binary variables exists */ if( ndiscvars == 0 ) return SCIP_OKAY; /* get separator's data */ sepadata = SCIPsepaGetData(sepa); assert(sepadata != NULL); /* only run for integer programs */ if( !sepadata->contvars && ndiscvars != SCIPgetNVars(scip) ) return SCIP_OKAY; /* only run if there are few enough continuous variables */ if( sepadata->contvars && SCIPgetNContVars(scip) > sepadata->contvarsquot * SCIPgetNVars(scip) ) return SCIP_OKAY; /* do not run if pricers are present */ if( SCIPgetNActivePricers(scip) > 0 ) return SCIP_OKAY; /* if the separator should be exclusive to the root node, this prevents multiple calls due to restarts */ if( SCIPsepaGetFreq(sepa) == 0 && SCIPsepaGetNCalls(sepa) > 0) return SCIP_OKAY; /* call separator at most once per node */ if( SCIPsepaGetNCallsAtNode(sepa) > 0 ) return SCIP_OKAY; /* do not call rapid learning, if the problem is too big */ if( SCIPgetNVars(scip) > sepadata->maxnvars || SCIPgetNConss(scip) > sepadata->maxnconss ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; /* copy the subproblem */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rapid", FALSE, FALSE, &success) ); if( sepadata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, FALSE) ); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); SCIPhashmapFree(&varmapfw); /* this avoids dual presolving */ if( !success ) { for( i = 0; i < nvars; i++ ) { SCIP_CALL( SCIPaddVarLocks(subscip, subvars[i], 1, 1 ) ); } } SCIPdebugMessage("Copying SCIP was%s successful.\n", success ? "" : " not"); /* mimic an FD solver: DFS, no LP solving, 1-FUIP instead of all-FUIP */ SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/fuiplevels", 1) ); SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); SCIP_CALL( SCIPsetBoolParam(subscip, "constraints/disableenfops", TRUE) ); SCIP_CALL( SCIPsetIntParam(subscip, "propagating/pseudoobj/freq", -1) ); /* use inference branching */ SCIP_CALL( SCIPsetBoolParam(subscip, "branching/inference/useweightedsum", FALSE) ); /* only create short conflicts */ SCIP_CALL( SCIPsetRealParam(subscip, "conflict/maxvarsfac", 0.05) ); /* set limits for the subproblem */ nodelimit = SCIPgetNLPIterations(scip); nodelimit = MAX(sepadata->minnodes, nodelimit); nodelimit = MIN(sepadata->maxnodes, nodelimit); restartnum = 1000; /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); if( !SCIPisInfinity(scip, memorylimit) ) memorylimit -= SCIPgetMemUsed(scip)/1048576.0; if( timelimit <= 0.0 || memorylimit <= 0.0 ) goto TERMINATE; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit/5) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/restarts", 0) ); SCIP_CALL( SCIPsetIntParam(subscip, "conflict/restartnum", restartnum) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* add an objective cutoff */ SCIP_CALL( SCIPsetObjlimit(subscip, SCIPgetUpperbound(scip)) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapbw, SCIPblkmem(scip), SCIPcalcHashtableSize(5 * nvars)) ); /* store reversing mapping of variables */ SCIP_CALL( SCIPtransformProb(subscip) ); for( i = 0; i < nvars; ++i) { SCIP_CALL( SCIPhashmapInsert(varmapbw, SCIPvarGetTransVar(subvars[i]), vars[i]) ); } /** allocate memory for constraints storage. Each constraint that will be created from now on will be a conflict. * Therefore, we need to remember oldnconss to get the conflicts from the FD search. */ nconshdlrs = 4; SCIP_CALL( SCIPallocBufferArray(scip, &conshdlrs, nconshdlrs) ); SCIP_CALL( SCIPallocBufferArray(scip, &oldnconss, nconshdlrs) ); /* store number of constraints before rapid learning search */ conshdlrs[0] = SCIPfindConshdlr(subscip, "bounddisjunction"); conshdlrs[1] = SCIPfindConshdlr(subscip, "setppc"); conshdlrs[2] = SCIPfindConshdlr(subscip, "linear"); conshdlrs[3] = SCIPfindConshdlr(subscip, "logicor"); /* redundant constraints might be eliminated in presolving */ SCIP_CALL( SCIPpresolve(subscip)); for( i = 0; i < nconshdlrs; ++i) { if( conshdlrs[i] != NULL ) oldnconss[i] = SCIPconshdlrGetNConss(conshdlrs[i]); } nfixedvars = SCIPgetNFixedVars(scip); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } /* abort solving, if limit of applied conflicts is reached */ if( SCIPgetNConflictConssApplied(subscip) >= restartnum ) { SCIPdebugMessage("finish after %lld successful conflict calls.\n", SCIPgetNConflictConssApplied(subscip)); } /* if the first 20% of the solution process were successful, proceed */ else if( (sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPisFeasLT(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) || (sepadata->applybdchgs && SCIPgetNFixedVars(subscip) > nfixedvars) || (sepadata->applyconflicts && SCIPgetNConflictConssApplied(subscip) > 0) ) { SCIPdebugMessage("proceed solving after the first 20%% of the solution process, since:\n"); if( SCIPgetNSols(subscip) > 0 && SCIPisFeasLE(scip, SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip) ) ) { SCIPdebugMessage(" - there was a better solution (%f < %f)\n",SCIPgetUpperbound(subscip), SCIPgetUpperbound(scip)); } if( SCIPgetNFixedVars(subscip) > nfixedvars ) { SCIPdebugMessage(" - there were %d variables fixed\n", SCIPgetNFixedVars(scip)-nfixedvars ); } if( SCIPgetNConflictConssFound(subscip) > 0 ) { SCIPdebugMessage(" - there were %lld conflict constraints created\n", SCIPgetNConflictConssApplied(subscip)); } /* set node limit to 100% */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nodelimit) ); /* solve the subproblem */ retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage("Error while solving subproblem in rapid learning separator; sub-SCIP terminated with code <%d>\n",retcode); } } else { SCIPdebugMessage("do not proceed solving after the first 20%% of the solution process.\n"); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif disabledualreductions = FALSE; /* check, whether a solution was found */ if( sepadata->applyprimalsol && SCIPgetNSols(subscip) > 0 && SCIPfindHeur(scip, "trysol") != NULL ) { SCIP_HEUR* heurtrysol; SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until was declared to be feasible */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); soladded = FALSE; heurtrysol = SCIPfindHeur(scip, "trysol"); /* sequentially add solutions to trysol heuristic */ for( i = 0; i < nsubsols && !soladded; ++i ) { SCIPdebugMessage("Try to create new solution by copying subscip solution.\n"); SCIP_CALL( createNewSol(scip, subscip, subvars, heurtrysol, subsols[i], &soladded) ); } if( !soladded || !SCIPisEQ(scip, SCIPgetSolOrigObj(subscip, subsols[i-1]), SCIPgetSolOrigObj(subscip, subsols[0])) ) disabledualreductions = TRUE; } /* if the sub problem was solved completely, we update the dual bound */ dualboundchg = FALSE; if( sepadata->applysolved && !disabledualreductions && (SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL || SCIPgetStatus(subscip) == SCIP_STATUS_INFEASIBLE) ) { /* we need to multiply the dualbound with the scaling factor and add the offset, * because this information has been disregarded in the sub-SCIP */ SCIPdebugMessage("Update old dualbound %g to new dualbound %g.\n", SCIPgetDualbound(scip), SCIPgetTransObjscale(scip) * SCIPgetDualbound(subscip) + SCIPgetTransObjoffset(scip)); SCIP_CALL( SCIPupdateLocalDualbound(scip, SCIPgetDualbound(subscip) * SCIPgetTransObjscale(scip) + SCIPgetTransObjoffset(scip)) ); dualboundchg = TRUE; } /* check, whether conflicts were created */ nconflicts = 0; if( sepadata->applyconflicts && !disabledualreductions && SCIPgetNConflictConssApplied(subscip) > 0 ) { SCIP_HASHMAP* consmap; int hashtablesize; assert(SCIPgetNConflictConssApplied(subscip) < (SCIP_Longint) INT_MAX); hashtablesize = (int) SCIPgetNConflictConssApplied(subscip); assert(hashtablesize < INT_MAX/5); hashtablesize *= 5; /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&consmap, SCIPblkmem(scip), SCIPcalcHashtableSize(hashtablesize)) ); /* loop over all constraint handlers that might contain conflict constraints */ for( i = 0; i < nconshdlrs; ++i) { /* copy constraints that have been created in FD run */ if( conshdlrs[i] != NULL && SCIPconshdlrGetNConss(conshdlrs[i]) > oldnconss[i] ) { SCIP_CONS** conss; int c; int nconss; nconss = SCIPconshdlrGetNConss(conshdlrs[i]); conss = SCIPconshdlrGetConss(conshdlrs[i]); /* loop over all constraints that have been added in sub-SCIP run, these are the conflicts */ for( c = oldnconss[i]; c < nconss; ++c) { SCIP_CONS* cons; SCIP_CONS* conscopy; cons = conss[c]; assert(cons != NULL); success = FALSE; SCIP_CALL( SCIPgetConsCopy(subscip, scip, cons, &conscopy, conshdlrs[i], varmapbw, consmap, NULL, SCIPconsIsInitial(cons), SCIPconsIsSeparated(cons), SCIPconsIsEnforced(cons), SCIPconsIsChecked(cons), SCIPconsIsPropagated(cons), TRUE, FALSE, SCIPconsIsDynamic(cons), SCIPconsIsRemovable(cons), FALSE, TRUE, &success) ); if( success ) { nconflicts++; SCIP_CALL( SCIPaddCons(scip, conscopy) ); SCIP_CALL( SCIPreleaseCons(scip, &conscopy) ); } else { SCIPdebugMessage("failed to copy conflict constraint %s back to original SCIP\n", SCIPconsGetName(cons)); } } } } SCIPhashmapFree(&consmap); } /* check, whether tighter global bounds were detected */ nbdchgs = 0; if( sepadata->applybdchgs && !disabledualreductions ) for( i = 0; i < nvars; ++i ) { SCIP_Bool infeasible; SCIP_Bool tightened; assert(SCIPisLE(scip, SCIPvarGetLbGlobal(vars[i]), SCIPvarGetLbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetLbGlobal(subvars[i]), SCIPvarGetUbGlobal(subvars[i]))); assert(SCIPisLE(scip, SCIPvarGetUbGlobal(subvars[i]), SCIPvarGetUbGlobal(vars[i]))); /* update the bounds of the original SCIP, if a better bound was proven in the sub-SCIP */ SCIP_CALL( SCIPtightenVarUb(scip, vars[i], SCIPvarGetUbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; SCIP_CALL( SCIPtightenVarLb(scip, vars[i], SCIPvarGetLbGlobal(subvars[i]), FALSE, &infeasible, &tightened) ); if( tightened ) nbdchgs++; } n1startinfers = 0; n2startinfers = 0; /* install start values for inference branching */ if( sepadata->applyinfervals && (!sepadata->reducedinfer || soladded || nbdchgs+nconflicts > 0) ) { for( i = 0; i < nvars; ++i ) { SCIP_Real downinfer; SCIP_Real upinfer; SCIP_Real downvsids; SCIP_Real upvsids; SCIP_Real downconflen; SCIP_Real upconflen; /* copy downwards branching statistics */ downvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); downinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_DOWNWARDS); /* copy upwards branching statistics */ upvsids = SCIPgetVarVSIDS(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upconflen = SCIPgetVarAvgConflictlength(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); upinfer = SCIPgetVarAvgInferences(subscip, subvars[i], SCIP_BRANCHDIR_UPWARDS); /* memorize statistics */ if( downinfer+downconflen+downvsids > 0.0 || upinfer+upconflen+upvsids != 0 ) n1startinfers++; if( downinfer+downconflen+downvsids > 0.0 && upinfer+upconflen+upvsids != 0 ) n2startinfers++; SCIP_CALL( SCIPinitVarBranchStats(scip, vars[i], 0.0, 0.0, downvsids, upvsids, downconflen, upconflen, downinfer, upinfer, 0.0, 0.0) ); } } SCIPdebugPrintf("XXX Rapidlearning added %d conflicts, changed %d bounds, %s primal solution, %s dual bound improvement.\n", nconflicts, nbdchgs, soladded ? "found" : "no", dualboundchg ? "found" : "no"); SCIPdebugPrintf("YYY Infervalues initialized on one side: %5.2f %% of variables, %5.2f %% on both sides\n", 100.0 * n1startinfers/(SCIP_Real)nvars, 100.0 * n2startinfers/(SCIP_Real)nvars); /* change result pointer */ if( nconflicts > 0 || dualboundchg ) *result = SCIP_CONSADDED; else if( nbdchgs > 0 ) *result = SCIP_REDUCEDDOM; /* free local data */ SCIPfreeBufferArray(scip, &oldnconss); SCIPfreeBufferArray(scip, &conshdlrs); SCIPhashmapFree(&varmapbw); TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }