Example #1
0
char * write_temp_file (void * data, int64_t len)
{
    char * temp = filename_build (g_get_tmp_dir (), "audacious-temp-XXXXXX");
    SCOPY (name, temp);
    str_unref (temp);

    int handle = g_mkstemp (name);
    if (handle < 0)
    {
        fprintf (stderr, "Error creating temporary file: %s\n", strerror (errno));
        return NULL;
    }

    while (len)
    {
        int64_t written = write (handle, data, len);
        if (written < 0)
        {
            fprintf (stderr, "Error writing %s: %s\n", name, strerror (errno));
            close (handle);
            return NULL;
        }

        data = (char *) data + written;
        len -= written;
    }

    if (close (handle) < 0)
    {
        fprintf (stderr, "Error closing %s: %s\n", name, strerror (errno));
        return NULL;
    }

    return str_get (name);
}
Example #2
0
char * construct_uri (const char * path, const char * reference)
{
    /* URI */
    if (strstr (path, "://"))
        return str_get (path);

    /* absolute filename */
#ifdef _WIN32
    if (path[0] && path[1] == ':' && path[2] == '\\')
#else
    if (path[0] == '/')
#endif
        return filename_to_uri (path);

    /* relative path */
    const char * slash = strrchr (reference, '/');
    if (! slash)
        return NULL;

    char * utf8 = str_to_utf8 (path, -1);
    if (! utf8)
        return NULL;

    int pathlen = slash + 1 - reference;

    char buf[pathlen + 3 * strlen (utf8) + 1];
    memcpy (buf, reference, pathlen);

    if (get_bool (NULL, "convert_backslash"))
    {
        SCOPY (tmp, utf8);
        str_replace_char (tmp, '\\', '/');
        str_encode_percent (tmp, -1, buf + pathlen);
    }
    else
        str_encode_percent (utf8, -1, buf + pathlen);

    str_unref (utf8);
    return str_get (buf);
}
Example #3
0
static int dict_db_sequence(DICT *dict, int function,
			            const char **key, const char **value)
{
    const char *myname = "dict_db_sequence";
    DICT_DB *dict_db = (DICT_DB *) dict;
    DB     *db = dict_db->db;
    DBT     db_key;
    DBT     db_value;
    int     status = 0;
    int     db_function;

    dict->error = 0;

#if DB_VERSION_MAJOR > 1

    /*
     * Initialize.
     */
    memset(&db_key, 0, sizeof(db_key));
    memset(&db_value, 0, sizeof(db_value));

    /*
     * Determine the function.
     */
    switch (function) {
    case DICT_SEQ_FUN_FIRST:
	if (dict_db->cursor == 0)
	    DICT_DB_CURSOR(db, &(dict_db->cursor));
	db_function = DB_FIRST;
	break;
    case DICT_SEQ_FUN_NEXT:
	if (dict_db->cursor == 0)
	    msg_panic("%s: no cursor", myname);
	db_function = DB_NEXT;
	break;
    default:
	msg_panic("%s: invalid function %d", myname, function);
    }

    /*
     * Acquire a shared lock.
     */
    if ((dict->flags & DICT_FLAG_LOCK)
	&& myflock(dict->lock_fd, INTERNAL_LOCK, MYFLOCK_OP_SHARED) < 0)
	msg_fatal("%s: lock dictionary: %m", dict_db->dict.name);

    /*
     * Database lookup.
     */
    status =
	dict_db->cursor->c_get(dict_db->cursor, &db_key, &db_value, db_function);
    if (status != 0 && status != DB_NOTFOUND)
	msg_fatal("error [%d] seeking %s: %m", status, dict_db->dict.name);

    /*
     * Release the shared lock.
     */
    if ((dict->flags & DICT_FLAG_LOCK)
	&& myflock(dict->lock_fd, INTERNAL_LOCK, MYFLOCK_OP_NONE) < 0)
	msg_fatal("%s: unlock dictionary: %m", dict_db->dict.name);

    if (status == 0) {

	/*
	 * Copy the result so it is guaranteed null terminated.
	 */
	*key = SCOPY(dict_db->key_buf, db_key.data, db_key.size);
	*value = SCOPY(dict_db->val_buf, db_value.data, db_value.size);
    }
    return (status);
#else

    /*
     * determine the function
     */
    switch (function) {
    case DICT_SEQ_FUN_FIRST:
	db_function = R_FIRST;
	break;
    case DICT_SEQ_FUN_NEXT:
	db_function = R_NEXT;
	break;
    default:
	msg_panic("%s: invalid function %d", myname, function);
    }

    /*
     * Acquire a shared lock.
     */
    if ((dict->flags & DICT_FLAG_LOCK)
	&& myflock(dict->lock_fd, INTERNAL_LOCK, MYFLOCK_OP_SHARED) < 0)
	msg_fatal("%s: lock dictionary: %m", dict_db->dict.name);

    if ((status = db->seq(db, &db_key, &db_value, db_function)) < 0)
	msg_fatal("error seeking %s: %m", dict_db->dict.name);

    /*
     * Release the shared lock.
     */
    if ((dict->flags & DICT_FLAG_LOCK)
	&& myflock(dict->lock_fd, INTERNAL_LOCK, MYFLOCK_OP_NONE) < 0)
	msg_fatal("%s: unlock dictionary: %m", dict_db->dict.name);

    if (status == 0) {

	/*
	 * Copy the result so that it is guaranteed null terminated.
	 */
	*key = SCOPY(dict_db->key_buf, db_key.data, db_key.size);
	*value = SCOPY(dict_db->val_buf, db_value.data, db_value.size);
    }
    return status;
#endif
}
Example #4
0
static const char *dict_db_lookup(DICT *dict, const char *name)
{
    DICT_DB *dict_db = (DICT_DB *) dict;
    DB     *db = dict_db->db;
    DBT     db_key;
    DBT     db_value;
    int     status;
    const char *result = 0;

    dict->error = 0;

    /*
     * Sanity check.
     */
    if ((dict->flags & (DICT_FLAG_TRY1NULL | DICT_FLAG_TRY0NULL)) == 0)
	msg_panic("dict_db_lookup: no DICT_FLAG_TRY1NULL | DICT_FLAG_TRY0NULL flag");

    memset(&db_key, 0, sizeof(db_key));
    memset(&db_value, 0, sizeof(db_value));

    /*
     * Optionally fold the key.
     */
    if (dict->flags & DICT_FLAG_FOLD_FIX) {
	if (dict->fold_buf == 0)
	    dict->fold_buf = vstring_alloc(10);
	vstring_strcpy(dict->fold_buf, name);
	name = lowercase(vstring_str(dict->fold_buf));
    }

    /*
     * Acquire a shared lock.
     */
    if ((dict->flags & DICT_FLAG_LOCK)
	&& myflock(dict->lock_fd, INTERNAL_LOCK, MYFLOCK_OP_SHARED) < 0)
	msg_fatal("%s: lock dictionary: %m", dict_db->dict.name);

    /*
     * See if this DB file was written with one null byte appended to key and
     * value.
     */
    if (dict->flags & DICT_FLAG_TRY1NULL) {
	db_key.data = (void *) name;
	db_key.size = strlen(name) + 1;
	if ((status = DICT_DB_GET(db, &db_key, &db_value, 0)) < 0)
	    msg_fatal("error reading %s: %m", dict_db->dict.name);
	if (status == 0) {
	    dict->flags &= ~DICT_FLAG_TRY0NULL;
	    result = SCOPY(dict_db->val_buf, db_value.data, db_value.size);
	}
    }

    /*
     * See if this DB file was written with no null byte appended to key and
     * value.
     */
    if (result == 0 && (dict->flags & DICT_FLAG_TRY0NULL)) {
	db_key.data = (void *) name;
	db_key.size = strlen(name);
	if ((status = DICT_DB_GET(db, &db_key, &db_value, 0)) < 0)
	    msg_fatal("error reading %s: %m", dict_db->dict.name);
	if (status == 0) {
	    dict->flags &= ~DICT_FLAG_TRY1NULL;
	    result = SCOPY(dict_db->val_buf, db_value.data, db_value.size);
	}
    }

    /*
     * Release the shared lock.
     */
    if ((dict->flags & DICT_FLAG_LOCK)
	&& myflock(dict->lock_fd, INTERNAL_LOCK, MYFLOCK_OP_NONE) < 0)
	msg_fatal("%s: unlock dictionary: %m", dict_db->dict.name);

    return (result);
}
Example #5
0
int
slacon_(int *n, float *v, float *x, int *isgn, float *est, int *kase)

{


    /* Table of constant values */
    int c__1 = 1;
    float      zero = 0.0;
    float      one = 1.0;
    
    /* Local variables */
    static int iter;
    static int jump, jlast;
    static float altsgn, estold;
    static int i, j;
    float temp;
#ifdef _CRAY
    extern int ISAMAX(int *, float *, int *);
    extern float SASUM(int *, float *, int *);
    extern int SCOPY(int *, float *, int *, float *, int *);
#else
    extern int isamax_(int *, float *, int *);
    extern float sasum_(int *, float *, int *);
    extern int scopy_(int *, float *, int *, float *, int *);
#endif
#define d_sign(a, b) (b >= 0 ? fabs(a) : -fabs(a))    /* Copy sign */
#define i_dnnt(a) \
	( a>=0 ? floor(a+.5) : -floor(.5-a) ) /* Round to nearest integer */

    if ( *kase == 0 ) {
	for (i = 0; i < *n; ++i) {
	    x[i] = 1. / (float) (*n);
	}
	*kase = 1;
	jump = 1;
	return 0;
    }

    switch (jump) {
	case 1:  goto L20;
	case 2:  goto L40;
	case 3:  goto L70;
	case 4:  goto L110;
	case 5:  goto L140;
    }

    /*     ................ ENTRY   (JUMP = 1)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X. */
  L20:
    if (*n == 1) {
	v[0] = x[0];
	*est = fabs(v[0]);
	/*        ... QUIT */
	goto L150;
    }
#ifdef _CRAY
    *est = SASUM(n, x, &c__1);
#else
    *est = sasum_(n, x, &c__1);
#endif

    for (i = 0; i < *n; ++i) {
	x[i] = d_sign(one, x[i]);
	isgn[i] = i_dnnt(x[i]);
    }
    *kase = 2;
    jump = 2;
    return 0;

    /*     ................ ENTRY   (JUMP = 2)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
L40:
#ifdef _CRAY
    j = ISAMAX(n, &x[0], &c__1);
#else
    j = isamax_(n, &x[0], &c__1);
#endif
    --j;
    iter = 2;

    /*     MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
L50:
    for (i = 0; i < *n; ++i) x[i] = zero;
    x[j] = one;
    *kase = 1;
    jump = 3;
    return 0;

    /*     ................ ENTRY   (JUMP = 3)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L70:
#ifdef _CRAY
    SCOPY(n, x, &c__1, v, &c__1);
#else
    scopy_(n, x, &c__1, v, &c__1);
#endif
    estold = *est;
#ifdef _CRAY
    *est = SASUM(n, v, &c__1);
#else
    *est = sasum_(n, v, &c__1);
#endif

    for (i = 0; i < *n; ++i)
	if (i_dnnt(d_sign(one, x[i])) != isgn[i])
	    goto L90;

    /*     REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */
    goto L120;

L90:
    /*     TEST FOR CYCLING. */
    if (*est <= estold) goto L120;

    for (i = 0; i < *n; ++i) {
	x[i] = d_sign(one, x[i]);
	isgn[i] = i_dnnt(x[i]);
    }
    *kase = 2;
    jump = 4;
    return 0;

    /*     ................ ENTRY   (JUMP = 4)   
	   X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L110:
    jlast = j;
#ifdef _CRAY
    j = ISAMAX(n, &x[0], &c__1);
#else
    j = isamax_(n, &x[0], &c__1);
#endif
    --j;
    if (x[jlast] != fabs(x[j]) && iter < 5) {
	++iter;
	goto L50;
    }

    /*     ITERATION COMPLETE.  FINAL STAGE. */
L120:
    altsgn = 1.;
    for (i = 1; i <= *n; ++i) {
	x[i-1] = altsgn * ((float)(i - 1) / (float)(*n - 1) + 1.);
	altsgn = -altsgn;
    }
    *kase = 1;
    jump = 5;
    return 0;
    
    /*     ................ ENTRY   (JUMP = 5)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L140:
#ifdef _CRAY
    temp = SASUM(n, x, &c__1) / (float)(*n * 3) * 2.;
#else
    temp = sasum_(n, x, &c__1) / (float)(*n * 3) * 2.;
#endif
    if (temp > *est) {
#ifdef _CRAY
	SCOPY(n, &x[0], &c__1, &v[0], &c__1);
#else
	scopy_(n, &x[0], &c__1, &v[0], &c__1);
#endif
	*est = temp;
    }

L150:
    *kase = 0;
    return 0;

} /* slacon_ */
Example #6
0
/*! \brief
 *
 * <pre>
 *   Purpose   
 *   =======   
 *
 *   DGSRFS improves the computed solution to a system of linear   
 *   equations and provides error bounds and backward error estimates for 
 *   the solution.   
 *
 *   If equilibration was performed, the system becomes:
 *           (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 *   Arguments   
 *   =========   
 *
 * trans   (input) trans_t
 *          Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *          = CONJ:    A**H * X = B  (Conjugate transpose)
 *   
 *   A       (input) SuperMatrix*
 *           The original matrix A in the system, or the scaled A if
 *           equilibration was done. The type of A can be:
 *           Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_GE.
 *    
 *   L       (input) SuperMatrix*
 *	     The factor L from the factorization Pr*A*Pc=L*U. Use
 *           compressed row subscripts storage for supernodes, 
 *           i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 * 
 *   U       (input) SuperMatrix*
 *           The factor U from the factorization Pr*A*Pc=L*U as computed by
 *           dgstrf(). Use column-wise storage scheme, 
 *           i.e., U has types: Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 *   perm_c  (input) int*, dimension (A->ncol)
 *	     Column permutation vector, which defines the 
 *           permutation matrix Pc; perm_c[i] = j means column i of A is 
 *           in position j in A*Pc.
 *
 *   perm_r  (input) int*, dimension (A->nrow)
 *           Row permutation vector, which defines the permutation matrix Pr;
 *           perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 *   equed   (input) Specifies the form of equilibration that was done.
 *           = 'N': No equilibration.
 *           = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *           = 'C': Column equilibration, i.e., A was postmultiplied by
 *                  diag(C).
 *           = 'B': Both row and column equilibration, i.e., A was replaced 
 *                  by diag(R)*A*diag(C).
 *
 *   R       (input) double*, dimension (A->nrow)
 *           The row scale factors for A.
 *           If equed = 'R' or 'B', A is premultiplied by diag(R).
 *           If equed = 'N' or 'C', R is not accessed.
 * 
 *   C       (input) double*, dimension (A->ncol)
 *           The column scale factors for A.
 *           If equed = 'C' or 'B', A is postmultiplied by diag(C).
 *           If equed = 'N' or 'R', C is not accessed.
 *
 *   B       (input) SuperMatrix*
 *           B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *           The right hand side matrix B.
 *           if equed = 'R' or 'B', B is premultiplied by diag(R).
 *
 *   X       (input/output) SuperMatrix*
 *           X has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *           On entry, the solution matrix X, as computed by dgstrs().
 *           On exit, the improved solution matrix X.
 *           if *equed = 'C' or 'B', X should be premultiplied by diag(C)
 *               in order to obtain the solution to the original system.
 *
 *   FERR    (output) double*, dimension (B->ncol)   
 *           The estimated forward error bound for each solution vector   
 *           X(j) (the j-th column of the solution matrix X).   
 *           If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *           is an estimated upper bound for the magnitude of the largest 
 *           element in (X(j) - XTRUE) divided by the magnitude of the   
 *           largest element in X(j).  The estimate is as reliable as   
 *           the estimate for RCOND, and is almost always a slight   
 *           overestimate of the true error.
 *
 *   BERR    (output) double*, dimension (B->ncol)   
 *           The componentwise relative backward error of each solution   
 *           vector X(j) (i.e., the smallest relative change in   
 *           any element of A or B that makes X(j) an exact solution).
 *
 *   stat     (output) SuperLUStat_t*
 *            Record the statistics on runtime and floating-point operation count.
 *            See util.h for the definition of 'SuperLUStat_t'.
 *
 *   info    (output) int*   
 *           = 0:  successful exit   
 *            < 0:  if INFO = -i, the i-th argument had an illegal value   
 *
 *    Internal Parameters   
 *    ===================   
 *
 *    ITMAX is the maximum number of steps of iterative refinement.   
 *
 * </pre>
 */
void
dgsrfs(trans_t trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
       int *perm_c, int *perm_r, char *equed, double *R, double *C,
       SuperMatrix *B, SuperMatrix *X, double *ferr, double *berr,
       SuperLUStat_t *stat, int *info)
{


#define ITMAX 5
    
    /* Table of constant values */
    int    ione = 1;
    double ndone = -1.;
    double done = 1.;
    
    /* Local variables */
    NCformat *Astore;
    double   *Aval;
    SuperMatrix Bjcol;
    DNformat *Bstore, *Xstore, *Bjcol_store;
    double   *Bmat, *Xmat, *Bptr, *Xptr;
    int      kase;
    double   safe1, safe2;
    int      i, j, k, irow, nz, count, notran, rowequ, colequ;
    int      ldb, ldx, nrhs;
    double   s, xk, lstres, eps, safmin;
    char     transc[1];
    trans_t  transt;
    double   *work;
    double   *rwork;
    int      *iwork;
    int      isave[3];

    extern int dlacon2_(int *, double *, double *, int *, double *, int *, int []);
#ifdef _CRAY
    extern int SCOPY(int *, double *, int *, double *, int *);
    extern int SSAXPY(int *, double *, double *, int *, double *, int *);
#else
    extern int dcopy_(int *, double *, int *, double *, int *);
    extern int daxpy_(int *, double *, double *, int *, double *, int *);
#endif

    Astore = A->Store;
    Aval   = Astore->nzval;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    
    /* Test the input parameters */
    *info = 0;
    notran = (trans == NOTRANS);
    if ( !notran && trans != TRANS && trans != CONJ ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      A->Stype != SLU_NC || A->Dtype != SLU_D || A->Mtype != SLU_GE )
	*info = -2;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
 	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
	*info = -3;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
 	      U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU )
	*info = -4;
    else if ( ldb < SUPERLU_MAX(0, A->nrow) ||
 	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
        *info = -10;
    else if ( ldx < SUPERLU_MAX(0, A->nrow) ||
 	      X->Stype != SLU_DN || X->Dtype != SLU_D || X->Mtype != SLU_GE )
	*info = -11;
    if (*info != 0) {
	i = -(*info);
	input_error("dgsrfs", &i);
	return;
    }

    /* Quick return if possible */
    if ( A->nrow == 0 || nrhs == 0) {
	for (j = 0; j < nrhs; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
	}
	return;
    }

    rowequ = strncmp(equed, "R", 1)==0 || strncmp(equed, "B", 1)==0;
    colequ = strncmp(equed, "C", 1)==0 || strncmp(equed, "B", 1)==0;
    
    /* Allocate working space */
    work = doubleMalloc(2*A->nrow);
    rwork = (double *) SUPERLU_MALLOC( A->nrow * sizeof(double) );
    iwork = intMalloc(2*A->nrow);
    if ( !work || !rwork || !iwork ) 
        ABORT("Malloc fails for work/rwork/iwork.");
    
    if ( notran ) {
	*(unsigned char *)transc = 'N';
        transt = TRANS;
    } else if ( trans == TRANS ) {
	*(unsigned char *)transc = 'T';
	transt = NOTRANS;
    } else if ( trans == CONJ ) {
	*(unsigned char *)transc = 'C';
	transt = NOTRANS;
    }    

    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
    nz     = A->ncol + 1;
    eps    = dmach("Epsilon");
    safmin = dmach("Safe minimum");

    /* Set SAFE1 essentially to be the underflow threshold times the
       number of additions in each row. */
    safe1  = nz * safmin;
    safe2  = safe1 / eps;

    /* Compute the number of nonzeros in each row (or column) of A */
    for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
    if ( notran ) {
	for (k = 0; k < A->ncol; ++k)
	    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) 
		++iwork[Astore->rowind[i]];
    } else {
	for (k = 0; k < A->ncol; ++k)
	    iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
    }	

    /* Copy one column of RHS B into Bjcol. */
    Bjcol.Stype = B->Stype;
    Bjcol.Dtype = B->Dtype;
    Bjcol.Mtype = B->Mtype;
    Bjcol.nrow  = B->nrow;
    Bjcol.ncol  = 1;
    Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
    if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
    Bjcol_store = Bjcol.Store;
    Bjcol_store->lda = ldb;
    Bjcol_store->nzval = work; /* address aliasing */
	
    /* Do for each right hand side ... */
    for (j = 0; j < nrhs; ++j) {
	count = 0;
	lstres = 3.;
	Bptr = &Bmat[j*ldb];
	Xptr = &Xmat[j*ldx];

	while (1) { /* Loop until stopping criterion is satisfied. */

	    /* Compute residual R = B - op(A) * X,   
	       where op(A) = A, A**T, or A**H, depending on TRANS. */
	    
#ifdef _CRAY
	    SCOPY(&A->nrow, Bptr, &ione, work, &ione);
#else
	    dcopy_(&A->nrow, Bptr, &ione, work, &ione);
#endif
	    sp_dgemv(transc, ndone, A, Xptr, ione, done, work, ione);

	    /* Compute componentwise relative backward error from formula 
	       max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )   
	       where abs(Z) is the componentwise absolute value of the matrix
	       or vector Z.  If the i-th component of the denominator is less
	       than SAFE2, then SAFE1 is added to the i-th component of the   
	       numerator before dividing. */

	    for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	    
	    /* Compute abs(op(A))*abs(X) + abs(B). */
	    if ( notran ) {
		for (k = 0; k < A->ncol; ++k) {
		    xk = fabs( Xptr[k] );
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
			rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
		}
	    } else {  /* trans = TRANS or CONJ */
		for (k = 0; k < A->ncol; ++k) {
		    s = 0.;
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
			irow = Astore->rowind[i];
			s += fabs(Aval[i]) * fabs(Xptr[irow]);
		    }
		    rwork[k] += s;
		}
	    }
	    s = 0.;
	    for (i = 0; i < A->nrow; ++i) {
		if (rwork[i] > safe2) {
		    s = SUPERLU_MAX( s, fabs(work[i]) / rwork[i] );
		} else if ( rwork[i] != 0.0 ) {
                    /* Adding SAFE1 to the numerator guards against
                       spuriously zero residuals (underflow). */
		    s = SUPERLU_MAX( s, (safe1 + fabs(work[i])) / rwork[i] );
                }
                /* If rwork[i] is exactly 0.0, then we know the true 
                   residual also must be exactly 0.0. */
	    }
	    berr[j] = s;

	    /* Test stopping criterion. Continue iterating if   
	       1) The residual BERR(J) is larger than machine epsilon, and   
	       2) BERR(J) decreased by at least a factor of 2 during the   
	          last iteration, and   
	       3) At most ITMAX iterations tried. */

	    if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
		/* Update solution and try again. */
		dgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
		
#ifdef _CRAY
		SAXPY(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#else
		daxpy_(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#endif
		lstres = berr[j];
		++count;
	    } else {
		break;
	    }
        
	} /* end while */

	stat->RefineSteps = count;

	/* Bound error from formula:
	   norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*   
	   ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)   
          where   
            norm(Z) is the magnitude of the largest component of Z   
            inv(op(A)) is the inverse of op(A)   
            abs(Z) is the componentwise absolute value of the matrix or
	       vector Z   
            NZ is the maximum number of nonzeros in any row of A, plus 1   
            EPS is machine epsilon   

          The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))   
          is incremented by SAFE1 if the i-th component of   
          abs(op(A))*abs(X) + abs(B) is less than SAFE2.   

          Use DLACON2 to estimate the infinity-norm of the matrix   
             inv(op(A)) * diag(W),   
          where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
	
	for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	
	/* Compute abs(op(A))*abs(X) + abs(B). */
	if ( notran ) {
	    for (k = 0; k < A->ncol; ++k) {
		xk = fabs( Xptr[k] );
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
		    rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
	    }
	} else {  /* trans == TRANS or CONJ */
	    for (k = 0; k < A->ncol; ++k) {
		s = 0.;
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
		    irow = Astore->rowind[i];
		    xk = fabs( Xptr[irow] );
		    s += fabs(Aval[i]) * xk;
		}
		rwork[k] += s;
	    }
	}
	
	for (i = 0; i < A->nrow; ++i)
	    if (rwork[i] > safe2)
		rwork[i] = fabs(work[i]) + (iwork[i]+1)*eps*rwork[i];
	    else
		rwork[i] = fabs(work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;

	kase = 0;

	do {
	    dlacon2_(&A->nrow, &work[A->nrow], work,
		    &iwork[A->nrow], &ferr[j], &kase, isave);
	    if (kase == 0) break;

	    if (kase == 1) {
		/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->nrow; ++i) work[i] *= R[i];
		
		dgstrs (transt, L, U, perm_c, perm_r, &Bjcol, stat, info);
		
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
	    } else {
		/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
		
		dgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
		
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= R[i];  
	    }
	    
	} while ( kase != 0 );


	/* Normalize error. */
	lstres = 0.;
 	if ( notran && colequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = SUPERLU_MAX( lstres, C[i] * fabs( Xptr[i]) );
  	} else if ( !notran && rowequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = SUPERLU_MAX( lstres, R[i] * fabs( Xptr[i]) );
	} else {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = SUPERLU_MAX( lstres, fabs( Xptr[i]) );
	}
	if ( lstres != 0. )
	    ferr[j] /= lstres;

    } /* for each RHS j ... */
    
    SUPERLU_FREE(work);
    SUPERLU_FREE(rwork);
    SUPERLU_FREE(iwork);
    SUPERLU_FREE(Bjcol.Store);

    return;

} /* dgsrfs */
int
dlacon_(int *n, double *v, double *x, int *isgn, double *est, int *kase)

{
/*
    Purpose   
    =======   

    DLACON estimates the 1-norm of a square matrix A.   
    Reverse communication is used for evaluating matrix-vector products. 
  

    Arguments   
    =========   

    N      (input) INT
           The order of the matrix.  N >= 1.   

    V      (workspace) DOUBLE PRECISION array, dimension (N)   
           On the final return, V = A*W,  where  EST = norm(V)/norm(W)   
           (W is not returned).   

    X      (input/output) DOUBLE PRECISION array, dimension (N)   
           On an intermediate return, X should be overwritten by   
                 A * X,   if KASE=1,   
                 A' * X,  if KASE=2,
           and DLACON must be re-called with all the other parameters   
           unchanged.   

    ISGN   (workspace) INT array, dimension (N)

    EST    (output) DOUBLE PRECISION   
           An estimate (a lower bound) for norm(A).   

    KASE   (input/output) INT
           On the initial call to DLACON, KASE should be 0.   
           On an intermediate return, KASE will be 1 or 2, indicating   
           whether X should be overwritten by A * X  or A' * X.   
           On the final return from DLACON, KASE will again be 0.   

    Further Details   
    ======= =======   

    Contributed by Nick Higham, University of Manchester.   
    Originally named CONEST, dated March 16, 1988.   

    Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of 
    a real or complex matrix, with applications to condition estimation", 
    ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.   
    ===================================================================== 
*/

    /* Table of constant values */
    int c__1 = 1;
    double      zero = 0.0;
    double      one = 1.0;
    
    /* Local variables */
    static int iter;
    static int jump, jlast;
    static double altsgn, estold;
    static int i, j;
    double temp;
#ifdef _CRAY
    extern int ISAMAX(int *, double *, int *);
    extern double SASUM(int *, double *, int *);
    extern int SCOPY(int *, double *, int *, double *, int *);
#else
    extern int idamax_(int *, double *, int *);
    extern double dasum_(int *, double *, int *);
    extern int dcopy_(int *, double *, int *, double *, int *);
#endif
#define d_sign(a, b) (b >= 0 ? fabs(a) : -fabs(a))    /* Copy sign */
#define i_dnnt(a) \
	( a>=0 ? floor(a+.5) : -floor(.5-a) ) /* Round to nearest integer */

    if ( *kase == 0 ) {
	for (i = 0; i < *n; ++i) {
	    x[i] = 1. / (double) (*n);
	}
	*kase = 1;
	jump = 1;
	return 0;
    }

    switch (jump) {
	case 1:  goto L20;
	case 2:  goto L40;
	case 3:  goto L70;
	case 4:  goto L110;
	case 5:  goto L140;
    }

    /*     ................ ENTRY   (JUMP = 1)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X. */
  L20:
    if (*n == 1) {
	v[0] = x[0];
	*est = fabs(v[0]);
	/*        ... QUIT */
	goto L150;
    }
#ifdef _CRAY
    *est = SASUM(n, x, &c__1);
#else
    *est = dasum_(n, x, &c__1);
#endif

    for (i = 0; i < *n; ++i) {
	x[i] = d_sign(one, x[i]);
	isgn[i] = i_dnnt(x[i]);
    }
    *kase = 2;
    jump = 2;
    return 0;

    /*     ................ ENTRY   (JUMP = 2)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
L40:
#ifdef _CRAY
    j = ISAMAX(n, &x[0], &c__1);
#else
    j = idamax_(n, &x[0], &c__1);
#endif
    --j;
    iter = 2;

    /*     MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
L50:
    for (i = 0; i < *n; ++i) x[i] = zero;
    x[j] = one;
    *kase = 1;
    jump = 3;
    return 0;

    /*     ................ ENTRY   (JUMP = 3)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L70:
#ifdef _CRAY
    SCOPY(n, x, &c__1, v, &c__1);
#else
    dcopy_(n, x, &c__1, v, &c__1);
#endif
    estold = *est;
#ifdef _CRAY
    *est = SASUM(n, v, &c__1);
#else
    *est = dasum_(n, v, &c__1);
#endif

    for (i = 0; i < *n; ++i)
	if (i_dnnt(d_sign(one, x[i])) != isgn[i])
	    goto L90;

    /*     REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */
    goto L120;

L90:
    /*     TEST FOR CYCLING. */
    if (*est <= estold) goto L120;

    for (i = 0; i < *n; ++i) {
	x[i] = d_sign(one, x[i]);
	isgn[i] = i_dnnt(x[i]);
    }
    *kase = 2;
    jump = 4;
    return 0;

    /*     ................ ENTRY   (JUMP = 4)   
	   X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L110:
    jlast = j;
#ifdef _CRAY
    j = ISAMAX(n, &x[0], &c__1);
#else
    j = idamax_(n, &x[0], &c__1);
#endif
    --j;
    if (x[jlast] != fabs(x[j]) && iter < 5) {
	++iter;
	goto L50;
    }

    /*     ITERATION COMPLETE.  FINAL STAGE. */
L120:
    altsgn = 1.;
    for (i = 1; i <= *n; ++i) {
	x[i-1] = altsgn * ((double)(i - 1) / (double)(*n - 1) + 1.);
	altsgn = -altsgn;
    }
    *kase = 1;
    jump = 5;
    return 0;
    
    /*     ................ ENTRY   (JUMP = 5)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L140:
#ifdef _CRAY
    temp = SASUM(n, x, &c__1) / (double)(*n * 3) * 2.;
#else
    temp = dasum_(n, x, &c__1) / (double)(*n * 3) * 2.;
#endif
    if (temp > *est) {
#ifdef _CRAY
	SCOPY(n, &x[0], &c__1, &v[0], &c__1);
#else
	dcopy_(n, &x[0], &c__1, &v[0], &c__1);
#endif
	*est = temp;
    }

L150:
    *kase = 0;
    return 0;

} /* dlacon_ */
Example #8
0
void
dgsrfs(char *trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
       int *perm_r, int *perm_c, char *equed, double *R, double *C,
       SuperMatrix *B, SuperMatrix *X, 
       double *ferr, double *berr, int *info)
{
/*
 *   Purpose   
 *   =======   
 *
 *   DGSRFS improves the computed solution to a system of linear   
 *   equations and provides error bounds and backward error estimates for 
 *   the solution.   
 *
 *   If equilibration was performed, the system becomes:
 *           (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 *   Arguments   
 *   =========   
 *
 *   trans   (input) char*
 *           Specifies the form of the system of equations:   
 *           = 'N':  A * X = B     (No transpose)   
 *           = 'T':  A**T * X = B  (Transpose)   
 *           = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 *   
 *   A       (input) SuperMatrix*
 *           The original matrix A in the system, or the scaled A if
 *           equilibration was done. The type of A can be:
 *           Stype = NC, Dtype = _D, Mtype = GE.
 *    
 *   L       (input) SuperMatrix*
 *	     The factor L from the factorization Pr*A*Pc=L*U. Use
 *           compressed row subscripts storage for supernodes, 
 *           i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU.
 * 
 *   U       (input) SuperMatrix*
 *           The factor U from the factorization Pr*A*Pc=L*U as computed by
 *           dgstrf(). Use column-wise storage scheme, 
 *           i.e., U has types: Stype = NC, Dtype = _D, Mtype = TRU.
 *
 *   perm_r  (input) int*, dimension (A->nrow)
 *           Row permutation vector, which defines the permutation matrix Pr;
 *           perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 *   perm_c  (input) int*, dimension (A->ncol)
 *	     Column permutation vector, which defines the 
 *           permutation matrix Pc; perm_c[i] = j means column i of A is 
 *           in position j in A*Pc.
 *
 *   equed   (input) Specifies the form of equilibration that was done.
 *           = 'N': No equilibration.
 *           = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *           = 'C': Column equilibration, i.e., A was postmultiplied by
 *                  diag(C).
 *           = 'B': Both row and column equilibration, i.e., A was replaced 
 *                  by diag(R)*A*diag(C).
 *
 *   R       (input) double*, dimension (A->nrow)
 *           The row scale factors for A.
 *           If equed = 'R' or 'B', A is premultiplied by diag(R).
 *           If equed = 'N' or 'C', R is not accessed.
 * 
 *   C       (input) double*, dimension (A->ncol)
 *           The column scale factors for A.
 *           If equed = 'C' or 'B', A is postmultiplied by diag(C).
 *           If equed = 'N' or 'R', C is not accessed.
 *
 *   B       (input) SuperMatrix*
 *           B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *           The right hand side matrix B.
 *           if equed = 'R' or 'B', B is premultiplied by diag(R).
 *
 *   X       (input/output) SuperMatrix*
 *           X has types: Stype = DN, Dtype = _D, Mtype = GE.
 *           On entry, the solution matrix X, as computed by dgstrs().
 *           On exit, the improved solution matrix X.
 *           if *equed = 'C' or 'B', X should be premultiplied by diag(C)
 *               in order to obtain the solution to the original system.
 *
 *   FERR    (output) double*, dimension (B->ncol)   
 *           The estimated forward error bound for each solution vector   
 *           X(j) (the j-th column of the solution matrix X).   
 *           If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *           is an estimated upper bound for the magnitude of the largest 
 *           element in (X(j) - XTRUE) divided by the magnitude of the   
 *           largest element in X(j).  The estimate is as reliable as   
 *           the estimate for RCOND, and is almost always a slight   
 *           overestimate of the true error.
 *
 *   BERR    (output) double*, dimension (B->ncol)   
 *           The componentwise relative backward error of each solution   
 *           vector X(j) (i.e., the smallest relative change in   
 *           any element of A or B that makes X(j) an exact solution).
 *
 *   info    (output) int*   
 *           = 0:  successful exit   
 *            < 0:  if INFO = -i, the i-th argument had an illegal value   
 *
 *    Internal Parameters   
 *    ===================   
 *
 *    ITMAX is the maximum number of steps of iterative refinement.   
 *
 */  

#define ITMAX 5
    
    /* Table of constant values */
    int    ione = 1;
    double ndone = -1.;
    double done = 1.;
    
    /* Local variables */
    NCformat *Astore;
    double   *Aval;
    SuperMatrix Bjcol;
    DNformat *Bstore, *Xstore, *Bjcol_store;
    double   *Bmat, *Xmat, *Bptr, *Xptr;
    int      kase;
    double   safe1, safe2;
    int      i, j, k, irow, nz, count, notran, rowequ, colequ;
    int      ldb, ldx, nrhs;
    double   s, xk, lstres, eps, safmin;
    char     transt[1];
    double   *work;
    double   *rwork;
    int      *iwork;
    extern double dlamch_(char *);
    extern int dlacon_(int *, double *, double *, int *, double *, int *);
#ifdef _CRAY
    extern int SCOPY(int *, double *, int *, double *, int *);
    extern int SSAXPY(int *, double *, double *, int *, double *, int *);
#else
    extern int dcopy_(int *, double *, int *, double *, int *);
    extern int daxpy_(int *, double *, double *, int *, double *, int *);
#endif

    Astore = A->Store;
    Aval   = Astore->nzval;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    
    /* Test the input parameters */
    *info = 0;
    notran = lsame_(trans, "N");
    if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C"))	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      A->Stype != NC || A->Dtype != _D || A->Mtype != GE )
	*info = -2;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
 	      L->Stype != SC || L->Dtype != _D || L->Mtype != TRLU )
	*info = -3;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
 	      U->Stype != NC || U->Dtype != _D || U->Mtype != TRU )
	*info = -4;
    else if ( ldb < MAX(0, A->nrow) ||
 	      B->Stype != DN || B->Dtype != _D || B->Mtype != GE )
        *info = -10;
    else if ( ldx < MAX(0, A->nrow) ||
 	      X->Stype != DN || X->Dtype != _D || X->Mtype != GE )
	*info = -11;
    if (*info != 0) {
	i = -(*info);
	xerbla_("dgsrfs", &i);
	return;
    }

    /* Quick return if possible */
    if ( A->nrow == 0 || nrhs == 0) {
	for (j = 0; j < nrhs; ++j) {
	    ferr[j] = 0.;
	    berr[j] = 0.;
	}
	return;
    }

    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
    colequ = lsame_(equed, "C") || lsame_(equed, "B");
    
    /* Allocate working space */
    work = doubleMalloc(2*A->nrow);
    rwork = (double *) SUPERLU_MALLOC( A->nrow * sizeof(double) );
    iwork = intMalloc(2*A->nrow);
    if ( !work || !rwork || !iwork ) 
        ABORT("Malloc fails for work/rwork/iwork.");
    
    if ( notran ) {
	*(unsigned char *)transt = 'T';
    } else {
	*(unsigned char *)transt = 'N';
    }

    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
    nz     = A->ncol + 1;
    eps    = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1  = nz * safmin;
    safe2  = safe1 / eps;

    /* Compute the number of nonzeros in each row (or column) of A */
    for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
    if ( notran ) {
	for (k = 0; k < A->ncol; ++k)
	    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) 
		++iwork[Astore->rowind[i]];
    } else {
	for (k = 0; k < A->ncol; ++k)
	    iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
    }	

    /* Copy one column of RHS B into Bjcol. */
    Bjcol.Stype = B->Stype;
    Bjcol.Dtype = B->Dtype;
    Bjcol.Mtype = B->Mtype;
    Bjcol.nrow  = B->nrow;
    Bjcol.ncol  = 1;
    Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
    if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
    Bjcol_store = Bjcol.Store;
    Bjcol_store->lda = ldb;
    Bjcol_store->nzval = work; /* address aliasing */
	
    /* Do for each right hand side ... */
    for (j = 0; j < nrhs; ++j) {
	count = 0;
	lstres = 3.;
	Bptr = &Bmat[j*ldb];
	Xptr = &Xmat[j*ldx];

	while (1) { /* Loop until stopping criterion is satisfied. */

	    /* Compute residual R = B - op(A) * X,   
	       where op(A) = A, A**T, or A**H, depending on TRANS. */
	    
#ifdef _CRAY
	    SCOPY(&A->nrow, Bptr, &ione, work, &ione);
#else
	    dcopy_(&A->nrow, Bptr, &ione, work, &ione);
#endif
	    sp_dgemv(trans, ndone, A, Xptr, ione, done, work, ione);

	    /* Compute componentwise relative backward error from formula 
	       max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )   
	       where abs(Z) is the componentwise absolute value of the matrix
	       or vector Z.  If the i-th component of the denominator is less
	       than SAFE2, then SAFE1 is added to the i-th component of the   
	       numerator and denominator before dividing. */

	    for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	    
	    /* Compute abs(op(A))*abs(X) + abs(B). */
	    if (notran) {
		for (k = 0; k < A->ncol; ++k) {
		    xk = fabs( Xptr[k] );
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
			rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
		}
	    } else {
		for (k = 0; k < A->ncol; ++k) {
		    s = 0.;
		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
			irow = Astore->rowind[i];
			s += fabs(Aval[i]) * fabs(Xptr[irow]);
		    }
		    rwork[k] += s;
		}
	    }
	    s = 0.;
	    for (i = 0; i < A->nrow; ++i) {
		if (rwork[i] > safe2)
		    s = MAX( s, fabs(work[i]) / rwork[i] );
		else
		    s = MAX( s, (fabs(work[i]) + safe1) / 
				(rwork[i] + safe1) );
	    }
	    berr[j] = s;

	    /* Test stopping criterion. Continue iterating if   
	       1) The residual BERR(J) is larger than machine epsilon, and   
	       2) BERR(J) decreased by at least a factor of 2 during the   
	          last iteration, and   
	       3) At most ITMAX iterations tried. */

	    if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
		/* Update solution and try again. */
		dgstrs (trans, L, U, perm_r, perm_c, &Bjcol, info);
		
#ifdef _CRAY
		SAXPY(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#else
		daxpy_(&A->nrow, &done, work, &ione,
		       &Xmat[j*ldx], &ione);
#endif
		lstres = berr[j];
		++count;
	    } else {
		break;
	    }
        
	} /* end while */

	/* Bound error from formula:
	   norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*   
	   ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)   
          where   
            norm(Z) is the magnitude of the largest component of Z   
            inv(op(A)) is the inverse of op(A)   
            abs(Z) is the componentwise absolute value of the matrix or
	       vector Z   
            NZ is the maximum number of nonzeros in any row of A, plus 1   
            EPS is machine epsilon   

          The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))   
          is incremented by SAFE1 if the i-th component of   
          abs(op(A))*abs(X) + abs(B) is less than SAFE2.   

          Use DLACON to estimate the infinity-norm of the matrix   
             inv(op(A)) * diag(W),   
          where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
	
	for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );
	
	/* Compute abs(op(A))*abs(X) + abs(B). */
	if ( notran ) {
	    for (k = 0; k < A->ncol; ++k) {
		xk = fabs( Xptr[k] );
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
		    rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;
	    }
	} else {
	    for (k = 0; k < A->ncol; ++k) {
		s = 0.;
		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
		    irow = Astore->rowind[i];
		    xk = fabs( Xptr[irow] );
		    s += fabs(Aval[i]) * xk;
		}
		rwork[k] += s;
	    }
	}
	
	for (i = 0; i < A->nrow; ++i)
	    if (rwork[i] > safe2)
		rwork[i] = fabs(work[i]) + (iwork[i]+1)*eps*rwork[i];
	    else
		rwork[i] = fabs(work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;

	kase = 0;

	do {
	    dlacon_(&A->nrow, &work[A->nrow], work,
		    &iwork[A->nrow], &ferr[j], &kase);
	    if (kase == 0) break;

	    if (kase == 1) {
		/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->nrow; ++i) work[i] *= R[i];
		
		dgstrs (transt, L, U, perm_r, perm_c, &Bjcol, info);
		
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
	    } else {
		/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];
		
		dgstrs (trans, L, U, perm_r, perm_c, &Bjcol, info);
		
		if ( notran && colequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];
		else if ( !notran && rowequ )
		    for (i = 0; i < A->ncol; ++i) work[i] *= R[i];  
	    }
	    
	} while ( kase != 0 );


	/* Normalize error. */
	lstres = 0.;
 	if ( notran && colequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = MAX( lstres, C[i] * fabs( Xptr[i]) );
  	} else if ( !notran && rowequ ) {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = MAX( lstres, R[i] * fabs( Xptr[i]) );
	} else {
	    for (i = 0; i < A->nrow; ++i)
	    	lstres = MAX( lstres, fabs( Xptr[i]) );
	}
	if ( lstres != 0. )
	    ferr[j] /= lstres;

    } /* for each RHS j ... */
    
    SUPERLU_FREE(work);
    SUPERLU_FREE(rwork);
    SUPERLU_FREE(iwork);
    SUPERLU_FREE(Bjcol.Store);

    return;

} /* dgsrfs */
Example #9
0
bool charset_conv::update_begin(const char* fromCharset,
	const char* toCharset)
{
#ifdef  HAVE_H_ICONV
	if (EQ2(fromCharset, toCharset))
		return (true);

	if (fromCharset == NULL || toCharset == NULL)
	{
		if (m_iconv != (iconv_t) -1)
			return (true);

		logger_error("input invalid, from: %s, to: %s, m_conv: %s",
			fromCharset ? fromCharset : "null",
			toCharset ? toCharset : "null",
			m_iconv == (iconv_t) -1 ? "invalid" : "valud");
		m_errmsg = "input invalid";
		return (false);
	}

	// 如果源是 UTF-8 编码,则 m_pTuf8Pre 从 UTF8_HEADER 头部第
	// 一个字节开始进行匹配,否则从最后一个字节 '\0' 开始匹配,
	// 即跳过 UTF-8 头部匹配过程
	if (EQ(fromCharset, "utf-8") || EQ(fromCharset, "utf8"))
		m_pUtf8Pre = UTF8_HEADER;
	else
		m_pUtf8Pre = &UTF8_HEADER[3];

	if (m_iconv != (iconv_t) -1
		&& EQ(m_fromCharset, fromCharset)
		&& EQ(m_toCharset, toCharset))
	{
		return (true);
	}

	SCOPY(m_fromCharset, fromCharset, sizeof(m_fromCharset));
	SCOPY(m_toCharset, toCharset, sizeof(m_toCharset));

	if (m_iconv != (iconv_t) -1)
		__iconv_close(m_iconv);
	m_iconv = __iconv_open(toCharset, fromCharset);
	if (m_iconv == (iconv_t) -1)
	{
		logger_error("iconv_open(%s, %s) error(%s)",
			toCharset, fromCharset, acl_last_serror());
		m_errmsg.format("iconv_open(%s, %s) error(%s)",
			toCharset, fromCharset, acl_last_serror());
		return (false);
	}
	else
	{
#ifdef WIN32
# ifndef USE_WIN_ICONV
		int  n = 1;
		__iconvctl(m_iconv, ICONV_TRIVIALP, &n);

		n = 1;
		__iconvctl(m_iconv, ICONV_SET_DISCARD_ILSEQ, &n);

		n = 1;
		__iconvctl(m_iconv, ICONV_SET_TRANSLITERATE, &n);
# endif // USE_WIN_ICONV
#endif

		char *pNil = NULL;
		size_t zero = 0;
#ifdef	WIN32
# ifdef USE_WIN_ICONV
		__iconv(m_iconv, (const char**) &pNil, &zero, &pNil, &zero);
# else
		__iconv(m_iconv, (const char**) &pNil, &zero, &pNil, &zero, NULL);
# endif // USE_WIN_ICONV
#elif defined(ACL_SUNOS5) || defined(ACL_FREEBSD)
		__iconv(m_iconv, (const char**) &pNil, &zero, &pNil, &zero);
#else
		__iconv(m_iconv, &pNil, &zero, &pNil, &zero);
#endif
		return (true);
	}
#else
	logger_error("no iconv lib");
	m_errmsg = "no iconv lib";
	return (false);
#endif
}
Example #10
0
void describe_song (const char * name, const Tuple * tuple, char * * _title,
 char * * _artist, char * * _album)
{
    /* Common folder names to skip */
    static const char * const skip[] = {"music"};

    char * title = get_nonblank_field (tuple, FIELD_TITLE);
    char * artist = get_nonblank_field (tuple, FIELD_ARTIST);
    char * album = get_nonblank_field (tuple, FIELD_ALBUM);

    if (title && artist && album)
    {
DONE:
        * _title = title;
        * _artist = artist;
        * _album = album;
        return;
    }

    if (! strncmp (name, "file:///", 8))
    {
        char * filename = uri_to_display (name);
        if (! filename)
            goto DONE;

        SCOPY (buf, filename);

        char * base, * first, * second;
        split_filename (skip_top_folders (buf), & base, & first, & second);

        if (! title)
            title = str_get (base);

        for (int i = 0; i < ARRAY_LEN (skip); i ++)
        {
            if (first && ! g_ascii_strcasecmp (first, skip[i]))
                first = NULL;
            if (second && ! g_ascii_strcasecmp (second, skip[i]))
                second = NULL;
        }

        if (first)
        {
            if (second && ! artist && ! album)
            {
                artist = str_get (second);
                album = str_get (first);
            }
            else if (! artist)
                artist = str_get (first);
            else if (! album)
                album = str_get (first);
        }

        str_unref (filename);
    }
    else
    {
        SCOPY (buf, name);

        if (! title)
        {
            title = str_get_decoded (stream_name (buf));

            if (! title)
                title = str_get_decoded (buf);
        }
        else if (! artist)
            artist = str_get_decoded (stream_name (buf));
        else if (! album)
            album = str_get_decoded (stream_name (buf));
    }

    goto DONE;
}