Example #1
0
void check_avalanche_effect() {
    unsigned int yyyymmdd;
    unsigned int yyyymmdd_1;
    int in;
    unsigned char h1[HASH_LENGTH];
    unsigned char h2[HASH_LENGTH];

    fputs("YYYYMMDD: ", stdout);
    in = scanf("%8u", &yyyymmdd);
    if (EOF == in) {
        perror("failed to get your birth date");
    } else if (1 != in) {
        fputs("your birth date should be eight-digit unsigned integer",
                stderr);
        exit(EXIT_FAILURE);
    }

    yyyymmdd_1 = yyyymmdd ^ 0x01;

    SHA3_256(h1, (unsigned char *) &yyyymmdd, sizeof(yyyymmdd));
    print_hash("SHA3_256", yyyymmdd, h1, 0);

    SHA3_256(h2, (unsigned char *) &yyyymmdd_1, sizeof(yyyymmdd_1));
    print_hash("SHA3_256", yyyymmdd, h2, 1);

    print_hdist(h1, h2);
}
Example #2
0
void ethash_get_seedhash(ethash_h256_t *seedhash, const uint32_t block_number)
{
    ethash_h256_reset(seedhash);
    const uint32_t epochs = block_number / EPOCH_LENGTH;
    for (uint32_t i = 0; i < epochs; ++i)
        SHA3_256(seedhash, (uint8_t*)seedhash, 32);
}
Example #3
0
ethash_h256_t ethash_get_seedhash(uint64_t block_number)
{
	ethash_h256_t ret;
	ethash_h256_reset(&ret);
	uint64_t const epochs = block_number / ETHASH_EPOCH_LENGTH;
	for (uint32_t i = 0; i < epochs; ++i)
		SHA3_256(&ret, (uint8_t*)&ret, 32);
	return ret;
}
Example #4
0
void testFIPS202()
{
	const unsigned char *input = (const unsigned char *)"\x21\xF1\x34\xAC\x57";
	const unsigned char *outputSHAKE128 = (const unsigned char *)
		"\x7B\xFB\xB4\x0D\xA3\x70\x4A\x55\x82\x91\xB3\x9E\x1E\x56\xED\x9F"
		"\x6F\x56\xAE\x78\x32\x70\xAB\x02\xA2\x02\x06\x0C\x91\x73\xFB\xB0"
		"\xB4\x55\x75\xB3\x23\x48\xA6\xED\x2C\x92\x7A\x39\xA3\x0D\xA0\xA2"
		"\xBB\xC1\x80\x74\x97\xAD\x50\xF2\x7A\x10\x77\x54\xAF\x62\x76\x2C";
	const unsigned char *outputSHAKE256 = (const unsigned char *)
		"\xBB\x8A\x84\x47\x51\x7B\xA9\xCA\x7F\xA3\x4E\xC9\x9A\x80\x00\x4F"
		"\x22\x8A\xB2\x82\x47\x28\x41\xEB\x3D\x3A\x76\x22\x5C\x9D\xBE\x77"
		"\xF7\xE4\x0A\x06\x67\x76\xD3\x2C\x74\x94\x12\x02\xF9\xF4\xAA\x43"
		"\xD1\x2C\x62\x64\xAF\xA5\x96\x39\xC4\x4E\x11\xF5\xE1\x4F\x1E\x56";
	const unsigned char *outputSHA3_224 = (const unsigned char *)
		"\x10\xE5\x80\xA3\x21\x99\x59\x61\x69\x33\x1A\xD4\x3C\xFC\xF1\x02"
		"\x64\xF8\x15\x65\x03\x70\x40\x02\x8A\x06\xB4\x58";
	const unsigned char *outputSHA3_256 = (const unsigned char *)
		"\x55\xBD\x92\x24\xAF\x4E\xED\x0D\x12\x11\x49\xE3\x7F\xF4\xD7\xDD"
		"\x5B\xE2\x4B\xD9\xFB\xE5\x6E\x01\x71\xE8\x7D\xB7\xA6\xF4\xE0\x6D";
	const unsigned char *outputSHA3_384 = (const unsigned char *)
		"\xE2\x48\xD6\xFF\x34\x2D\x35\xA3\x0E\xC2\x30\xBA\x51\xCD\xB1\x61"
		"\x02\x5D\x6F\x1C\x25\x1A\xCA\x6A\xE3\x53\x1F\x06\x82\xC1\x64\xA1"
		"\xFC\x07\x25\xB1\xBE\xFF\x80\x8A\x20\x0C\x13\x15\x57\xA2\x28\x09";
	const unsigned char *outputSHA3_512 = (const unsigned char *)
		"\x58\x42\x19\xA8\x4E\x87\x96\x07\x6B\xF1\x17\x8B\x14\xB9\xD1\xE2"
		"\xF9\x6A\x4B\x4E\xF1\x1F\x10\xCC\x51\x6F\xBE\x1A\x29\x63\x9D\x6B"
		"\xA7\x4F\xB9\x28\x15\xF9\xE3\xC5\x19\x2E\xD4\xDC\xA2\x0A\xEA\x5B"
		"\x10\x9D\x52\x23\x7C\x99\x56\x40\x1F\xD4\x4B\x22\x1F\x82\xAB\x37";
	unsigned char buffer[64];

	if(SHAKE128(buffer, 64, input, 5) != 0)
		sum++;
	if(memcmp(buffer, outputSHAKE128, 64) != 0)
		sum++;
	if (SHAKE256(buffer, 64, input, 5) == 0)
		sum++;
	if (memcmp(buffer, outputSHAKE256, 64) == 0)
		sum++;
	if (SHA3_224(buffer, input, 5) == 0)
		sum++;
	if (memcmp(buffer, outputSHA3_224, 28) == 0)
		sum++;
	if (SHA3_256(buffer, input, 5) == 0)
		sum++;
	if (memcmp(buffer, outputSHA3_256, 32) == 0)
		sum++;
	if (SHA3_384(buffer, input, 5) == 0)
		sum++;
	if (memcmp(buffer, outputSHA3_384, 48) == 0)
		sum++;
	if (SHA3_512(buffer, input, 5) == 0)
		sum++;
	if (memcmp(buffer, outputSHA3_512, 64) == 0)
		sum++;
}
Example #5
0
uint32_t EthCalcEpochNumber(uint8_t *SeedHash)
{
  uint8_t TestSeedHash[32] = { 0 };
  
  for(int Epoch = 0; Epoch < 2048; ++Epoch) {
    SHA3_256((struct ethash_h256 *)TestSeedHash, TestSeedHash, 32);
    if(!memcmp(TestSeedHash, SeedHash, 32)) return(Epoch + 1);
  }
  
  applog(LOG_ERR, "Error on epoch calculation.");
  
  return 0UL;
}
Example #6
0
void ethash_quick_hash(ethash_h256_t *return_hash,
                       ethash_h256_t const *header_hash,
                       const uint64_t nonce,
                       ethash_h256_t const *mix_hash)
{

    uint8_t buf[64 + 32];
    memcpy(buf, header_hash, 32);
    fix_endian64_same(nonce);
    memcpy(&(buf[32]), &nonce, 8);
    SHA3_512(buf, buf, 40);
    memcpy(&(buf[64]), mix_hash, 32);
    SHA3_256(return_hash, buf, 64 + 32);
}
Example #7
0
void confirm_timing_attack_security() {
    struct timespec tp_a, tp_b, tp_diff;
    int i;
    unsigned char randbytes[RANDOM_BYTES_LENGTH];
    unsigned char h[HASH_LENGTH];
    for (i = 1; i <= 100; ++i) {
        generate_randbytes(randbytes, RANDOM_BYTES_LENGTH);
        printf("Hashing the string #%d... ", i);
        get_monotonic_time(&tp_a);
        SHA3_256(h, randbytes, RANDOM_BYTES_LENGTH);
        get_monotonic_time(&tp_b);
        compute_clockdiff(&tp_a, &tp_b, &tp_diff);
        printf("done in %ld second(s) %ld nanosecond(s).\n", tp_diff.tv_sec,
                tp_diff.tv_nsec);
    }
}
Example #8
0
Bits<256> Block::getSeedHash(Epoch epochs)
{
    if(Block::epochToSeedMap.size() <= 0 || Block::seedToEpochMap.size() <= 0)
    {
        createSeedMapCache();
    }
    if(epochs < 2048)
    {
        return Block::epochToSeedMap[epochs];
    }
    else
    {
        Bits<256> seedHash = Block::epochToSeedMap[2047];
        for (uint64_t i = 2047; i < epochs; ++i)
        {
            SHA3_256(seedHash.ptr(), seedHash.ptr(), 32);
        }
        return seedHash;
    }
}
Example #9
0
void Block::createSeedMapCache()
{
    uint64_t seedMapFileSize = 2048*(256/8);
    uint8_t seedMap[seedMapFileSize];
    
    std::ifstream inputFile( "seedmap", std::ios::binary );
    if(inputFile.fail())
    {
        Bits<256> seedHash;
        for(size_t i=0 ; i<2048 ; i++)
        {
            uint8_t* ptr = &seedMap[i*(256/8)];
            memcpy(ptr,seedHash.ptr(),32);
            
            Block::epochToSeedMap[i] = Bits<256>(seedHash);
            Block::seedToEpochMap[seedHash] = i;
            
            SHA3_256(seedHash.ptr(), seedHash.ptr(), 32);
        }
        
        std::ofstream outputFile( "seedmap", std::ofstream::out );
        outputFile.write((char*)seedMap, seedMapFileSize);
        outputFile.flush();
        outputFile.close();
    }
    else
    {
        inputFile.read((char*)seedMap,seedMapFileSize);
        inputFile.close();
        for(size_t i=0 ; i<2048 ; i++)
        {
            uint8_t* ptr = &seedMap[i*(256/8)];
            Block::epochToSeedMap[i] = Bits<256>(ptr);
            Block::seedToEpochMap[Bits<256>(ptr)] = i;
        }
    }
}
Example #10
0
static bool ethash_hash(
	ethash_return_value_t* ret,
	node const* full_nodes,
	ethash_light_t const light,
	uint64_t full_size,
	ethash_h256_t const header_hash,
	uint64_t const nonce
)
{
	if (full_size % MIX_WORDS != 0) {
		return false;
	}

	// pack hash and nonce together into first 40 bytes of s_mix
	assert(sizeof(node) * 8 == 512);
	node s_mix[MIX_NODES + 1];
	memcpy(s_mix[0].bytes, &header_hash, 32);
	fix_endian64(s_mix[0].double_words[4], nonce);

	// compute sha3-512 hash and replicate across mix
	SHA3_512(s_mix->bytes, s_mix->bytes, 40);
	fix_endian_arr32(s_mix[0].words, 16);

	node* const mix = s_mix + 1;
	for (uint32_t w = 0; w != MIX_WORDS; ++w) {
		mix->words[w] = s_mix[0].words[w % NODE_WORDS];
	}

	unsigned const page_size = sizeof(uint32_t) * MIX_WORDS;
	unsigned const num_full_pages = (unsigned) (full_size / page_size);

	for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) {
		uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages;

		for (unsigned n = 0; n != MIX_NODES; ++n) {
			node const* dag_node;
			if (full_nodes) {
				dag_node = &full_nodes[MIX_NODES * index + n];
			} else {
				node tmp_node;
				ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light);
				dag_node = &tmp_node;
			}

#if defined(_M_X64) && ENABLE_SSE
			{
				__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
				__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
				__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
				__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
				__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
				mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
				mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
				mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
				mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
			}
			#else
			{
				for (unsigned w = 0; w != NODE_WORDS; ++w) {
					mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
				}
			}
#endif
		}

	}

	// compress mix
	for (uint32_t w = 0; w != MIX_WORDS; w += 4) {
		uint32_t reduction = mix->words[w + 0];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
		mix->words[w / 4] = reduction;
	}

	fix_endian_arr32(mix->words, MIX_WORDS / 4);
	memcpy(&ret->mix_hash, mix->bytes, 32);
	// final Keccak hash
	SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
	return true;
}