Example #1
0
int
_sigpending(sigset_t *set)
{
	struct pthread *curthread = _get_curthread();
	kse_critical_t crit;
	sigset_t sigset;
	int ret = 0;

	/* Check for a null signal set pointer: */
	if (set == NULL) {
		/* Return an invalid argument: */
		ret = EINVAL;
	}
	else {
		if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
			return (__sys_sigpending(set));

		crit = _kse_critical_enter();
		KSE_SCHED_LOCK(curthread->kse, curthread->kseg);
		sigset = curthread->sigpend;
		KSE_SCHED_UNLOCK(curthread->kse, curthread->kseg);
		KSE_LOCK_ACQUIRE(curthread->kse, &_thread_signal_lock);
		SIGSETOR(sigset, _thr_proc_sigpending);
		KSE_LOCK_RELEASE(curthread->kse, &_thread_signal_lock);
		_kse_critical_leave(crit);
		*set = sigset;
	}
	/* Return the completion status: */
	return (ret);
}
Example #2
0
/*
 * MPSAFE
 */
int
sys_osigblock(struct osigblock_args *uap)
{
	struct lwp *lp = curthread->td_lwp;
	sigset_t set;

	OSIG2SIG(uap->mask, set);
	SIG_CANTMASK(set);
	crit_enter();
	SIG2OSIG(lp->lwp_sigmask, uap->sysmsg_iresult);
	SIGSETOR(lp->lwp_sigmask, set);
	crit_exit();
	return (0);
}
Example #3
0
int
_sigsuspend(const sigset_t * set)
{
	struct pthread	*curthread = _get_curthread();
	int             ret = -1;
	sigset_t        oset, sigset;

	/* Check if a new signal set was provided by the caller: */
	if (set != NULL) {
		/* Save the current signal mask: */
		oset = curthread->sigmask;

		/* Change the caller's mask: */
		curthread->sigmask = *set;

		/*
		 * Check if there are pending signals for the running
		 * thread or process that aren't blocked:
		 */
		sigset = curthread->sigpend;
		SIGSETOR(sigset, _process_sigpending);
		SIGSETNAND(sigset, curthread->sigmask);
		if (SIGNOTEMPTY(sigset)) {
			/*
			 * Call the kernel scheduler which will safely
			 * install a signal frame for the running thread:
			 */
			_thread_kern_sched_sig();
		} else {
			/* Wait for a signal: */
			_thread_kern_sched_state(PS_SIGSUSPEND,
			    __FILE__, __LINE__);
		}

		/* Always return an interrupted error: */
		errno = EINTR;

		/* Restore the signal mask: */
		curthread->sigmask = oset;
	} else {
		/* Return an invalid argument error: */
		errno = EINVAL;
	}

	/* Return the completion status: */
	return (ret);
}
Example #4
0
int
ncp_chkintr(struct ncp_conn *conn, struct thread *td)
{
	struct proc *p;
	sigset_t tmpset;

	if (td == NULL)
		return 0;
	p = td->td_proc;
	PROC_LOCK(p);
	tmpset = p->p_siglist;
	SIGSETOR(tmpset, td->td_siglist);
	SIGSETNAND(tmpset, td->td_sigmask);
	mtx_lock(&p->p_sigacts->ps_mtx);
	SIGSETNAND(tmpset, p->p_sigacts->ps_sigignore);
	mtx_unlock(&p->p_sigacts->ps_mtx);
	if (SIGNOTEMPTY(td->td_siglist) && NCP_SIGMASK(tmpset)) {
		PROC_UNLOCK(p);
                return EINTR;
	}
	PROC_UNLOCK(p);
	return 0;
}
Example #5
0
int
_pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
{
	struct pthread	*curthread = _get_curthread();
	sigset_t	sigset;
	int		ret = 0;

	/* Check if the existing signal process mask is to be returned: */
	if (oset != NULL) {
		/* Return the current mask: */
		*oset = curthread->sigmask;
	}
	/* Check if a new signal set was provided by the caller: */
	if (set != NULL) {
		/* Process according to what to do: */
		switch (how) {
		/* Block signals: */
		case SIG_BLOCK:
			/* Add signals to the existing mask: */
			SIGSETOR(curthread->sigmask, *set);
			break;

		/* Unblock signals: */
		case SIG_UNBLOCK:
			/* Clear signals from the existing mask: */
			SIGSETNAND(curthread->sigmask, *set);
			break;

		/* Set the signal process mask: */
		case SIG_SETMASK:
			/* Set the new mask: */
			curthread->sigmask = *set;
			break;

		/* Trap invalid actions: */
		default:
			/* Return an invalid argument: */
			errno = EINVAL;
			ret = -1;
			break;
		}

		/* Increment the sequence number: */
		curthread->sigmask_seqno++;

		/*
		 * Check if there are pending signals for the running
		 * thread or process that aren't blocked:
		 */
		sigset = curthread->sigpend;
		SIGSETOR(sigset, _process_sigpending);
		SIGSETNAND(sigset, curthread->sigmask);
		if (SIGNOTEMPTY(sigset))
			/*
			 * Call the kernel scheduler which will safely
			 * install a signal frame for the running thread:
			 */
			_thread_kern_sched_sig();
	}

	/* Return the completion status: */
	return (ret);
}
Example #6
0
/*
 * Read proc's from memory file into buffer bp, which has space to hold
 * at most maxcnt procs.
 */
static int
kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
    struct kinfo_proc *bp, int maxcnt)
{
	int cnt = 0;
	struct kinfo_proc kinfo_proc, *kp;
	struct pgrp pgrp;
	struct session sess;
	struct cdev t_cdev;
	struct tty tty;
	struct vmspace vmspace;
	struct sigacts sigacts;
#if 0
	struct pstats pstats;
#endif
	struct ucred ucred;
	struct prison pr;
	struct thread mtd;
	struct proc proc;
	struct proc pproc;
	struct sysentvec sysent;
	char svname[KI_EMULNAMELEN];

	kp = &kinfo_proc;
	kp->ki_structsize = sizeof(kinfo_proc);
	/*
	 * Loop on the processes. this is completely broken because we need to be
	 * able to loop on the threads and merge the ones that are the same process some how.
	 */
	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
		memset(kp, 0, sizeof *kp);
		if (KREAD(kd, (u_long)p, &proc)) {
			_kvm_err(kd, kd->program, "can't read proc at %p", p);
			return (-1);
		}
		if (proc.p_state == PRS_NEW)
			continue;
		if (proc.p_state != PRS_ZOMBIE) {
			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
			    &mtd)) {
				_kvm_err(kd, kd->program,
				    "can't read thread at %p",
				    TAILQ_FIRST(&proc.p_threads));
				return (-1);
			}
		}
		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
			kp->ki_ruid = ucred.cr_ruid;
			kp->ki_svuid = ucred.cr_svuid;
			kp->ki_rgid = ucred.cr_rgid;
			kp->ki_svgid = ucred.cr_svgid;
			kp->ki_cr_flags = ucred.cr_flags;
			if (ucred.cr_ngroups > KI_NGROUPS) {
				kp->ki_ngroups = KI_NGROUPS;
				kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
			} else
				kp->ki_ngroups = ucred.cr_ngroups;
			kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups,
			    kp->ki_ngroups * sizeof(gid_t));
			kp->ki_uid = ucred.cr_uid;
			if (ucred.cr_prison != NULL) {
				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
					_kvm_err(kd, kd->program,
					    "can't read prison at %p",
					    ucred.cr_prison);
					return (-1);
				}
				kp->ki_jid = pr.pr_id;
			}
		}

		switch(what & ~KERN_PROC_INC_THREAD) {

		case KERN_PROC_GID:
			if (kp->ki_groups[0] != (gid_t)arg)
				continue;
			break;

		case KERN_PROC_PID:
			if (proc.p_pid != (pid_t)arg)
				continue;
			break;

		case KERN_PROC_RGID:
			if (kp->ki_rgid != (gid_t)arg)
				continue;
			break;

		case KERN_PROC_UID:
			if (kp->ki_uid != (uid_t)arg)
				continue;
			break;

		case KERN_PROC_RUID:
			if (kp->ki_ruid != (uid_t)arg)
				continue;
			break;
		}
		/*
		 * We're going to add another proc to the set.  If this
		 * will overflow the buffer, assume the reason is because
		 * nprocs (or the proc list) is corrupt and declare an error.
		 */
		if (cnt >= maxcnt) {
			_kvm_err(kd, kd->program, "nprocs corrupt");
			return (-1);
		}
		/*
		 * gather kinfo_proc
		 */
		kp->ki_paddr = p;
		kp->ki_addr = 0;	/* XXX uarea */
		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
		kp->ki_args = proc.p_args;
		kp->ki_tracep = proc.p_tracevp;
		kp->ki_textvp = proc.p_textvp;
		kp->ki_fd = proc.p_fd;
		kp->ki_vmspace = proc.p_vmspace;
		if (proc.p_sigacts != NULL) {
			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
				_kvm_err(kd, kd->program,
				    "can't read sigacts at %p", proc.p_sigacts);
				return (-1);
			}
			kp->ki_sigignore = sigacts.ps_sigignore;
			kp->ki_sigcatch = sigacts.ps_sigcatch;
		}
#if 0
		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
				_kvm_err(kd, kd->program,
				    "can't read stats at %x", proc.p_stats);
				return (-1);
			}
			kp->ki_start = pstats.p_start;

			/*
			 * XXX: The times here are probably zero and need
			 * to be calculated from the raw data in p_rux and
			 * p_crux.
			 */
			kp->ki_rusage = pstats.p_ru;
			kp->ki_childstime = pstats.p_cru.ru_stime;
			kp->ki_childutime = pstats.p_cru.ru_utime;
			/* Some callers want child-times in a single value */
			timeradd(&kp->ki_childstime, &kp->ki_childutime,
			    &kp->ki_childtime);
		}
#endif
		if (proc.p_oppid)
			kp->ki_ppid = proc.p_oppid;
		else if (proc.p_pptr) {
			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
				_kvm_err(kd, kd->program,
				    "can't read pproc at %p", proc.p_pptr);
				return (-1);
			}
			kp->ki_ppid = pproc.p_pid;
		} else
			kp->ki_ppid = 0;
		if (proc.p_pgrp == NULL)
			goto nopgrp;
		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
			_kvm_err(kd, kd->program, "can't read pgrp at %p",
				 proc.p_pgrp);
			return (-1);
		}
		kp->ki_pgid = pgrp.pg_id;
		kp->ki_jobc = pgrp.pg_jobc;
		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
			_kvm_err(kd, kd->program, "can't read session at %p",
				pgrp.pg_session);
			return (-1);
		}
		kp->ki_sid = sess.s_sid;
		(void)memcpy(kp->ki_login, sess.s_login,
						sizeof(kp->ki_login));
		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
		if (sess.s_leader == p)
			kp->ki_kiflag |= KI_SLEADER;
		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
				_kvm_err(kd, kd->program,
					 "can't read tty at %p", sess.s_ttyp);
				return (-1);
			}
			if (tty.t_dev != NULL) {
				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
					_kvm_err(kd, kd->program,
						 "can't read cdev at %p",
						tty.t_dev);
					return (-1);
				}
#if 0
				kp->ki_tdev = t_cdev.si_udev;
#else
				kp->ki_tdev = NODEV;
#endif
			}
			if (tty.t_pgrp != NULL) {
				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
					_kvm_err(kd, kd->program,
						 "can't read tpgrp at %p",
						tty.t_pgrp);
					return (-1);
				}
				kp->ki_tpgid = pgrp.pg_id;
			} else
				kp->ki_tpgid = -1;
			if (tty.t_session != NULL) {
				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
					_kvm_err(kd, kd->program,
					    "can't read session at %p",
					    tty.t_session);
					return (-1);
				}
				kp->ki_tsid = sess.s_sid;
			}
		} else {
nopgrp:
			kp->ki_tdev = NODEV;
		}
		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
			    kp->ki_wmesg, WMESGLEN);

		(void)kvm_read(kd, (u_long)proc.p_vmspace,
		    (char *)&vmspace, sizeof(vmspace));
		kp->ki_size = vmspace.vm_map.size;
		/*
		 * Approximate the kernel's method of calculating
		 * this field.
		 */
#define		pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
		kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap);
		kp->ki_swrss = vmspace.vm_swrss;
		kp->ki_tsize = vmspace.vm_tsize;
		kp->ki_dsize = vmspace.vm_dsize;
		kp->ki_ssize = vmspace.vm_ssize;

		switch (what & ~KERN_PROC_INC_THREAD) {

		case KERN_PROC_PGRP:
			if (kp->ki_pgid != (pid_t)arg)
				continue;
			break;

		case KERN_PROC_SESSION:
			if (kp->ki_sid != (pid_t)arg)
				continue;
			break;

		case KERN_PROC_TTY:
			if ((proc.p_flag & P_CONTROLT) == 0 ||
			     kp->ki_tdev != (dev_t)arg)
				continue;
			break;
		}
		if (proc.p_comm[0] != 0)
			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
		    sizeof(sysent));
		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
		    sizeof(svname));
		if (svname[0] != 0)
			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
		if ((proc.p_state != PRS_ZOMBIE) &&
		    (mtd.td_blocked != 0)) {
			kp->ki_kiflag |= KI_LOCKBLOCK;
			if (mtd.td_lockname)
				(void)kvm_read(kd,
				    (u_long)mtd.td_lockname,
				    kp->ki_lockname, LOCKNAMELEN);
			kp->ki_lockname[LOCKNAMELEN] = 0;
		}
		kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime);
		kp->ki_pid = proc.p_pid;
		kp->ki_siglist = proc.p_siglist;
		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
		kp->ki_sigmask = mtd.td_sigmask;
		kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig);
		kp->ki_acflag = proc.p_acflag;
		kp->ki_lock = proc.p_lock;
		if (proc.p_state != PRS_ZOMBIE) {
			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
			kp->ki_flag = proc.p_flag;
			kp->ki_sflag = 0;
			kp->ki_nice = proc.p_nice;
			kp->ki_traceflag = proc.p_traceflag;
			if (proc.p_state == PRS_NORMAL) {
				if (TD_ON_RUNQ(&mtd) ||
				    TD_CAN_RUN(&mtd) ||
				    TD_IS_RUNNING(&mtd)) {
					kp->ki_stat = SRUN;
				} else if (mtd.td_state ==
				    TDS_INHIBITED) {
					if (P_SHOULDSTOP(&proc)) {
						kp->ki_stat = SSTOP;
					} else if (
					    TD_IS_SLEEPING(&mtd)) {
						kp->ki_stat = SSLEEP;
					} else if (TD_ON_LOCK(&mtd)) {
						kp->ki_stat = SLOCK;
					} else {
						kp->ki_stat = SWAIT;
					}
				}
			} else {
				kp->ki_stat = SIDL;
			}
			/* Stuff from the thread */
			kp->ki_pri.pri_level = mtd.td_priority;
			kp->ki_pri.pri_native = mtd.td_base_pri;
			kp->ki_lastcpu = mtd.td_lastcpu;
			kp->ki_wchan = mtd.td_wchan;
			kp->ki_oncpu = mtd.td_oncpu;
			if (mtd.td_name[0] != '\0')
				strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname));
			kp->ki_pctcpu = 0;
			kp->ki_rqindex = 0;

			/*
			 * Note: legacy fields; wraps at NO_CPU_OLD or the
			 * old max CPU value as appropriate
			 */
			if (mtd.td_lastcpu == NOCPU)
				kp->ki_lastcpu_old = NOCPU_OLD;
			else if (mtd.td_lastcpu > MAXCPU_OLD)
				kp->ki_lastcpu_old = MAXCPU_OLD;
			else
				kp->ki_lastcpu_old = mtd.td_lastcpu;

			if (mtd.td_oncpu == NOCPU)
				kp->ki_oncpu_old = NOCPU_OLD;
			else if (mtd.td_oncpu > MAXCPU_OLD)
				kp->ki_oncpu_old = MAXCPU_OLD;
			else
				kp->ki_oncpu_old = mtd.td_oncpu;
		} else {
			kp->ki_stat = SZOMB;
		}
		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
		++bp;
		++cnt;
	}
	return (cnt);
}