Example #1
0
int adcc_init(int adc_num)
{
    //PORT_MemMapPtr pctl = NULL;
    //uint8_t gpio_port;

	/* led pin init */
    if(!lwgpio_init(&pm2p5_ledgpio, PM2P5_LED_PWREN, LWGPIO_DIR_OUTPUT, LWGPIO_VALUE_NOCHANGE)) {
        printf("Initializing GPIO with associated pins failed.\n");
        _time_delay (200L);
        _task_block();
    }
    lwgpio_set_functionality(&pm2p5_ledgpio, PM2P5_LED_MUX_GPIO);
    //lwgpio_set_value(&pm2p5_ledgpio, LWGPIO_VALUE_LOW);
    lwgpio_set_value(&pm2p5_ledgpio, LWGPIO_VALUE_HIGH);
    
	if(adc_num == 0) {
		/* SIM_SCGC6: ADC0=1 */
		adc_ptr = ADC0_BASE_PTR;
		SIM_SCGC6 |= SIM_SCGC6_ADC0_MASK;
	}
	else {
		adc_ptr = ADC1_BASE_PTR;
		SIM_SCGC6 |= SIM_SCGC6_ADC1_MASK;
	}

#ifdef ADC_HW_TRIGER
    SIM_SCGC6 |= SIM_SCGC6_PIT_MASK;                 /* enable PIT */

    SIM_SOPT7 |= SIM_SOPT7_ADC1ALTTRGEN_MASK;
    SIM_SOPT7 |= (SIM_SOPT7_ADC1PRETRGSEL_MASK);     /* Pre Trigger B */
    SIM_SOPT7 &= ~(SIM_SOPT7_ADC1TRGSEL_MASK); 
    SIM_SOPT7 |= SIM_SOPT7_ADC1TRGSEL(7);            /* PIT trigger 3 */
    PIT_MCR_REG(PIT_BASE_PTR) = 0;
#endif

	// pin mux config : spec P216 ADC0_DP0/ADC1_DP3 is default
	/* set pin's multiplexer to analog
    gpio_port = ADC_SIG_PORTB | 4;
    pctl = (PORT_MemMapPtr) PORTB_BASE_PTR;
    pctl->PCR[gpio_port & 0x1F] &= ~PORT_PCR_MUX_MASK; 
	*/

    // Initialize ADC0/1 =================================================================================
    //averages (4 h/w)   // bus 60M /8/2 = 3.75M ADC clock
    ADC_CFG1_REG(adc_ptr) = ADLPC_NORMAL | ADC_CFG1_ADIV(ADIV_8) /*| ADLSMP_LONG*/ | ADC_CFG1_MODE(MODE_16)
      | ADC_CFG1_ADICLK(/*ADICLK_BUS_2*/ADICLK_BUS);

    // do calibration
    if(adc_calibrate(adc_ptr))
        printf("adc-%x calibrate failed\n",(int)adc_ptr);

    /* channel A/B selected */
#ifdef ADC_HW_TRIGER
    ADC_CFG2_REG(adc_ptr)  = MUXSEL_ADCB | ADACKEN_ENABLED | ADHSC_HISPEED | ADC_CFG2_ADLSTS(ADLSTS_20);
#else
	ADC_CFG2_REG(adc_ptr)  = MUXSEL_ADCA /*| ADACKEN_ENABLED */| ADHSC_HISPEED | ADC_CFG2_ADLSTS(ADLSTS_20);
#endif
	
    //ADC_CV1_REG(adc_ptr) = 0x0;
    //ADC_CV2_REG(adc_ptr) = 0x0;
        
    //ADC_SC1_REG(adc_ptr,0) =  AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC_INPUT_CH);   /* SC1 A */
    //ADC_SC1_REG(adc_ptr,1) =  AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC_INPUT_CH);   /* SC1 B */

#ifdef ADC_HW_TRIGER
    ADC_SC2_REG(adc_ptr) = ADTRG_HW /*ADTRG_SW*/ | ACFE_DISABLED | ACFGT_GREATER | ACREN_DISABLED
                     | DMAEN_DISABLED /* DMAEN_ENABLED*/| ADC_SC2_REFSEL(REFSEL_EXT);
#else
    ADC_SC2_REG(adc_ptr) = ADTRG_SW /*| ACFE_DISABLED | ACFGT_GREATER | ACREN_DISABLED
                     | DMAEN_DISABLED*/ | ADC_SC2_REFSEL(REFSEL_EXT);
#endif

    ADC_SC3_REG(adc_ptr) = /*ADC_SC3_CALF_MASK |*/ CAL_OFF | ADCO_SINGLE /*| AVGE_ENABLED | ADC_SC3_AVGS(AVGS_4)*/;  /* averages 4 h/w */
}
uint8_t Hw_Trig_Test(void)
{
  // Notes:

  //      PDB settings : continous mode, started by sotware trigger.
  //      This means that once the software "pulls the trigger" by setting a certain bit, the PDB starts counting
  //      and handing out four triggers per cycle of its counter.

  //      PDB settings: CH0_DLY0, CH0_DLY1 , CH1_DLY0, CH1_DLY1
  //      set to different values to distinguish effect on ADCx_Ry register
  //      need to provide 4 different voltages to convert at two ADC0 and two ADC1 input channels
  //      PDB counter clock prescaled to allow time for printf's and slow down things to they are visible, each trigger.

  //      Using adiclk= BUS ,  and adidiv/4 to get  12,5MHz on Tower demonstration.
  //      visibility of PDB start trigger is obtained by generating a toggling edge on
  //      GPIOxx with PDBisr set to trigger immediatly at zero value of PDB counter.

  //      Conversion end of each ADC and channel within the ADC ( A,B ) will be done by
  //      toggling second GPIO pin inside ADCisr  ( this pin is also reset by PDB isr )



// GPIO PIN to low voltage .. this macro sets the PIN low.
 PIN_LOW

// Initialize PIN1 and PIN2 GPIO outputs
 Init_Gpio2();

// Disable ADC and PDB interrupts
 disable_irq(ADC0_irq_no) ;   // not ready for this interrupt yet. Plug vector first.
 disable_irq(ADC1_irq_no) ;   // not ready for this interrupt yet. Plug vector first.
 disable_irq(PDB_irq_no) ;    // not ready for this interrupt yet. Plug vector first.

// Dynamic interrupt vector modification whilst those interruts are disabled
 __VECTOR_RAM[73] = (uint32)adc0_isr;  // plug isr into vector table in case not there already
 __VECTOR_RAM[74] = (uint32)adc1_isr;  // plug isr into vector table in case not there already
 __VECTOR_RAM[88] = (uint32)pdb_isr;   // plug isr into vector table in case not there already

// The System Integration Module largely determines the role of the different ball map locations on Kinetis.
// When an external pin is used, the System Integration Module should be consulted and invoked as needed.
// System integration module registers start with SIM_

// Turn on the ADC0 and ADC1 clocks as well as the PDB clocks to test ADC triggered by PDB
 SIM_SCGC6 |= (SIM_SCGC6_ADC0_MASK );
 SIM_SCGC3 |= (SIM_SCGC3_ADC1_MASK );
 SIM_SCGC6 |= SIM_SCGC6_PDB_MASK ;

// Configure System Integration Module for defaults as far as ADC
 SIM_SOPT7 &= ~(SIM_SOPT7_ADC1ALTTRGEN_MASK  | // selects PDB not ALT trigger
                SIM_SOPT7_ADC1PRETRGSEL_MASK |
                SIM_SOPT7_ADC0ALTTRGEN_MASK  | // selects PDB not ALT trigger
                SIM_SOPT7_ADC0ALTTRGEN_MASK) ;
 SIM_SOPT7 = SIM_SOPT7_ADC0TRGSEL(0);       // applies only in case of ALT trigger, in which case
                                             // PDB external pin input trigger for ADC
 SIM_SOPT7 = SIM_SOPT7_ADC1TRGSEL(0);       // same for both ADCs




/////////////////////////////////////////////////////////////////////////////////////////
//PDB configured below  以下是PDB配置



// Configure the Peripheral Delay Block (PDB):
// enable PDB, pdb counter clock = busclock / 20 , continous triggers, sw trigger , and use prescaler too
 PDB0_SC =  PDB_SC_CONT_MASK       // Contintuous, rather than one-shot, mode
         | PDB_SC_PDBEN_MASK      // PDB enabled
         | PDB_SC_PDBIE_MASK      // PDB Interrupt Enable
         | PDB_SC_PRESCALER(0x5)  // Slow down the period of the PDB for testing
         | PDB_SC_TRGSEL(0xf)     // Trigger source is Software Trigger to be invoked in this file
         | PDB_SC_MULT(2);        // Multiplication factor 20 for the prescale divider for the counter clock
                                  // the software trigger, PDB_SC_SWTRIG_MASK is not triggered at this time.

 PDB0_IDLY = 0x0000;   // need to trigger interrupt every counter reset which happens when modulus reached

 PDB0_MOD = 0xffff;    // largest period possible with the slections above, so slow you can see each conversion.

// channel 0 pretrigger 0 and 1 enabled and delayed
 PDB0_CH0C1 = PDB_C1_EN(0x01)
           | PDB_C1_TOS(0x01)
           | PDB_C1_EN(0x02)
           | PDB_C1_TOS(0x02) ;

 PDB0_CH0DLY0 = ADC0_DLYA ;
 PDB0_CH0DLY1 = ADC0_DLYB ;

// channel 1 pretrigger 0 and 1 enabled and delayed
 PDB0_CH1C1 = PDB_C1_EN(0x01)
           | PDB_C1_TOS(0x01)
           | PDB_C1_EN(0x02)
           | PDB_C1_TOS(0x02) ;

 PDB0_CH1DLY0 = ADC1_DLYA ;
 PDB0_CH1DLY1 = ADC1_DLYB ;

 PDB0_SC =  PDB_SC_CONT_MASK        // Contintuous, rather than one-shot, mode
         | PDB_SC_PDBEN_MASK       // PDB enabled
         | PDB_SC_PDBIE_MASK       // PDB Interrupt Enable
         | PDB_SC_PRESCALER(0x5)   // Slow down the period of the PDB for testing
         | PDB_SC_TRGSEL(0xf)      // Trigger source is Software Trigger to be invoked in this file
         | PDB_SC_MULT(2)          // Multiplication factor 20 for the prescale divider for the counter clock
         | PDB_SC_LDOK_MASK;       // Need to ok the loading or it will not load certain regsiters!
                                   // the software trigger, PDB_SC_SWTRIG_MASK is not triggered at this time.



//PDB configured above  以上是PDB配置
/////////////////////////////////////////////////////////////////////////////////////////
//ADC configured below  以下是ADC配置

// setup the initial ADC default configuration
 Master_Adc_Config.CONFIG1  = ADLPC_NORMAL
                            | ADC_CFG1_ADIV(ADIV_4)
                            | ADLSMP_LONG
                            | ADC_CFG1_MODE(MODE_16)
                            | ADC_CFG1_ADICLK(ADICLK_BUS);
 Master_Adc_Config.CONFIG2  = MUXSEL_ADCA
                            | ADACKEN_DISABLED
                            | ADHSC_HISPEED
                            | ADC_CFG2_ADLSTS(ADLSTS_20) ;
 Master_Adc_Config.COMPARE1 = 0x1234u ;                 // can be anything
 Master_Adc_Config.COMPARE2 = 0x5678u ;                 // can be anything
                                                        // since not using
                                                        // compare feature
 Master_Adc_Config.STATUS2  = ADTRG_HW
                            | ACFE_DISABLED
                            | ACFGT_GREATER
                            | ACREN_ENABLED
                            | DMAEN_DISABLED
                            | ADC_SC2_REFSEL(REFSEL_EXT);

 Master_Adc_Config.STATUS3  = CAL_OFF
                            | ADCO_SINGLE
                            | AVGE_ENABLED
                            | ADC_SC3_AVGS(AVGS_32);

 Master_Adc_Config.PGA      = PGAEN_DISABLED
                            | PGACHP_NOCHOP
                            | PGALP_NORMAL
                            | ADC_PGA_PGAG(PGAG_64);
 Master_Adc_Config.STATUS1A = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);
 Master_Adc_Config.STATUS1B = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);


// Configure ADC as it will be used, but becuase ADC_SC1_ADCH is 31,
// the ADC will be inactive.  Channel 31 is just disable function.
// There really is no channel 31.

 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC

// Calibrate the ADC in the configuration in which it will be used:
 ADC_Cal(ADC0_BASE_PTR);                    // do the calibration

// The structure still has the desired configuration.  So restore it.
// Why restore it?  The calibration makes some adjustments to the
// configuration of the ADC.  The are now undone:

// config the ADC again to desired conditions
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);

// REPEAT for BOTH ADC's.  However we will only 'use' the results from
// the ADC wired to the Potentiometer on the Kinetis Tower Card.

// Repeating for ADC1:
  ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC
  ADC_Cal(ADC1_BASE_PTR);                    // do the calibration
//  ADC_Read_Cal(ADC1_BASE_PTR,&CalibrationStore[0]);   // store the cal


// config the ADC again to default conditions
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);

// *****************************************************************************
//      ADC0 and ADC1 using the PDB trigger in ping pong
// *****************************************************************************

// use interrupts, single ended mode, and real channel numbers now:

 Master_Adc_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC0_CHANA);
 Master_Adc_Config.STATUS1B = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC0_CHANB);
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);  // config ADC0

 Master_Adc_Config.STATUS1A = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC1_CHANA);
 Master_Adc_Config.STATUS1B = AIEN_ON | DIFF_SINGLE | ADC_SC1_ADCH(ADC1_CHANB);
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);  // config ADC1

 // Note that three different balls are being sampled:
 // ADC0_CHANA not used in this demo, but readings are shown
 // ADC0_CHANB not used in this demo, but readings are shown
 // ADC1_CHANA POT channel set the same as the following for demo: 20
 // ADC1_CHANB POT channel set the same as the above for demo: 20

 // The potentiometer is only on ADC1.  That is the one used
 // to calculate the change of the potentiometer below.


 while(char_present()) in_char();                     // flush terminal buffer

 printf ("\n\n\n");
 printf("********************************************************\n");
 printf("* Running ADC0 & ADC1 HARDWARE TRIGGER by PDB          *\n");
 printf("* The one PDB is triggering both ADC0 and ADC1         *\n");
 printf("* ADC1 A,B is the POT.   Vary the POT setting.         *\n");
 printf("* Hit any key to exit   (ADC0 readings not used)       *\n");
 printf("********************************************************\n");
 printf ("\n\n");

// Enable the ADC and PDB interrupts in NVIC
 enable_irq(ADC0_irq_no) ;   // ready for this interrupt.
 enable_irq(ADC1_irq_no) ;   // ready for this interrupt.
 enable_irq(PDB_irq_no) ;    // ready for this interrupt.

// In case previous test did not end with interrupts enabled, enable used ones.
 EnableInterrupts ;

 cycle_flags=0;
 PDB0_SC |= PDB_SC_SWTRIG_MASK ;    // kick off the PDB  - just once

 //The system is now working!!!!  The PDB is *continuously* triggering ADC
 // conversions.  Now, to display the results!  The line above
 // was the SOFTWARE TRIGGER...

 // The demo will continue as long as no character is pressed on the terminal.

 while(!char_present()) // as long as no operater intervention, keep running this:
 {
  while( cycle_flags != ( ADC0A_DONE | ADC0B_DONE | ADC1A_DONE | ADC1B_DONE ));  // wait for one complete cycle
  printf("R0A=%6d  R0B=%6d  R1A=%6d  R1B=%6d   POT=%6d\r",
          result0A,result0B,result1A,result1B, exponentially_filtered_result1);
 }

// disable the PDB

  PDB0_SC = 0 ;

// Disable the ADC and PDB interrupts in NVIC
  disable_irq(ADC0_irq_no) ;   // through with this interrupt.
  disable_irq(ADC1_irq_no) ;   // through with this interrupt.
  disable_irq(PDB_irq_no) ;    // through with this interrupt.


 printf ("\n\n\n");
 printf("********************************************************\n");
 printf("* Demonstration ended at operator request              *\n");
 printf("* ADC0 & ADC1 PDB      TRIGGER DEMO COMPLETE           *\n");
 printf("********************************************************\n");
 printf ("\n\n");


return 0;
}
Example #3
0
/*************************************************************************
*                             野火嵌入式開發工作室
*
*  函數名稱:adc_init
*  功能說明:AD初始化,使能時鐘
*  參數說明:ADCn        模塊號( ADC0、 ADC1)
*  函數返回:無
*  修改時間:2012-2-10
*  備    注:參考蘇州大學的例程
*************************************************************************/
void adc_init(ADCn adcn,ADC_Ch ch)
{
    ASSERT( ((adcn == ADC0) && (ch>=AD8 && ch<=AD18)) || ((adcn == ADC1)&& (ch>=AD4a && ch<=AD17)) ) ;   //使用斷言檢測ADCn_CHn是否正常

    switch(adcn)
    {
    case ADC0:       /*   ADC0  */
        SIM_SCGC6 |= (SIM_SCGC6_ADC0_MASK );        //開啟ADC0時鐘
        SIM_SOPT7 &= ~(SIM_SOPT7_ADC0ALTTRGEN_MASK  |SIM_SOPT7_ADC0PRETRGSEL_MASK);
        SIM_SOPT7 = SIM_SOPT7_ADC0TRGSEL(0);

        switch(ch)
        {
        case AD8:   //ADC0_SE8 -- PTB0
        case AD9:   //ADC0_SE9 -- PTB1
            SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
            PORT_PCR_REG(PORTB_BASE_PTR, ch-AD8+0) =  PORT_PCR_MUX(0);
            break;
        case AD10:  //ADC0_SE10 -- PTA7
        case AD11:  //ADC0_SE11 -- PTA8
            SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;
            PORT_PCR_REG(PORTA_BASE_PTR, ch-AD10+7) =  PORT_PCR_MUX(0);
            break;
        case AD12:  //ADC0_SE12 -- PTB2
        case AD13:  //ADC0_SE13 -- PTB3
            SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
            PORT_PCR_REG(PORTB_BASE_PTR, ch-AD12+2) =  PORT_PCR_MUX(0);
            break;
        case AD14:  //ADC0_SE14 -- PTC0
        case AD15:  //ADC0_SE15 -- PTC1
            SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;
            PORT_PCR_REG(PORTC_BASE_PTR, ch-AD14+0) =  PORT_PCR_MUX(0);
            break;
        case AD17:   //ADC0_SE17 -- PTE24
        case AD18:   //ADC0_SE17 -- PTE25
            SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
            PORT_PCR_REG(PORTE_BASE_PTR, ch-AD17+24) =  PORT_PCR_MUX(0);
            break;
        default:
            return;
        }
        return;

  case ADC1:       /*   ADC1    */
      SIM_SCGC3 |= (SIM_SCGC3_ADC1_MASK );
      SIM_SOPT7 &= ~(SIM_SOPT7_ADC1ALTTRGEN_MASK  |SIM_SOPT7_ADC1PRETRGSEL_MASK) ;
      SIM_SOPT7 = SIM_SOPT7_ADC1TRGSEL(0);

      switch(ch)
      {
      case AD4a:   //ADC1_SE4a -- PTE0
      case AD5a:   //ADC1_SE5a -- PTE1
      case AD6a:   //ADC1_SE6a -- PTE2
      case AD7a:   //ADC1_SE7a -- PTE3
          SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK;
          PORT_PCR_REG(PORTE_BASE_PTR, ch-AD4a+0) =  PORT_PCR_MUX(0);
          break;
      case AD8:  //ADC1_SE8 -- PTB0
      case AD9:  //ADC1_SE9 -- PTB1
          SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
          PORT_PCR_REG(PORTB_BASE_PTR, ch-AD8+0) =  PORT_PCR_MUX(0);
          break;
      case AD10:  //ADC1_SE10 -- PTB4
      case AD11:  //ADC1_SE11 -- PTB5
      case AD12:  //ADC1_SE12 -- PTB6
      case AD13:  //ADC1_SE13 -- PTB7
          SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
          PORT_PCR_REG(PORTB_BASE_PTR, ch-6) =  PORT_PCR_MUX(0);
          break;
      case AD14:  //ADC1_SE14 -- PTB10
      case AD15:  //ADC1_SE15 -- PTB11
          SIM_SCGC5 |= SIM_SCGC5_PORTB_MASK;
          PORT_PCR_REG(PORTB_BASE_PTR, ch-AD10+4) =  PORT_PCR_MUX(0);
          break;
      case AD17:  //ADC1_SE17 -- PTA17
          SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;
          PORT_PCR_REG(PORTA_BASE_PTR, ch) =  PORT_PCR_MUX(0);
          break;
      default:
          break;
      }
      break;
  default:
      break;
  }
}