/* Calculates correlation matrix X'*X */
void SKP_Silk_corrMatrix_FLP(
    const SKP_float                 *x,                 /* I    x vector [ L+order-1 ] used to create X */
    const SKP_int                   L,                  /* I    Length of vectors                       */
    const SKP_int                   Order,              /* I    Max lag for correlation                 */
          SKP_float                 *XX                 /* O    X'*X correlation matrix [order x order] */
)
{
    SKP_int j, lag;
    double  energy;
    const SKP_float *ptr1, *ptr2;

    ptr1 = &x[ Order - 1 ];                     /* First sample of column 0 of X */
    energy = SKP_Silk_energy_FLP( ptr1, L );  /* X[:,0]'*X[:,0] */
    matrix_ptr( XX, 0, 0, Order ) = ( SKP_float )energy;
    for( j = 1; j < Order; j++ ) {
        /* Calculate X[:,j]'*X[:,j] */
        energy += ptr1[ -j ] * ptr1[ -j ] - ptr1[ L - j ] * ptr1[ L - j ];
        matrix_ptr( XX, j, j, Order ) = ( SKP_float )energy;
    }
 
    ptr2 = &x[ Order - 2 ];                     /* First sample of column 1 of X */
    for( lag = 1; lag < Order; lag++ ) {
        /* Calculate X[:,0]'*X[:,lag] */
        energy = SKP_Silk_inner_product_FLP( ptr1, ptr2, L );   
        matrix_ptr( XX, lag, 0, Order ) = ( SKP_float )energy;
        matrix_ptr( XX, 0, lag, Order ) = ( SKP_float )energy;
        /* Calculate X[:,j]'*X[:,j + lag] */
        for( j = 1; j < ( Order - lag ); j++ ) {
            energy += ptr1[ -j ] * ptr2[ -j ] - ptr1[ L - j ] * ptr2[ L - j ];
            matrix_ptr( XX, lag + j, j, Order ) = ( SKP_float )energy;
            matrix_ptr( XX, j, lag + j, Order ) = ( SKP_float )energy;
        }
        ptr2--;                                 /* Next column of X */
    }
}
/* Compute reflection coefficients from input signal */
SKP_float SKP_Silk_burg_modified_FLP(     /* O    returns residual energy                                         */
    SKP_float       A[],                /* O    prediction coefficients (length order)                          */
    const SKP_float x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                        */
    const SKP_int   subfr_length,       /* I    input signal subframe length (including D preceeding samples)   */
    const SKP_int   nb_subfr,           /* I    number of subframes stacked in x                                */
    const SKP_float WhiteNoiseFrac,     /* I    fraction added to zero-lag autocorrelation                      */
    const SKP_int   D                   /* I    order                                                           */
)
{
    SKP_int         k, n, s;
    double          C0, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
    const SKP_float *x_ptr;
    double          C_first_row[ SKP_Silk_MAX_ORDER_LPC ], C_last_row[ SKP_Silk_MAX_ORDER_LPC ];
    double          CAf[ SKP_Silk_MAX_ORDER_LPC + 1 ], CAb[ SKP_Silk_MAX_ORDER_LPC + 1 ];
    double          Af[ SKP_Silk_MAX_ORDER_LPC ];

    SKP_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
    SKP_assert( nb_subfr <= MAX_NB_SUBFR );

    /* Compute autocorrelations, added over subframes */
    C0 = SKP_Silk_energy_FLP( x, nb_subfr * subfr_length );
    SKP_memset( C_first_row, 0, SKP_Silk_MAX_ORDER_LPC * sizeof( double ) );
    for( s = 0; s < nb_subfr; s++ ) {
        x_ptr = x + s * subfr_length;
        for( n = 1; n < D + 1; n++ ) {
            C_first_row[ n - 1 ] += SKP_Silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
        }
    }
    SKP_memcpy( C_last_row, C_first_row, SKP_Silk_MAX_ORDER_LPC * sizeof( double ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + WhiteNoiseFrac * C0 + 1e-9f;

    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            tmp1 = x_ptr[ n ];
            tmp2 = x_ptr[ subfr_length - n - 1 ];
            for( k = 0; k < n; k++ ) {
                C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
                C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
                Atmp = Af[ k ];
                SKP_assert( subfr_length - n + k + s * subfr_length >= 0 );
                SKP_assert( subfr_length - n + k + s * subfr_length < nb_subfr * subfr_length );
                tmp1 += x_ptr[ n - k - 1 ] * Atmp;
                tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
            }
            for( k = 0; k <= n; k++ ) {
                CAf[ k ] -= tmp1 * x_ptr[ n - k ];
                CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
            }
        }
        tmp1 = C_first_row[ n ];
        tmp2 = C_last_row[ n ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            tmp1 += C_last_row[ n - k - 1 ]  * Atmp;
            tmp2 += C_first_row[ n - k - 1 ] * Atmp;
        }
        CAf[ n + 1 ] = tmp1;
        CAb[ n + 1 ] = tmp2;

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        num = CAb[ n + 1 ];
        nrg_b = CAb[ 0 ];
        nrg_f = CAf[ 0 ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            num   += CAb[ n - k ] * Atmp;
            nrg_b += CAb[ k + 1 ] * Atmp;
            nrg_f += CAf[ k + 1 ] * Atmp;
        }
        SKP_assert( nrg_f > 0.0 );
        SKP_assert( nrg_b > 0.0 );

        /* Calculate the next order reflection (parcor) coefficient */
        rc = -2.0 * num / ( nrg_f + nrg_b );
        SKP_assert( rc > -1.0 && rc < 1.0 );

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af[ k ];
            tmp2 = Af[ n - k - 1 ];
            Af[ k ]         = tmp1 + rc * tmp2;
            Af[ n - k - 1 ] = tmp2 + rc * tmp1;
        }
        Af[ n ] = rc;

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];
            CAf[ k ]          += rc * CAb[ n - k + 1 ];
            CAb[ n - k + 1  ] += rc * tmp1;
        }
    }

    /* Return residual energy */
    nrg_f = CAf[ 0 ];
    tmp1 = 1.0;
    for( k = 0; k < D; k++ ) {
        Atmp = Af[ k ];
        nrg_f += CAf[ k + 1 ] * Atmp;
        tmp1  += Atmp * Atmp;
        A[ k ] = (SKP_float)(-Atmp);
    }
    nrg_f -= WhiteNoiseFrac * C0 * tmp1;

    return (SKP_float)nrg_f;
}
void SKP_Silk_find_LPC_FLP(
          SKP_float                 NLSF[],             /* O    NLSFs                                   */
          SKP_int                   *interpIndex,       /* O    NLSF interp. index for NLSF interp.     */
    const SKP_float                 prev_NLSFq[],       /* I    Previous NLSFs, for NLSF interpolation  */
    const SKP_int                   useInterpNLSFs,     /* I    Flag                                    */
    const SKP_int                   LPC_order,          /* I    LPC order                               */
    const SKP_float                 x[],                /* I    Input signal                            */
    const SKP_int                   subfr_length        /* I    Subframe length incl preceeding samples */
)
{
    SKP_int     k;
    SKP_float   a[ MAX_LPC_ORDER ];

    /* Used only for NLSF interpolation */
    double      res_nrg, res_nrg_2nd, res_nrg_interp;
    SKP_float   a_tmp[ MAX_LPC_ORDER ], NLSF0[ MAX_LPC_ORDER ];
    SKP_float   LPC_res[ ( MAX_FRAME_LENGTH + NB_SUBFR * MAX_LPC_ORDER ) / 2 ];

    /* Default: No interpolation */
    *interpIndex = 4;

    /* Burg AR analysis for the full frame */
    res_nrg = SKP_Silk_burg_modified_FLP( a, x, subfr_length, NB_SUBFR, FIND_LPC_COND_FAC, LPC_order );

	SKP_Silk_bwexpander_FLP( a, LPC_order, FIND_LPC_CHIRP );

    if( useInterpNLSFs == 1 ) {

        /* Optimal solution for last 10 ms; subtract residual energy here, as that's easier than        */
        /* adding it to the residual energy of the first 10 ms in each iteration of the search below    */
        res_nrg -= SKP_Silk_burg_modified_FLP( a_tmp, x + ( NB_SUBFR / 2 ) * subfr_length, 
            subfr_length, NB_SUBFR / 2, FIND_LPC_COND_FAC, LPC_order );

        SKP_Silk_bwexpander_FLP( a_tmp, LPC_order, FIND_LPC_CHIRP );

        /* Convert to NLSFs */
        SKP_Silk_A2NLSF_FLP( NLSF, a_tmp, LPC_order );

        /* Search over interpolation indices to find the one with lowest residual energy */
        res_nrg_2nd = SKP_float_MAX;
        for( k = 3; k >= 0; k-- ) {
            /* Interpolate NLSFs for first half */
            SKP_Silk_interpolate_wrapper_FLP( NLSF0, prev_NLSFq, NLSF, 0.25f * k, LPC_order );

            /* Convert to LPC for residual energy evaluation */
            SKP_Silk_NLSF2A_stable_FLP( a_tmp, NLSF0, LPC_order );

            /* Calculate residual energy with LSF interpolation */
            SKP_Silk_LPC_analysis_filter_FLP( LPC_res, a_tmp, x, 2 * subfr_length, LPC_order );
            res_nrg_interp = 
                SKP_Silk_energy_FLP( LPC_res + LPC_order,                subfr_length - LPC_order ) + 
                SKP_Silk_energy_FLP( LPC_res + LPC_order + subfr_length, subfr_length - LPC_order );

            /* Determine whether current interpolated NLSFs are best so far */
            if( res_nrg_interp < res_nrg ) {
                /* Interpolation has lower residual energy */
                res_nrg = res_nrg_interp;
                *interpIndex = k;
            } else if( res_nrg_interp > res_nrg_2nd ) {
                /* No reason to continue iterating - residual energies will continue to climb */
                break;
            }
            res_nrg_2nd = res_nrg_interp;
        }
    }

    if( *interpIndex == 4 ) {
        /* NLSF interpolation is currently inactive, calculate NLSFs from full frame AR coefficients */
        SKP_Silk_A2NLSF_FLP( NLSF, a, LPC_order );
    }

}