/*Binary Search Tree 节点查找操作*/
Status SearchBST(BinaryTree btree, int key, BinaryTree &f, BinaryTree &p) {
	if (!btree)
	{
		p = f;//指针回溯
		return ERROR;
	}
	else
	{
		if (btree->key == key)
		{
			p = btree;
			return OK;
		}
		else if (btree->key > key)
		{
			return SearchBST(btree->lchild, key, btree, p);//要有返回值,递归
		}
		else
		{
			return SearchBST(btree->rchild, key, btree, p);//要有返回值,递归
		}
		//return OK;
	}

}
/*主函数*/
int main() {
	int n;
	int data;
	int key;
	BinaryTree btree = NULL;
	BinaryTree f = NULL, p = NULL;
	scanf("%d", &n);
	//btree = (BinaryTree)malloc(sizeof(BinaryTree)*n);
	for (int i = 1; i <= n; i++)
	{
		scanf("%d", &data);
		InsertBST(btree, data);
	}
	preOrder(btree, printNode);//前序遍历递归实现
	printf("\n");
	InOrder(btree, printNode);//中序遍历递归实现
	printf("\n");
	PostOrder(btree, printNode);//后序遍历递归实现
	printf("\n");
	scanf("%d", &key);
	printf("%d\n", SearchBST(btree, key, f, p));//查找操作
	scanf("%d", &key);
	printf("%d\n", SearchBST(btree, key, f, p));//查找操作
	scanf("%d", &data);
	InsertBST(btree, data);
	preOrder(btree, printNode);//前序遍历递归实现
	printf("\n");
	InOrder(btree, printNode);//中序遍历递归实现
	printf("\n");
	PostOrder(btree, printNode);//后序遍历递归实现
	printf("\n");
	InOrderSecond(btree);//中序遍历非递归实现
	LevelOrder(btree);//层次遍历
	return 0;
}
Example #3
0
BSTNode *SearchBST(BSTNode *bt,KeyType k)
{ 
    if (bt==NULL || bt->key==k)      	/*递归终结条件*/
		return bt;
	if (k<bt->key)
       	return SearchBST(bt->lchild,k);  /*在左子树中递归查找*/
    else
     	return SearchBST(bt->rchild,k);  /*在右子树中递归查找*/
}
Example #4
0
File: avl.c Project: luaohan/AVL
BSTree SearchBST(BSTree T, ElemType *e)
{                                     
    if (T == NULL || T->data == *e){                                         
        return T;                                                            
    } else if (*e < T->data){                                                
        return SearchBST(T->lchild, e);                                      
    } else {
        return SearchBST(T->rchild, e);                                      
    }                                                                        

}    
Example #5
0
Status SearchBST(BiTree T,int key,BiTree f,BiTree *p){
  if(!T){
    *p=f;
    return FALSE;
  }
  else if(key==T->data){
    *p=T;
    return TRUE;
  }
  else if(key<T->data)return SearchBST(T->lchild,key,T,p);
  else return SearchBST(T->right,key,T,p);
}
Example #6
0
Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {  
  // 算法9.5(b)
  // 在根指针T所指二叉排序树中递归地查找其关键字等于key的数据元素,
  // 若查找成功,则指针p指向该数据元素结点,并返回TRUE,
  // 否则指针p指向查找路径上访问的最后一个结点并返回FALSE,
  // 指针f指向T的双亲,其初始调用值为NULL
  if (!T) { p = f;  return FALSE; }                     // 查找不成功
  else if (EQ(key, T->data.key)) { p = T;  return TRUE; } // 查找成功
  else if (LT(key, T->data.key)) 
    return SearchBST(T->lchild, key, T, p);  // 在左子树中继续查找
  else  
    return SearchBST(T->rchild, key, T, p);  // 在右子树中继续查找
} // SearchBST
Example #7
0
BSTree *SearchBST(BSTree* t, int key)
{
	if (!t || t->data == key)
	{
		return t;
	}
	else if (key < t->data)
	{
		return SearchBST(t->left, key);
	}
	else
	{
		return SearchBST(t->right, key);
	}
}
//二叉排序树:左子树上所有结点的值均小于它的根节点的值,右子树上所有结点的值均大于根节点的值
//查找
Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p)
//在二叉排序树T中查找key。若查找成功,则p指向该数据元素结点,并返回TRUE。否则,p指向查找路径上访问的最后一个结点并返回FALSE。f为T节点的双亲。
{
	if(!T)
	{
		p=f;
		return FALSE;
	}
	else if (EQ(key,T->data.key))
	{
		p=T;
		return T;
	}
	else if(LT(key,T->data.key))return SearchBST(T->lchild,key,T,p);
	else  return SearchBST(T->rchild,key,T,p);
}
Example #9
0
void test1()
{
	int data[] = {35, 6, 15, 65, 7, 46, 17, 43, 3, 7};
//	int data[] = {3};
	int size = sizeof(data)/sizeof(*data);
//	printf("size = %d\n", size);
	BSTree BST = NULL;
	BuildBSTree(BST, data, 0, size - 1);
	PreOrderTraverse(BST);
	printf("\n");
	MidOrderTraverse(BST);
	printf("\n");
	PostOrderTraverse(BST);
	printf("\n");

	BSTree node = SearchBST(BST, 17, 0);
	if (!node)
		printf("Search failed.\n");
	else
		printf("Search success, the search value is %d.\n", node->value);

	int n;
	scanf("%d", &n);
	while (n != -1)
	{
		DeleteNode(BST, n);
//		printf("Delete node %d.\n", n);
		MidOrderTraverse(BST);
		printf("\n");
		scanf("%d", &n);
	}

	printf("\n");
	
}
void main()
{
	BiTree dt, p;
	int i;
	KeyType j;
	ElemType r[N] = { {45,1},{12,2},{53,3},{3,4},{37,5},{24,6},{100,7},{61,8},{90,9},{78,10} }; /* 以教科书图9.7(a)为例 */
	InitDSTable(&dt); /* 构造空表 */
	for (i = 0; i < N; i++)
		InsertBST(&dt, r[i]); /* 依次插入数据元素 */
	TraverseDSTable(dt, print);
	printf("\n请输入待查找的值: ");
	scanf("%d", &j);
	p = SearchBST(dt, j);
	if (p)
	{
		printf("表中存在此值。");
		DeleteBST(&dt, j);
		printf("删除此值后:\n");
		TraverseDSTable(dt, print);
		printf("\n");
	}
	else
		printf("表中不存在此值\n");
	DestroyDSTable(&dt);
}
/*Binary Search Tree 节点插入操作*/
Status InsertBST(BinaryTree &btree, int data) {
	BinaryTree p = NULL, node = NULL, f = NULL;
	//没有找到节点才可以插入
	if (!SearchBST(btree, data, f, p))
	{
		node = (BinaryTree)malloc(sizeof(TreeNode));
		node->key = data;
		node->lchild = NULL;
		node->rchild = NULL;
		if (!p)
		{
			btree = node;
		}
		else if (p->key>data)
		{
			p->lchild = node;
		}
		else
		{
			p->rchild = node;
		}
		return OK;
	}
	else return ERROR;
}
Example #12
0
/* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
Status SearchBST(BiTree T, int key, BiTree f, BiTree *p) 
{  
	if (!T)	/*  查找不成功 */
	{ 
		*p = f;  
		return FALSE; 
	}
	else if (key==T->data) /*  查找成功 */
	{ 
		*p = T;  
		return TRUE; 
	} 
	else if (key<T->data) 
		return SearchBST(T->lchild, key, T, p);  /*  在左子树中继续查找 */
	else  
		return SearchBST(T->rchild, key, T, p);  /*  在右子树中继续查找 */
}
bool SearchBST (BiTree T , int data , BiTree f , BiTree &p)
{
	if(!T)
	{
		p = f ;
		return false ;
	}
	else if ( data == T->digit )
	{
		p = T ;
		return true ;
	}
	else if ( data < T->digit )
		return SearchBST ( T->left_child , data , T , p );
	else
		return SearchBST ( T->right_child , data , T , p );
}
 BiTree SearchBST(BiTree T,KeyType key)
 { /* 在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素, */
   /* 若查找成功,则返回指向该数据元素结点的指针,否则返回空指针。算法9.5(a) */
   if((!T)||EQ(key,T->data.key))
     return T; /* 查找结束 */
   else if LT(key,T->data.key) /* 在左子树中继续查找 */
     return SearchBST(T->lchild,key);
   else
     return SearchBST(T->rchild,key); /* 在右子树中继续查找 */
Example #15
0
 BSTree SearchBST(BSTree T,KeyType key)
 { // 在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素,
   // 若查找成功,则返回指向该数据元素结点的指针,否则返回空指针。算法9.5(a)
   if((!T)||EQ(key,T->data.key))
     return T; // 查找结束
   else if LT(key,T->data.key) // 在左子树中继续查找
     return SearchBST(T->lchild,key);
   else
     return SearchBST(T->rchild,key); // 在右子树中继续查找
Example #16
0
/* Search Binary Sort Tree to find 'key'
 * f points to T's parents, inlilated NULL
 * if succeeded, p points to data structure, and return FALSE
 * or, p points to last data structure of the path
 */
Status SearchBST(BitTree T, int key, BitTree f, BitTree *p)
{
	if(!T)		    //terminal leaf
	{
		*p = f;		    //结点为叶结点时,*p指向双亲结点
		return FALSE;
	}
	else if(key == T->data) //successfully searched
	{
		*p = T;
		//	printf("T->data:%d\n", T->data);
		return TRUE;
	}
	else if(key < T->data)
	{
		return SearchBST(T->lchild, key, T, p);
	}
	else
		return SearchBST(T->rchild, key, T, p);
}
Status deleteBST(BinaryTree btree, int key) {
	BinaryTree p, f;
	if (!SearchBST(btree, key, f, p))
	{
		return ERROR;//无法找到关键字,删除失败
	}
	else
	{
		deleteNode(p, f);
	}
}
Example #18
0
void main()
{
	BSTree T;
	char ch1,ch2;
	KeyType Key;
	printf("建立一棵二叉排序树的二叉链表存储\n");
	T=CreateBST();
	ch1='y';
	while (ch1=='y' || ch1=='Y')
	{
		printf("请选择下列*作:\n");
		printf("1------------------更新二叉排序树存储\n");
		printf("2------------------二叉排序树上的查找\n");
		printf("3------------------二叉排序树上的插入\n");
		printf("4------------------二叉排序树上的删除\n");
		printf("5------------------二叉排序树中序输出\n");
		printf("6------------------退出\n");
		scanf("\n%c",&ch2);
		switch (ch2)
		{
		case '1':
			T=CreateBST();
			break;
		case '2':
			printf("\n请输入要查找的数据:");
			scanf("\n%d",&Key);
			SearchBST(T,Key);
			printf("查找*作完毕。\n");
			break;
		case '3':
			printf("\n请输入要插入的数据:");
			scanf("\n%d",&Key);
			InsertBST(&T,Key);
			printf("插入*作完毕。\n");
			break;
		case '4':
			printf("\n请输入要删除的数据:");
			scanf("\n%d",&Key);
			DelBSTNode(&T,Key);
			printf("删除*作完毕。\n");
			break;
		case '5':
			InorderBST(T);
			printf("\n二叉排序树输出完毕。\n");
			break;
		case '6':
			ch1='n';
			break;
		default:
			ch1='n';
		}
	}
}
Example #19
0
//�����㷨
int BiSearchT::InsertBST(BiTree *t,int e){
  BiTree p;
  BiTree s;
  if(!SearchBST(*t,e,NULL,&p)){
    s=(BiTree)malloc(sizeof(BiNode));
    s->data=e;s->l=s->r=NULL;
    if(!p) *t=s;
    else if(e<p->data) p->l=s;
    else p->r=s;
    return true;
  }
  else return false;
}
Example #20
0
Status InsertBST(BiTree *T,int key){
  BiTree p,s;
  if(!SearchBST(*T,key,NULL,&p)){
    s=(BiTree)malloc(sizeof(BiTNode));
    s->data=key;
    s->lchild=s->rchild=NULL;
    if(!p)*T=s;
    else if(key<p->data)p->lchild=s;
    else p->rchild=s;
    return TRUE;
  }
  else return FALSE;
}
Example #21
0
//返回key值的节点 
Node* SearchBST(BST t, int key) {
	Node *left;
	Node *right;
	if (t != NULL &&  t->key == key) {
		return t;
	}
	else if (t != NULL) {
		left = SearchBST(t->lChild, key);  //搜索左子树 
		if (left == NULL) {
			right = SearchBST(t->rChild, key);  //搜索右子树 
			if (right != NULL)
				return right;
			else
				return NULL;
		} else {
			return left;
		}
	}
	else {
		return NULL;
	}
}
Status InsertBST(BiTree &T,ElemType e)
{
	if(!SearchBST(T,e.key,NULL,p)){
		s=(BiTree)malloc (sizeof(BiTNode));
		s->data=e;
		s->lchild=s->rchild=NULL;
		if(!p)T=s;
		else if(LT(e.key,p->data.key))p->lchild=s;
		else p->rchild=s;
		return TRUE;
	}
	else 
		return FALSE;
}
inline bool InsertBST ( BiTree &T , int data )
{
	BiTree p = NULL , s = NULL ;
	if( SearchBST (T, data , NULL , p ) )
		return false ;
	else
	{
		s = new BiNode ;
		s->digit = data ;
		if ( p == NULL )
			T = s  ;
		else if ( data < p->digit )
			p->left_child = s ;
		else
			p->right_child = s ;
		return true ;
	}
}
Example #24
0
int main()
{
	int a[] = {16, 53, 54, 75, 80, 99, 100, 110, 160, 161, 162};
	int i, res, need = 17;
	BitTree T = NULL, p;

	for(i = 0; i < sizeof(a)/sizeof(a[0]); i++)
	{
		InsertBST(&T, a[i]);
	}

	res = SearchBST(T, need, NULL, &p);

	if(FALSE == res)
		fprintf(stderr, "Not found %d\n", need);
	else
		fprintf(stdout, "Has found %d\n", need);
}
Example #25
0
/*  插入key并返回TRUE,否则返回FALSE */
Status InsertBST(BiTree *T, int key) 
{  
	BiTree p,s;
	if (!SearchBST(*T, key, NULL, &p)) /* 查找不成功 */
	{
		s = (BiTree)malloc(sizeof(BiTNode));
		s->data = key;  
		s->lchild = s->rchild = NULL;  
		if (!p) 
			*T = s;			/*  插入s为新的根结点 */
		else if (key<p->data) 
			p->lchild = s;	/*  插入s为左孩子 */
		else 
			p->rchild = s;  /*  插入s为右孩子 */
		return TRUE;
	} 
	else 
		return FALSE;  /*  树中已有关键字相同的结点,不再插入 */
}
Example #26
0
void main()
{
	BSTNode *bt,*p,*f;
	int n=12,x=46;
	KeyType a[]={25,18,46,2,53,39,32,4,74,67,60,11};
	bt=CreateBST(a,n);
	printf("BST:");DispBST(bt);printf("\n");
	printf("删除%d结点\n",x);
	if (SearchBST(bt,x)!=NULL)
	{
		DeleteBST(bt,x);
		printf("BST:");DispBST(bt);printf("\n");
	}
	x=18;
	p=SearchBST1(bt,x,NULL,f);
	if (f!=NULL)
		printf("%d的双亲是%d\n",x,f->key);


}
Example #27
0
/*
 * 二叉排序树插入操作
 * 当二叉排序树中存在关键字key的数据元素时
 * 插入key并返回TRUE, 否则返回FALSE
 */
Status InsertBST(BitTree *T, int key)
{
	BitTree p, s;
	if(SearchBST(*T, key, NULL, &p)) //查找不成功
	{
		s = (BitTree)malloc(sizeof(BiTNode));
		s->data = key;
		printf("%d\n", key);
		s->lchild = s->rchild = NULL;
		if(!p)
			*T = s; //插入s为新的根结点
		else if(key < p->data)
			p->lchild = s;
		else
			p->rchild = s;
		return TRUE;
	}
	else
		return FALSE;
}
void main()
{
	BSTree dt, p;
	Status k;
	int i;
	KeyType j;
	ElemType r[N] = { {13,1},{24,2},{37,3},{90,4},{53,5} }; /* (以教科书图9.12为例) */
	InitDSTable(&dt); /* 初始化空树 */
	for (i = 0; i < N; i++)
		InsertAVL(&dt, r[i], &k); /* 建平衡二叉树 */
	TraverseDSTable(dt, print); /* 按关键字顺序遍历二叉树 */
	printf("\n请输入待查找的关键字: ");
	scanf("%d", &j);
	p = SearchBST(dt, j); /* 查找给定关键字的记录 */
	if (p)
		print(p->data);
	else
		printf("表中不存在此值");
	printf("\n");
	DestroyDSTable(&dt);
}
Example #29
0
int main()
{
	int key, i;
	BSTree bst, *pos;
	CreateBST(&bst, source, ARRAYLEN);
	printf("遍历二叉排序树结果:");
	BST_LDR(&bst);


	scanf_s("%d", &key);
	pos = SearchBST(&bst, key);
	if (pos)
	{
		printf("search successfull!");
	}
	else
	{
		printf("search failed!");
	}
	getchar();
	getchar();
	return 0;
}
Example #30
0
int main() {
	int num[1000] = {15, 55, 6, 7, 25, 2, 1, 66, 94, 64};
	int n = 10;
	BST T = NULL;
	InitBST(T);
	T->key = num[0];
	int k = 1;
	for (; k < n; k++) {
		Node* node = NULL;
		InitBST(node);
		node->key = num[k];
		InsertBST(T, node);
	}
	
	while (1) {
		printf("现有的数字为:");
		PrintNum(num, n);
		printf("请选择:\n");
		printf("1.添加节点并重新构造排序树\n2.删除节点\n3.先序遍历\n4.中序遍历\n5.后序遍历\n6.搜索结点\n");
		int select;
		scanf("%d", &select);
		switch (select) {
			case 1: {
				printf("请添加key:");
				int addNum;
				scanf("%d", &addNum);
				int i;
				int flag = 0;
				for (i = 0; i < n; i++) {
					if (num[i] == addNum) {
						printf("在数组中已存在该数字\n");
						flag = -1;
						break;
					}
				}
				if (flag == -1) {
					continue;
				}
				num[n] = addNum;
				n++;
				DestroyBST(T);
				
				InitBST(T);
				T->key = num[0];
				i = 1;
				for (; i < n; i++) {
					Node* node = NULL;
					InitBST(node);
					node->key = num[i];
					InsertBST(T, node);
				}
				break;
			}
			case 2: {
				printf("请输入key:");
				int delNum;
				scanf("%d", &delNum);
				int i;
				int index;
				int flag = 0;
				for (i = 0; i < n; i++) {
					if (num[i] == delNum) {
						flag = 1;
						index = i;
						break;
					}
				}
				if (flag == 0) {
					printf("数组中没有这个key\n");
					continue;
				}
				DeleteBST(T, delNum);
				
				for (i = index; i < n - 1; i++) {
					num[i] = num[i + 1];
				}
				n--;
				 
				break;
			}
			case 3:
				PreOrderTraverseBST(T, Visit);
				printf("\n");
				break;
			case 4:
				InOrderTraverseBST(T, Visit);
				printf("\n");
				break;
			case 5:
				PostOrderTraverseBST(T, Visit);
				printf("\n");
				break;
			case 6:
				int searchKey;
				printf("请输入key值:");
				scanf("%d", &searchKey);
				Node* node = SearchBST(T, searchKey);
				if (node != NULL) {
					printf("搜索成功!节点key值%d\n", node->key);
				}
			default:
				break;
			fflush(stdin);
		}
	}
}