int ParseFloats( const char *pText, float *pFloat, int count )
{
	const char *pTemp = pText;
	int index = 0;

	while ( pTemp && count > 0 )
	{
		// Skip current token / float
		pTemp = SkipText( pTemp );
		// Skip any whitespace in between
		pTemp = SkipSpace( pTemp );
		if ( pTemp )
		{
			// Parse a float
			pFloat[index] = (float)atof( pTemp );
			count--;
			index++;
		}
	}

	if ( count == 0 )
		return 1;

	return 0;
}
Example #2
0
/* <c5400> ../engine/tmessage.c:177 */
NOXREF int ParseFloats(const char *pText, float *pFloat, int count)
{
	const char *pTemp = pText;
	int index = 0;

	while (pTemp && count > 0)
	{
		pTemp = SkipText(pTemp);
		pTemp = SkipSpace(pTemp);

		if (pTemp)
		{
			pFloat[index] = (float)Q_atof(pTemp);
			count--;
			index++;
		}
	}
	if (count == 0)
		return 1;

	return 0;
}
Example #3
0
bool NeuralNet::ParseNorms(char *pData)
{
   // null vectors
   int i;
   for(i = 0; i < mNInp16; i++)
   {
     mpNormMeans16[i] = 0.0f;
     mpNormDevs16[i] = 1.0f;
   }
    
   // mean vector
   char *pt = pData;
   pt = SkipSpaces(pt);
   if(strncmp(pt, "vec", strlen("vec")) != 0)
   {
      return false;
   }
   pt += strlen("vec");
   pt = SkipSpaces(pt);
   int len;
   if(!GetIntValue(pt, &len))
   {
      return false;
   }    
   pt = SkipText(pt);

   float *pvct = mpNormMeans16;
   for(i = 0; i < mNInp; i++)
   {
      pt = SkipSpaces(pt);
      if(!GetFloatValue(pt, pvct))
      {
         return false;
      }
      pvct++;
      pt = SkipText(pt);
   }   

   // standard deviation vector
   pt = SkipSpaces(pt);
   if(strncmp(pt, "vec", strlen("vec")) != 0)
   {
      return false;
   }
   pt += strlen("vec");
   pt = SkipSpaces(pt);
   if(!GetIntValue(pt, &len))
   {
      return false;
   }    
   pt = SkipText(pt);

   pvct = mpNormDevs16;
   for(i = 0; i < mNInp; i++)
   {
      pt = SkipSpaces(pt);
      if(!GetFloatValue(pt, pvct))
      {
         return false;
      }
      pvct++;
      pt = SkipText(pt);
   }
   
//   puts("means");
//   DumpMatrix(mpNormMeans16, 1, mNInp16, mNInp16);

//   puts("devs");
//   DumpMatrix(mpNormDevs16, 1, mNInp16, mNInp16);
   
   
   return true;
}
Example #4
0
bool NeuralNet::ParseWeights(char *pData)
{
   // null matrixes
   memset((void *)mpInpHidMatrix, 0, mNHid16 * mNInp16 * sizeof(float));
   memset((void *)mpHidOutMatrix, 0, mNOut16 * mNHid16 * sizeof(float));    
   memset((void *)mpHiddenBiases, 0, mNHid16 * sizeof(float));
   memset((void *)mpOutputBiases, 0, mNOut16 * sizeof(float));    
    
   // input to hidden matrix
   char *pt = pData;
   pt = SkipSpaces(pt);
   if(strncmp(pt, "weigvec", strlen("weigvec")) != 0)
   {
      return false;
   }

   pt += strlen("weigvec");
   pt = SkipSpaces(pt);
   int n_inp_hid;
   if(!GetIntValue(pt, &n_inp_hid))
   {
      return false;
   }    
   pt = SkipText(pt);

   float *pmat = mpInpHidMatrix16;
   int i;
   for(i = 0; i < mNHid; i++)
   {
      int j;
      for(j = 0; j < mNInp; j++)
      {
         pt = SkipSpaces(pt);
         if(!GetFloatValue(pt, pmat))
         {
            return false;
         }
         pmat++;
         pt = SkipText(pt);
      }
      for(j = mNInp; j < mNInp16; j++)
      {
         *pmat = 0.0f;
         pmat++;
      }
   }
   
   // hidden to output matrix
   pt = SkipSpaces(pt);
   if(strncmp(pt, "weigvec", strlen("weigvec")) != 0)
   {
      return false;
   }

   pt += strlen("weigvec");
   pt = SkipSpaces(pt);
   int n_hid_out;
   if(!GetIntValue(pt, &n_hid_out))
   {
      return false;
   }    
   pt = SkipText(pt);

   pmat = mpHidOutMatrix16;
   for(i = 0; i < mNOut; i++)
   {
      int j;
      for(j = 0; j < mNHid; j++)
      {
         pt = SkipSpaces(pt);            
         if(!GetFloatValue(pt, pmat))
         {
            return false;
         }
         pmat++;
         pt = SkipText(pt);
      }
      for(j = mNHid; j < mNHid16; j++)
      {
         *pmat = 0.0f;
         pmat++;
      }
   }
  
   // hidden biases
   pt = SkipSpaces(pt);
   if(strncmp(pt, "biasvec", strlen("biasvec")) != 0)
   {
      return false;
   }
   pt += strlen("biasvec");   
   pt = SkipSpaces(pt);
   int n_biases_hid;
   if(!GetIntValue(pt, &n_biases_hid))
   {
      return false;
   }    
   pt = SkipText(pt);

   float *pvec = mpHiddenBiases16;
   for(i = 0; i < mNHid; i++)
   {
      pt = SkipSpaces(pt);      
      if(!GetFloatValue(pt, pvec))
      {
         return false;
      }
      pvec++;
      pt = SkipText(pt);
   }

   // output biases 
   pt = SkipSpaces(pt);
   if(strncmp(pt, "biasvec", strlen("biasvec")) != 0)
   {
      return false;
   }
   pt += strlen("biasvec");   
   pt = SkipSpaces(pt);
   int n_biases_out;
   if(!GetIntValue(pt, &n_biases_out))
   {
      return false;
   }    
   pt = SkipText(pt);

   pvec = mpOutputBiases16;
   for(i = 0; i < mNOut; i++)
   {
      pt = SkipSpaces(pt);      
      if(!GetFloatValue(pt, pvec))
      {
         return false;
      }
      pvec++;
      pt = SkipText(pt);
   }
   
   return true;
}