Example #1
0
static void
tie_it(pTHX_ const char name, UV flag, HV *const stash)
{
    GV *const gv = gv_fetchpvn(&name, 1, GV_ADDMULTI|GV_NOTQUAL, SVt_PVHV);
    HV *const hv = GvHV(gv);
    SV *rv = newSV_type(SVt_RV);

    SvRV_set(rv, newSVuv(flag));
    SvROK_on(rv);
    sv_bless(rv, stash);

    sv_unmagic((SV *)hv, PERL_MAGIC_tied);
    sv_magic((SV *)hv, rv, PERL_MAGIC_tied, NULL, 0);
    SvREFCNT_dec(rv); /* As sv_magic increased it by one.  */
}
Example #2
0
// This function reads the various JavaBin datatypes and returns a Perl SV.
// Different datatypes are jumped to view a lookup in an array of computed gotos.
//
// The first group (undef to enum) use the entire tag for the index of the type.
//
// The second are matched by taking the tag byte, shifting it by 5 so to only read
// the first 3 bits of the tag byte, giving it a range or 0-7 inclusive.
//
// To store both in one array the second group have 18 added to them. See DISPATCH.
//
// The remaining 5 bits can then be used to store the size of the datatype, e.g. how
// many chars in a string, this therefore has a range of 0-31, if the size exceeds or
// matches this then an additional vint is added.
//
// The overview of the tag byte is therefore TTTSSSSS with T and S being type and size.
static SV* read_sv(pTHX) {
    void* dispatch[] = {
        &&read_undef,
        &&read_bool,
        &&read_bool,
        &&read_byte,
        &&read_short,
        &&read_double,
        &&read_int,
        &&read_long,
        &&read_float,
        &&read_date,
        &&read_map,
        &&read_solr_doc,
        &&read_solr_doc_list,
        &&read_byte_array,
        &&read_iterator,
        NULL,
        NULL,
        NULL,
        &&read_enum,
        &&read_string,
        &&read_small_int,
        &&read_small_long,
        &&read_array,
        &&read_map,
        &&read_map,
    };

    in++;

    goto *dispatch[in[-1] >> 5 ? (in[-1] >> 5) + 18 : in[-1]];

read_undef:
    return &PL_sv_undef;
read_bool: {
        SV *rv = newSV_type(SVt_IV), *sv = in[-1] == 1 ? bool_true : bool_false;

        SvREFCNT(sv)++;
        SvROK_on(rv);
        SvRV_set(rv, sv);

        return rv;
    }
read_byte:
    return newSViv((int8_t) *in++);
read_short: {
        const int16_t s = in[0] << 8 | in[1];

        in += 2;

        return newSViv(s);
    }
read_double: {
        // For perls with double length NVs this conversion is simple.
        // Read 8 bytes, cast to double, return. For long double perls
        // more magic is used, see read_float for more details.

        const int_double u = { (uint64_t) in[0] << 56 |
                               (uint64_t) in[1] << 48 |
                               (uint64_t) in[2] << 40 |
                               (uint64_t) in[3] << 32 |
                               (uint64_t) in[4] << 24 |
                               (uint64_t) in[5] << 16 |
                               (uint64_t) in[6] << 8  |
                               (uint64_t) in[7] };

        in += 8;

    #ifdef USE_LONG_DOUBLE
        char *str = alloca(snprintf(NULL, 0, "%.14f", u.d));

        sprintf(str, "%.14f", u.d);

        return newSVnv(strtold(str, NULL));
    #else
        return newSVnv(u.d);
    #endif
    }
read_int: {
        const int32_t i = in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3];

        in += 4;

        return newSViv(i);
    }
read_long: {
        const int64_t l = (uint64_t) in[0] << 56 |
                          (uint64_t) in[1] << 48 |
                          (uint64_t) in[2] << 40 |
                          (uint64_t) in[3] << 32 |
                          (uint64_t) in[4] << 24 |
                          (uint64_t) in[5] << 16 |
                          (uint64_t) in[6] << 8  |
                          (uint64_t) in[7];

        in += 8;

        return newSViv(l);
    }
read_float: {
        // JavaBin has a 4byte float format, NVs in perl are double or long double,
        // therefore a little magic is required. Read the 4 bytes into an int in the
        // correct endian order. Re-read these bits as a float, stringify this float,
        // then finally numify the string into a double or long double.
        const int_float u = { in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3] };

        in += 4;

        char *str = alloca(snprintf(NULL, 0, "%f", u.f));

        sprintf(str, "%f", u.f);

    #ifdef USE_LONG_DOUBLE
        return newSVnv(strtold(str, NULL));
    #else
        return newSVnv(strtod(str, NULL));
    #endif
    }
read_date: {
        const int64_t date_ms = (uint64_t) in[0] << 56 |
                                (uint64_t) in[1] << 48 |
                                (uint64_t) in[2] << 40 |
                                (uint64_t) in[3] << 32 |
                                (uint64_t) in[4] << 24 |
                                (uint64_t) in[5] << 16 |
                                (uint64_t) in[6] << 8  |
                                (uint64_t) in[7];

        in += 8;

        const time_t date = date_ms / 1000;

        const struct tm *t = gmtime(&date);

        char date_str[25];

        sprintf(date_str, "%u-%02u-%02uT%02u:%02u:%02u.%03uZ", t->tm_year + 1900,
                t->tm_mon + 1,
                t->tm_mday,
                t->tm_hour,
                t->tm_min,
                t->tm_sec,
                (uint32_t) (date_ms % 1000));

        return newSVpvn(date_str, 24);
    }
read_solr_doc:
    in++;     // Assume a solr doc is a map.
read_map: {
        HV *hv = (HV*)newSV_type(SVt_PVHV);

        uint32_t len = in[-1] >> 5 ? READ_LEN : read_v_int();

        while (len--) {
            cached_key key;

            in++;

            const uint32_t i = READ_LEN;

            if (i)
                key = cached_keys[i];
            else {
                in++;

                cached_keys[++cache_pos] = key = (cached_key){ (char*)in, 0, READ_LEN };

                uint8_t *key_str = in;

                in += key.len;

                // Set the UTF8 flag if we hit a high byte.
                while (key_str != in) {
                    if (*key_str++ & 128) {
                        key.flags = HVhek_UTF8;
                        break;
                    }
                }
            }

            hv_common(hv, NULL, key.key, key.len, key.flags, HV_FETCH_ISSTORE, read_sv(aTHX), 0);
        }

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)hv);

        return rv;
    }
read_solr_doc_list: {
        HV *hv = (HV*)newSV_type(SVt_PVHV);

        // Assume values are in an array, skip tag & read_sv.
        in++;

        hv_set(hv, "numFound", read_sv(aTHX), numFound);
        hv_set(hv, "start",    read_sv(aTHX), start);
        hv_set(hv, "maxScore", read_sv(aTHX), maxScore);
        hv_set(hv, "docs",     read_sv(aTHX), docs);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)hv);

        return rv;
    }
read_byte_array: {
        AV *av = (AV*)newSV_type(SVt_PVAV);

        SSize_t len = read_v_int();

        SV **ary = safemalloc(len * sizeof(SV*));

        AvALLOC(av) = AvARRAY(av) = ary;
        AvFILLp(av) = AvMAX(av) = len - 1;

        while (len--)
            *ary++ = newSViv((int8_t) *in++);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)av);

        return rv;
    }
read_iterator: {
        AV *av = (AV*)newSV_type(SVt_PVAV);

        uint32_t len = 0;

        while (*in != 15)
            av_store(av, len++, read_sv(aTHX));

        in++;

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, (SV*)av);

        return rv;
    }
read_enum: {
        SV *sv = read_sv(aTHX); // small_int if +ve, int otherwise.

        sv_upgrade(sv, SVt_PVMG);

        in++;

        const STRLEN len = READ_LEN;

        char *str = sv_grow(sv, len + 1);

        memcpy(str, in, len);

        in += len;

        str[len] = '\0';

        SvCUR(sv) = len;

        SvFLAGS(sv) = SVf_IOK | SVp_IOK | SVs_OBJECT | SVf_POK | SVp_POK | SVt_PVMG | SVf_UTF8;

        HV *stash = CALL(gv_stashpvn, STR_WITH_LEN("JavaBin::Enum"), 0);

        SvREFCNT(stash)++;
        SvSTASH_set(sv, stash);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV_set(rv, sv);

        return rv;
    }
read_string: {
        const STRLEN len = READ_LEN;

        SV *sv = newSV_type(SVt_PV);

        char *str = SvPVX(sv) = (char*)safemalloc(len);

        memcpy(str, in, len);

        SvCUR(sv) = SvLEN(sv) = len;
        SvFLAGS(sv) |= SVf_POK | SVp_POK | SVf_UTF8;

        in += len;

        return sv;
    }
read_small_int: {
        uint32_t result = in[-1] & 15;

        if (in[-1] & 16)
            result |= read_v_int() << 4;

        return newSViv(result);
    }
read_small_long: {
        uint64_t result = in[-1] & 15;

        // Inlined variable-length +ve long code, see read_v_int().
        if (in[-1] & 16) {
            uint8_t shift = 4;

            do result |= (*in++ & 127) << shift;
            while (in[-1] & 128 && (shift += 7));
        }

        return newSViv(result);
    }
read_array: {
        AV *av = (AV*)newSV_type(SVt_PVAV);

        SSize_t len = READ_LEN;

        SV **ary = safemalloc(len * sizeof(SV*));

        AvALLOC(av) = AvARRAY(av) = ary;
        AvFILLp(av) = AvMAX(av) = len - 1;

        while (len--)
            *ary++ = read_sv(aTHX);

        SV *rv = newSV_type(SVt_IV);

        SvROK_on(rv);
        SvRV(rv) = (SV*)av;

        return rv;
    }
}

static void grow_out(pTHX_ const STRLEN want) {
    const STRLEN len = out_buf - (uint8_t *)SvPVX(out_sv);

    // If we want more than we have, realloc the string.
    if (len + want >= SvLEN(out_sv)) {
        sv_grow(out_sv, len + want);

        out_buf = (uint8_t *)SvPVX(out_sv) + len;
    }
}

static void write_v_int(uint32_t i) {
    while (i & ~127) {
        *out_buf++ = (i & 127) | 128;

        i >>= 7;
    }

    *out_buf++ = i;
}

static void write_shifted_tag(uint8_t tag, uint32_t len) {
    if (len < 31)
        *out_buf++ = tag | len;
    else {
        *out_buf++ = tag | 31;

        write_v_int(len - 31);
    }
}

static void write_sv(pTHX_ SV *sv) {
    SvGETMAGIC(sv);

    if (SvPOKp(sv)) {
        const STRLEN len = SvCUR(sv);

        grow_out(aTHX_ len + 5);

        write_shifted_tag(32, len);

        memcpy(out_buf, SvPVX(sv), len);

        out_buf += len;
    }
    else if (SvNOKp(sv)) {
        const int_double u = { .d = SvNV(sv) };

        grow_out(aTHX_ 9);

        *out_buf++ = 5;
        *out_buf++ = u.i >> 56;
        *out_buf++ = u.i >> 48;
        *out_buf++ = u.i >> 40;
        *out_buf++ = u.i >> 32;
        *out_buf++ = u.i >> 24;
        *out_buf++ = u.i >> 16;
        *out_buf++ = u.i >> 8;
        *out_buf++ = u.i;
    }
    else if (SvIOKp(sv)) {