void getPhasor(double outInPhase, double outQuadrature, CandleData * data, long numSticks) { outInPhase = 0.0; outQuadrature = 0.0; double * csData = CandleData::getData(data, CandleData::CLOSE, numSticks); int outNbElement = 0; int outBeg = 0; double * dataOut1 = new double[numSticks]; memset(dataOut1,0,numSticks * sizeof(double)); double * dataOut2 = new double[numSticks]; memset(dataOut2,0,numSticks * sizeof(double)); TA_RetCode ret = TA_HT_PHASOR( 0, numSticks-1, csData, &outBeg, &outNbElement, dataOut1, dataOut2); if(outNbElement != 0) { outInPhase = dataOut1[outNbElement - 1]; outQuadrature = dataOut2[outNbElement - 1]; } delete [] csData; delete [] dataOut1; delete [] dataOut2; }
void getPhasorAll(double *& outInPhase, double *& outQuadrature, CandleData * data, long numSticks) { double * csData = CandleData::getData(data, CandleData::CLOSE, numSticks); int outNbElement = 0; int outBeg = 0; double * dataOut1 = new double[numSticks]; memset(dataOut1,0,numSticks * sizeof(double)); double * dataOut2 = new double[numSticks]; memset(dataOut2,0,numSticks * sizeof(double)); TA_RetCode ret = TA_HT_PHASOR( 0, numSticks-1, csData, &outBeg, &outNbElement, dataOut1, dataOut2); outInPhase = new double[numSticks + outBeg]; memset(outInPhase,0,(numSticks + outBeg) * sizeof(double)); memcpy(&outInPhase[outBeg],dataOut1,numSticks*sizeof(double)); outQuadrature = new double[numSticks + outBeg]; memset(outQuadrature,0,(numSticks + outBeg) * sizeof(double)); memcpy(&outQuadrature[outBeg],dataOut2,numSticks*sizeof(double)); delete [] csData; delete [] dataOut1; delete [] dataOut2; }
/**** Local functions definitions. ****/ static TA_RetCode rangeTestFunction( TA_Integer startIdx, TA_Integer endIdx, TA_Real *outputBuffer, TA_Integer *outBegIdx, TA_Integer *outNbElement, TA_Integer *lookback, void *opaqueData, unsigned int outputNb ) { TA_RetCode retCode; TA_RangeTestParam *testParam; TA_Real *out1; TA_Real *out2; TA_Real *dummyOutput; (void)outputNb; testParam = (TA_RangeTestParam *)opaqueData; dummyOutput = TA_Malloc( (endIdx-startIdx+1) * sizeof(TA_Real) ); if( outputNb == 0 ) { out1 = outputBuffer; out2 = dummyOutput; } else { out1 = dummyOutput; out2 = outputBuffer; } switch( testParam->test->theFunction ) { case TA_HT_PHASOR_TEST: retCode = TA_HT_PHASOR( startIdx, endIdx, testParam->price, outBegIdx, outNbElement, out1, out2 ); *lookback = TA_HT_PHASOR_Lookback(); break; case TA_HT_SINE_TEST: retCode = TA_HT_SINE( startIdx, endIdx, testParam->price, outBegIdx, outNbElement, out1, out2 ); *lookback = TA_HT_SINE_Lookback(); break; default: retCode = TA_INTERNAL_ERROR(132); } TA_Free(dummyOutput); return retCode; }
static ErrorNumber do_test( const TA_History *history, const TA_Test *test ) { TA_RetCode retCode; ErrorNumber errNb; TA_Integer outBegIdx; TA_Integer outNbElement; TA_RangeTestParam testParam; const TA_Real *referenceInput; /* Set to NAN all the elements of the gBuffers. */ clearAllBuffers(); /* Build the input. */ setInputBuffer( 0, history->close, history->nbBars ); setInputBuffer( 1, history->close, history->nbBars ); setInputBuffer( 2, history->close, history->nbBars ); /* Change the input to MEDPRICE for some tests. */ switch( test->theFunction ) { case TA_HT_PHASOR_TEST: case TA_HT_SINE_TEST: TA_MEDPRICE( 0, history->nbBars-1, history->high, history->low, &outBegIdx, &outNbElement, gBuffer[0].in ); TA_MEDPRICE( 0, history->nbBars-1, history->high, history->low, &outBegIdx, &outNbElement, gBuffer[1].in ); /* Will be use as reference */ TA_MEDPRICE( 0, history->nbBars-1, history->high, history->low, &outBegIdx, &outNbElement, gBuffer[2].in ); referenceInput = gBuffer[2].in; break; default: referenceInput = history->close; } /* Make a simple first call. */ switch( test->theFunction ) { case TA_HT_PHASOR_TEST: retCode = TA_HT_PHASOR( test->startIdx, test->endIdx, gBuffer[0].in, &outBegIdx, &outNbElement, gBuffer[0].out0, gBuffer[0].out1 ); break; case TA_HT_SINE_TEST: retCode = TA_HT_SINE( test->startIdx, test->endIdx, gBuffer[0].in, &outBegIdx, &outNbElement, gBuffer[0].out0, gBuffer[0].out1 ); break; default: retCode = TA_INTERNAL_ERROR(133); } /* Check that the inputs were preserved. */ errNb = checkDataSame( gBuffer[0].in, referenceInput, history->nbBars ); if( errNb != TA_TEST_PASS ) return errNb; errNb = checkDataSame( gBuffer[1].in, referenceInput, history->nbBars ); if( errNb != TA_TEST_PASS ) return errNb; CHECK_EXPECTED_VALUE( gBuffer[0].out0, 0 ); CHECK_EXPECTED_VALUE( gBuffer[0].out1, 1 ); outBegIdx = outNbElement = 0; /* Make another call where the input and the output * are the same buffer. */ switch( test->theFunction ) { case TA_HT_PHASOR_TEST: retCode = TA_HT_PHASOR( test->startIdx, test->endIdx, gBuffer[0].in, &outBegIdx, &outNbElement, gBuffer[0].in, gBuffer[1].out1 ); break; case TA_HT_SINE_TEST: retCode = TA_HT_SINE( test->startIdx, test->endIdx, gBuffer[0].in, &outBegIdx, &outNbElement, gBuffer[0].in, gBuffer[1].out1 ); break; default: retCode = TA_INTERNAL_ERROR(134); } /* The previous call should have the same output * as this call. * * checkSameContent verify that all value different than NAN in * the first parameter is identical in the second parameter. */ errNb = checkSameContent( gBuffer[0].out0, gBuffer[0].in ); if( errNb != TA_TEST_PASS ) return errNb; errNb = checkSameContent( gBuffer[0].out1, gBuffer[1].out1 ); if( errNb != TA_TEST_PASS ) return errNb; CHECK_EXPECTED_VALUE( gBuffer[0].in, 0 ); CHECK_EXPECTED_VALUE( gBuffer[1].out1, 1 ); /* Make another call where the input and the output * are the same buffer. */ switch( test->theFunction ) { case TA_HT_PHASOR_TEST: retCode = TA_HT_PHASOR( test->startIdx, test->endIdx, gBuffer[1].in, &outBegIdx, &outNbElement, gBuffer[1].out0, gBuffer[1].in ); break; case TA_HT_SINE_TEST: retCode = TA_HT_SINE( test->startIdx, test->endIdx, gBuffer[1].in, &outBegIdx, &outNbElement, gBuffer[1].out0, gBuffer[1].in ); break; default: retCode = TA_INTERNAL_ERROR(134); } /* The previous call should have the same output * as this call. * * checkSameContent verify that all value different than NAN in * the first parameter is identical in the second parameter. */ errNb = checkSameContent( gBuffer[0].out1, gBuffer[1].in ); if( errNb != TA_TEST_PASS ) return errNb; errNb = checkSameContent( gBuffer[0].out0, gBuffer[1].out0 ); if( errNb != TA_TEST_PASS ) return errNb; CHECK_EXPECTED_VALUE( gBuffer[1].in, 1 ); CHECK_EXPECTED_VALUE( gBuffer[1].out0, 0 ); /* Do a systematic test of most of the * possible startIdx/endIdx range. */ testParam.test = test; testParam.price = referenceInput; if( test->doRangeTestFlag ) { switch( test->theFunction ) { case TA_HT_PHASOR_TEST: errNb = doRangeTest( rangeTestFunction, TA_FUNC_UNST_HT_PHASOR, (void *)&testParam, 1, 0 ); break; case TA_HT_SINE_TEST: errNb = doRangeTest( rangeTestFunction, TA_FUNC_UNST_HT_SINE, (void *)&testParam, 1, 10 ); break; default: errNb = doRangeTest( rangeTestFunction, TA_FUNC_UNST_NONE, (void *)&testParam, 1, 0 ); } if( errNb != TA_TEST_PASS ) return errNb; } return TA_TEST_PASS; }
/* The gateway routine */ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { /* ----------------- Variables ----------------- */ /* input variables */ /* mandatory input */ int startIdx; int endIdx; double * inReal; /* optional input */ /* output variables */ int outBegIdx; int outNbElement; double* outInPhase; double* outQuadrature; /* input dimentions */ int inSeriesRows; int inSeriesCols; /* error handling */ TA_RetCode retCode; /* ----------------- input/output count ----------------- */ /* Check for proper number of arguments. */ if (nrhs < 1 || nrhs > 1) mexErrMsgTxt("#1 inputs possible #0 optional."); if (nlhs != 2) mexErrMsgTxt("#2 output required."); /* ----------------- INPUT ----------------- */ /* Create a pointer to the input matrix inReal. */ inReal = mxGetPr(prhs[0]); /* Get the dimensions of the matrix input inReal. */ inSeriesCols = mxGetN(prhs[0]); if (inSeriesCols != 1) mexErrMsgTxt("inReal only vector alowed."); inSeriesRows = mxGetM(prhs[0]); endIdx = inSeriesRows - 1; startIdx = 0; /* Process optional arguments */ /* ----------------- OUTPUT ----------------- */ outInPhase = mxCalloc(inSeriesRows, sizeof(double)); outQuadrature = mxCalloc(inSeriesRows, sizeof(double)); /* -------------- Invocation ---------------- */ retCode = TA_HT_PHASOR( startIdx, endIdx, inReal, &outBegIdx, &outNbElement, outInPhase, outQuadrature); /* -------------- Errors ---------------- */ if (retCode) { mxFree(outInPhase); mxFree(outQuadrature); mexPrintf("%s%i","Return code=",retCode); mexErrMsgTxt(" Error!"); } // Populate Output plhs[0] = mxCreateDoubleMatrix(outBegIdx+outNbElement,1, mxREAL); memcpy(((double *) mxGetData(plhs[0]))+outBegIdx, outInPhase, outNbElement*mxGetElementSize(plhs[0])); mxFree(outInPhase); plhs[1] = mxCreateDoubleMatrix(outBegIdx+outNbElement,1, mxREAL); memcpy(((double *) mxGetData(plhs[1]))+outBegIdx, outQuadrature, outNbElement*mxGetElementSize(plhs[1])); mxFree(outQuadrature); } /* END mexFunction */