Example #1
0
/*
 * Inline followup when releasing a mutex.  The mutex has been released
 * but 'v' either doesn't match id or needs a wakeup.
 */
void
__thr_umtx_unlock(volatile umtx_t *mtx, int v, int id)
{
	if (v & 0x40000000) {
		_umtx_wakeup_err(mtx, 0);
		v &= 0x3FFFFFFF;
	}
	THR_ASSERT(v == id, "thr_umtx_unlock: wrong owner");
}
Example #2
0
int
_sigsuspend(const sigset_t *set)
{
	struct pthread	*curthread = _get_curthread();
	sigset_t	oldmask, newmask, tempset;
	int             ret = -1;

	if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM)
		return (__sys_sigsuspend(set));

	/* Check if a new signal set was provided by the caller: */
	if (set != NULL) {
		newmask = *set;
		SIG_CANTMASK(newmask);
		THR_LOCK_SWITCH(curthread);

		/* Save current sigmask: */
		oldmask = curthread->sigmask;
		curthread->oldsigmask = &oldmask;

		/* Change the caller's mask: */
		curthread->sigmask = newmask;
		tempset = curthread->sigpend;
		SIGSETNAND(tempset, newmask);
		if (SIGISEMPTY(tempset)) {
			THR_SET_STATE(curthread, PS_SIGSUSPEND);
			/* Wait for a signal: */
			_thr_sched_switch_unlocked(curthread);
		} else {
			curthread->check_pending = 1;
			THR_UNLOCK_SWITCH(curthread);
			/* check pending signal I can handle: */
			_thr_sig_check_pending(curthread);
		}
		if ((curthread->cancelflags & THR_CANCELLING) != 0)
			curthread->oldsigmask = NULL;
		else {
			THR_ASSERT(curthread->oldsigmask == NULL,
		 	          "oldsigmask is not cleared");
		}

		/* Always return an interrupted error: */
		errno = EINTR;
	} else {
		/* Return an invalid argument error: */
		errno = EINVAL;
	}

	/* Return the completion status: */
	return (ret);
}
Example #3
0
/*
 * Enqueue a waiting thread to a condition queue in descending priority
 * order.
 */
static inline void
cond_queue_enq(pthread_cond_t cond, struct pthread *pthread)
{
	struct pthread *tid = TAILQ_LAST(&cond->c_queue, cond_head);

	THR_ASSERT(!THR_IN_SYNCQ(pthread),
	    "cond_queue_enq: thread already queued!");

	/*
	 * For the common case of all threads having equal priority,
	 * we perform a quick check against the priority of the thread
	 * at the tail of the queue.
	 */
	if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
		TAILQ_INSERT_TAIL(&cond->c_queue, pthread, sqe);
	else {
		tid = TAILQ_FIRST(&cond->c_queue);
		while (pthread->active_priority <= tid->active_priority)
			tid = TAILQ_NEXT(tid, sqe);
		TAILQ_INSERT_BEFORE(tid, pthread, sqe);
	}
	THR_CONDQ_SET(pthread);
	pthread->data.cond = cond;
}
Example #4
0
int
_pthread_cond_broadcast(pthread_cond_t * cond)
{
	struct pthread	*curthread = _get_curthread();
	struct pthread	*pthread;
	struct kse_mailbox *kmbx;
	int		rval = 0;

	THR_ASSERT(curthread->locklevel == 0,
	    "cv_timedwait: locklevel is not zero!");
	if (cond == NULL)
		rval = EINVAL;
       /*
        * If the condition variable is statically initialized, perform dynamic
        * initialization.
        */
	else if (*cond != NULL || (rval = _pthread_cond_init(cond, NULL)) == 0) {
		/* Lock the condition variable structure: */
		THR_LOCK_ACQUIRE(curthread, &(*cond)->c_lock);

		/* Process according to condition variable type: */
		switch ((*cond)->c_type) {
		/* Fast condition variable: */
		case COND_TYPE_FAST:
			/* Increment the sequence number: */
			(*cond)->c_seqno++;

			/*
			 * Enter a loop to bring all threads off the
			 * condition queue:
			 */
			while ((pthread = TAILQ_FIRST(&(*cond)->c_queue))
			    != NULL) {
				THR_SCHED_LOCK(curthread, pthread);
				cond_queue_remove(*cond, pthread);
				pthread->sigbackout = NULL;
				if ((pthread->kseg == curthread->kseg) &&
				    (pthread->active_priority >
				    curthread->active_priority))
					curthread->critical_yield = 1;
				kmbx = _thr_setrunnable_unlocked(pthread);
				THR_SCHED_UNLOCK(curthread, pthread);
				if (kmbx != NULL)
					kse_wakeup(kmbx);
			}

			/* There are no more waiting threads: */
			(*cond)->c_mutex = NULL;
			break;

		/* Trap invalid condition variable types: */
		default:
			/* Return an invalid argument error: */
			rval = EINVAL;
			break;
		}

		/* Unlock the condition variable structure: */
		THR_LOCK_RELEASE(curthread, &(*cond)->c_lock);
	}

	/* Return the completion status: */
	return (rval);
}
Example #5
0
int
_pthread_cond_signal(pthread_cond_t * cond)
{
	struct pthread	*curthread = _get_curthread();
	struct pthread	*pthread;
	struct kse_mailbox *kmbx;
	int		rval = 0;

	THR_ASSERT(curthread->locklevel == 0,
	    "cv_timedwait: locklevel is not zero!");
	if (cond == NULL)
		rval = EINVAL;
       /*
        * If the condition variable is statically initialized, perform dynamic
        * initialization.
        */
	else if (*cond != NULL || (rval = _pthread_cond_init(cond, NULL)) == 0) {
		/* Lock the condition variable structure: */
		THR_LOCK_ACQUIRE(curthread, &(*cond)->c_lock);

		/* Process according to condition variable type: */
		switch ((*cond)->c_type) {
		/* Fast condition variable: */
		case COND_TYPE_FAST:
			/* Increment the sequence number: */
			(*cond)->c_seqno++;

			/*
			 * Wakeups have to be done with the CV lock held;
			 * otherwise there is a race condition where the
			 * thread can timeout, run on another KSE, and enter
			 * another blocking state (including blocking on a CV).
			 */
			if ((pthread = TAILQ_FIRST(&(*cond)->c_queue))
			    != NULL) {
				THR_SCHED_LOCK(curthread, pthread);
				cond_queue_remove(*cond, pthread);
				pthread->sigbackout = NULL;
				if ((pthread->kseg == curthread->kseg) &&
				    (pthread->active_priority >
				    curthread->active_priority))
					curthread->critical_yield = 1;
				kmbx = _thr_setrunnable_unlocked(pthread);
				THR_SCHED_UNLOCK(curthread, pthread);
				if (kmbx != NULL)
					kse_wakeup(kmbx);
			}
			/* Check for no more waiters: */
			if (TAILQ_EMPTY(&(*cond)->c_queue))
				(*cond)->c_mutex = NULL;
			break;

		/* Trap invalid condition variable types: */
		default:
			/* Return an invalid argument error: */
			rval = EINVAL;
			break;
		}

		/* Unlock the condition variable structure: */
		THR_LOCK_RELEASE(curthread, &(*cond)->c_lock);
	}

	/* Return the completion status: */
	return (rval);
}
Example #6
0
int
_pthread_cond_timedwait(pthread_cond_t * cond, pthread_mutex_t * mutex,
		       const struct timespec * abstime)
{
	struct pthread	*curthread = _get_curthread();
	int	rval = 0;
	int	done = 0;
	int	mutex_locked = 1;
	int	seqno;

	THR_ASSERT(curthread->locklevel == 0,
	    "cv_timedwait: locklevel is not zero!");

	if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
	    abstime->tv_nsec >= 1000000000)
		return (EINVAL);
	/*
	 * If the condition variable is statically initialized, perform dynamic
	 * initialization.
	 */
	if (*cond == NULL && (rval = _pthread_cond_init(cond, NULL)) != 0)
		return (rval);

	if (!_kse_isthreaded())
		_kse_setthreaded(1);

	/*
	 * Enter a loop waiting for a condition signal or broadcast
	 * to wake up this thread.  A loop is needed in case the waiting
	 * thread is interrupted by a signal to execute a signal handler.
	 * It is not (currently) possible to remain in the waiting queue
	 * while running a handler.  Instead, the thread is interrupted
	 * and backed out of the waiting queue prior to executing the
	 * signal handler.
	 */

	/* Lock the condition variable structure: */
	THR_LOCK_ACQUIRE(curthread, &(*cond)->c_lock);
	seqno = (*cond)->c_seqno;
	do {
		/*
		 * If the condvar was statically allocated, properly
		 * initialize the tail queue.
		 */
		if (((*cond)->c_flags & COND_FLAGS_INITED) == 0) {
			TAILQ_INIT(&(*cond)->c_queue);
			(*cond)->c_flags |= COND_FLAGS_INITED;
		}

		/* Process according to condition variable type: */
		switch ((*cond)->c_type) {
		/* Fast condition variable: */
		case COND_TYPE_FAST:
			if ((mutex == NULL) || (((*cond)->c_mutex != NULL) &&
			    ((*cond)->c_mutex != *mutex))) {
				/* Return invalid argument error: */
				rval = EINVAL;
			} else {
				/* Reset the timeout and interrupted flags: */
				curthread->timeout = 0;
				curthread->interrupted = 0;

				/*
				 * Queue the running thread for the condition
				 * variable:
				 */
				cond_queue_enq(*cond, curthread);

				/* Unlock the mutex: */
				if (mutex_locked &&
				   ((rval = _mutex_cv_unlock(mutex)) != 0)) {
					/*
					 * Cannot unlock the mutex; remove the
					 * running thread from the condition
					 * variable queue: 
					 */
					cond_queue_remove(*cond, curthread);
				} else {
					/* Remember the mutex: */
					(*cond)->c_mutex = *mutex;

					/*
					 * Don't unlock the mutex the next
					 * time through the loop (if the
					 * thread has to be requeued after
					 * handling a signal).
					 */
					mutex_locked = 0;

					/*
					 * This thread is active and is in a
					 * critical region (holding the cv
					 * lock); we should be able to safely
					 * set the state.
					 */
					THR_SCHED_LOCK(curthread, curthread);
					/* Set the wakeup time: */
					curthread->wakeup_time.tv_sec =
					    abstime->tv_sec;
					curthread->wakeup_time.tv_nsec =
					    abstime->tv_nsec;
					THR_SET_STATE(curthread, PS_COND_WAIT);

					/* Remember the CV: */
					curthread->data.cond = *cond;
					curthread->sigbackout = cond_wait_backout;
					THR_SCHED_UNLOCK(curthread, curthread);

					/* Unlock the CV structure: */
					THR_LOCK_RELEASE(curthread,
					    &(*cond)->c_lock);

					/* Schedule the next thread: */
					_thr_sched_switch(curthread);

					/*
					 * XXX - This really isn't a good check
					 * since there can be more than one
					 * thread waiting on the CV.  Signals
					 * sent to threads waiting on mutexes
					 * or CVs should really be deferred
					 * until the threads are no longer
					 * waiting, but POSIX says that signals
					 * should be sent "as soon as possible".
					 */
					done = (seqno != (*cond)->c_seqno);
					if (done && !THR_IN_CONDQ(curthread)) {
						/*
						 * The thread is dequeued, so
						 * it is safe to clear these.
						 */
						curthread->data.cond = NULL;
						curthread->sigbackout = NULL;
						check_continuation(curthread,
						    NULL, mutex);
						return (_mutex_cv_lock(mutex));
					}

					/* Relock the CV structure: */
					THR_LOCK_ACQUIRE(curthread,
					    &(*cond)->c_lock);

					/*
					 * Clear these after taking the lock to
					 * prevent a race condition where a
					 * signal can arrive before dequeueing
					 * the thread.
					 */
					curthread->data.cond = NULL;
					curthread->sigbackout = NULL;

					done = (seqno != (*cond)->c_seqno);

					if (THR_IN_CONDQ(curthread)) {
						cond_queue_remove(*cond,
						    curthread);

						/* Check for no more waiters: */
						if (TAILQ_EMPTY(&(*cond)->c_queue))
							(*cond)->c_mutex = NULL;
					}

					if (curthread->timeout != 0) {
						/* The wait timedout. */
						rval = ETIMEDOUT;
					}
				}
			}
			break;

		/* Trap invalid condition variable types: */
		default:
			/* Return an invalid argument error: */
			rval = EINVAL;
			break;
		}

		check_continuation(curthread, *cond,
		    mutex_locked ? NULL : mutex);
	} while ((done == 0) && (rval == 0));

	/* Unlock the condition variable structure: */
	THR_LOCK_RELEASE(curthread, &(*cond)->c_lock);

	if (mutex_locked == 0)
		_mutex_cv_lock(mutex);

	/* Return the completion status: */
	return (rval);
}